Nonparametric estimation for survival data with censoring indicators missing at random

Abstract : In this paper, we consider the problem of hazard rate estimation in presence of covariates, forsurvival data with censoring indicators missing at random. We propose in the context usually denoted by MAR (missing at random, in opposition to MCAR, missing completely at random, which requires an additional independence assumption), nonparametric adaptive strategies based on model selection methods for estimators admitting finite dimensional developments in functional orthonormal bases. Theoretical risks bounds are provided, they prove that the estimators behave well in term of Mean Square Integrated Error (MISE). Simulation experiments illustrate the statistical procedure.
Type de document :
Article dans une revue
Journal of Statistical Planning and Inference, Elsevier, 2013, 143 (10), pp.1653-1671. 〈10.1016/j.jspi.2013.04.010〉
Liste complète des métadonnées

Littérature citée [18 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00679799
Contributeur : Fabienne Comte <>
Soumis le : vendredi 16 mars 2012 - 13:18:26
Dernière modification le : lundi 29 mai 2017 - 14:26:12
Document(s) archivé(s) le : lundi 18 juin 2012 - 16:36:40

Fichier

MAR4.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Elodie Brunel, Fabienne Comte, Agathe Guilloux. Nonparametric estimation for survival data with censoring indicators missing at random. Journal of Statistical Planning and Inference, Elsevier, 2013, 143 (10), pp.1653-1671. 〈10.1016/j.jspi.2013.04.010〉. 〈hal-00679799〉

Partager

Métriques

Consultations de
la notice

196

Téléchargements du document

384