
HAL Id: hal-00679660
https://hal.science/hal-00679660

Submitted on 16 Mar 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Small world networks and clustered small world
networks with random connectivity

Faraz Zaidi

To cite this version:
Faraz Zaidi. Small world networks and clustered small world networks with random connectivity.
Social Network Analysis and Mining, 2012. �hal-00679660�

https://hal.science/hal-00679660
https://hal.archives-ouvertes.fr


To be inserted manuscript No.

(will be inserted by the editor)

Small World Networks and Clustered Small World

Networks with Random Connectivity

Faraz Zaidi

Received: date / Accepted: date

Abstract The discovery of small world properties in real world networks has rev-

olutionized the way we analyze and study real world systems. Mathematicians and

Physicists in particular have closely studied and developed several models to artifi-

cially generate networks with small world properties. The classical algorithms to pro-

duce these graphs artificially, make use of the fact that with the introduction of some

randomness in ordered graphs, small world graphs can be produced. In this paper, we

present a novel algorithm to generate graphs with small world properties based on the

idea that with the introduction of some order in a random graph, small world graphs

can be generated. Our model starts with a randomly generate graph. We then replace

each node of the random graph with cliques of different sizes. This ensures that the

connectivity between the cliques is random but the clustering coefficient increases to

a desired level. We further extend this model to incorporate the property of commu-

nity structures (clusters) found readily in real world networks such as social, biological

and technological networks. These community structures are densely connected regions

of nodes in a network that are loosely connected to each other. The model generates

these clustered small world graphs by replacing nodes in the random graph with densely

connected set of nodes. Experimentation shows that these two models generate small

world and clustered small world graphs respectively as we were able to produce the

desired properties of a small world network with high clustering coefficient and low

average path lengths in both cases. Furthermore, we also calculated Relative Density

and Modularity to show that the clustered networks indeed had community structures.
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1 Introduction

Small world networks can be readily found in many real world systems such as social

networks [46,38], economic networks [17], transportation systems [13,35], epidemic

spreading [31], metabolic networks [16,3], food web [22] and so on.

The discovery of small world properties has enabled researchers to understand,

improve and manipulate these networks for useful applications. As an example, the

spread of disease or epidemics has been well studied in social networks and small

world properties have been used to devise strategies to isolate and quarantine infected

communities [23]. Similarly Online social communities [34], Stock affiliation [41], air

transportation [7], metabolic networks [43] are all examples where small world prop-

erties have been very useful to analyze these networks and enhance decision making

processes.

Small world networks have two structural properties [48], the small world effect and

clustering. The small world effect is the concept where any two nodes in a network are

connected to each other through a small path. Quantitatively, this concept is captured

using the metric called average path length (APL) which for any network, gives a value

representing on average how far apart any pair of nodes lie in the network. Random

networks also exhibit this property as typical APL values for any random network are

low [32].

The second property of small world networks is Clustering which is also referred

to as transitivity [26] or the fraction of transitive triples in a network [46]. This is

to avoid confusion from the concept of Community Structures or Clusters [11,4]. The

concept of clustering is the idea where two nodes having a common neighbour have a

high tendency to be connected to each other. This property can be measured through

the metric called clustering coefficient [48]. When compared to a random network, this

property is only present in real world networks as in case of random networks, every

node has an equal probability of connecting to any other node, thus transitive triples

or triads1 are rarely formed in a random network.

Many models have been proposed that artificially generate networks with small

world properties. These models are quite useful as they can be used to construct artifi-

cial networks with desired properties and sizes that mimic real world networks. These

generated networks can then serve as test beds to facilitate various experimental and

empirical studies. Furthermore, these models provide us with insight into many real

world systems and the methods to identify their structure and the methods to analyze

them.

In this paper, we introduce a novel algorithm to generate small world networks

from random networks. The classical model of Watts and Strogatz [48] suggests that,

with the introduction of randomness in an ordered world, we can obtain small world

networks. We demonstrate that with the introduction of small ordered components

in a random world, we can still obtain a small world network. We then discuss the

concept of community structures present in many real world networks and show how

this model can be used to generate small world networks with community structures.

Experimental results clearly show that the proposed model can be used to generate

small world as well as clustered small world networks.

1 The term was first used by sociologist Simmel [39] to represent the structure of social
networks. It represents three people connected through three links forming a clique of size 3.
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The novelty of our approach lies in the idea that we control the connectivity pat-

terns of nodes in the generated small world network. By this, we mean that we embed

structurally well defined groups of nodes (cliques or densely connected set of nodes)

as compared to most of the other approaches present in the literature where the sole

objective is to introduce triads to increase the overall clustering coefficient, thus gen-

erating small world graphs. Although, the real world social networks contain many

triads [39,42], but this does not mean that they contain only triads. Cliques of vari-

ous sizes must be present in artificially generated small world networks making them

closer to real world networks. The proposed model allows this flexibility that cliques

of different sizes can be introduced in a network using this model.

The proposed model also allows extension to generate small world graphs with

clusters. To the best of our knowledge, all the other models of small world graphs do

not generate clustered graphs. Since the presence of clusters has been widely studied in

social and other networks [37], this model provides an interesting alternative to existing

models where we want to generate clustered graphs with small world properties.

Another important property of real world networks observed by Albert and Barabasi

[2] is the degree distribution of nodes following power-law also known as scale free dis-

tribution. Networks having power-law degree distribution are also known as scale free

networks. In this paper we focus only on small world networks and their relationship

with random networks and thus limit our discussion throughout this paper to the two

structural properties of small world networks, the clustering coefficient and the aver-

age path length. We also limit our literature review to models that generate only small

world networks without scale free properties although these models are briefly cited

for the sake of completion.

The article is structured as follows: In the next section we review different models of

small world networks. In section 3 we give the details of the proposed model to generate

small world networks based on random networks. Next, we discuss the concept of

community structures and how the proposed model can be extended to generate small

world networks with community structures. Finally we conclude in section 5 giving

future research directions.

2 Related Work

First we discuss the classical model of Watts and Strogatz (WS) [48]. The model starts

with a completely regular network of n vertices where each vertex is connected to

its k nearest neighbors, for a given value of k. This forms a regular graph as shown

in Figure 1(a)2. Then, each edge is rewired with a given probability p by choosing

randomly a new vertex to connect. For a regular graph, the clustering coefficient is

very high as neighbors are well connected to each other forming triads. The average

path length is also very high as nodes only connect to their neighbors and distant

nodes lie far apart from each other. Randomly rewiring a few edges introduces edges

connecting nodes lying at long distances, and as a result, the overall average path length

decreases generating a small world network as shown in Figure 1(b). Continuing the

process of random rewiring, we end up rewiring all the edges in the initially generated

regular graph obtaining a completely random network as shown shown in Figure 1(c).

2 All the graphs in this article have been generated using Tulip http://tulip.labri.fr/

TulipDrupal/ which is an open source software for the analysis and visualization of large size
graphs.
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An important observation here is that we start with a completely regular network and

the introduction of randomness transforms the graph to a small world network.

Although this basic model was published earlier, the study of these models started

with another model published later by Watts as alpha model [47]. The idea is to

capture two extreme worlds, a completely ordered world and a completely random

world with a set of interaction rules. The completely ordered world is represented

by what the authors call, caveman graphs. These graphs consists of isolated cliques

called caves. Within each cave, everyone is connected to every other person but people

from different caves do not communicate to each other. As a new person connects to

someone from a cave, it almost immediately connects to everyone in the same cave. This

results in the presence of high clustering coefficient as large size cliques also contain

triads. At the other extreme, is the world where everyone can communicate to every

other person irrespective of their previous connectivity. The probability of two people

communicating is equal and thus new connections are formed completely at random.

Based on these two interaction rules, we could construct a network evolving over time

where new connections are alternately made according to one of the two specified

interaction rules. Between the two extreme worlds, there lies a set of networks where

order and randomness find an equilibrium such that there is enough order to have

caves resulting in high clustering coefficient and there is enough randomness to have

randomly connected nodes resulting in low average path length of the network. This

set of networks has small world properties and can be tuned using the alpha parameter

of how new connections chose the interaction rules. The idea is quite simple and tries

to find a balance between an ordered graph and a random graph to generate small

world networks.

Newman and Watts [29] proposed a slightly modified model to the classical model.

In this model, instead of rewiring links between sites, as in the classical model of Watts

and Strogatz, new links are added between pairs of sites chosen at random. No links

are removed from the underlying regular network. This ensures that any region does

not become disconnected. Moreover this model is easier to analyze and draw numerical

results.

Newman et al. [30] also study a network generation model with arbitrary degree

distributions which can be used to generate only small world networks. The idea is

to generate affiliation networks similar to co-authorship3 [24] networks using random

bipartite graphs.

The above idea is also used by Guillaume and Latapy [12] as they identify bipartite

graph structure as a fundamental model of complex networks by giving real world ex-

amples. The model proposed can be used to generate small world and scale free graphs

or just small world graphs depending on the degree distribution imposed on the bipar-

tite graph. The two disjoint sets of a bipartite graph are called bottom and top. At each

step, a new top node is added and its degree d is sampled from a prescribed distribution

which can either be a uniform distribution or a power-law distribution. To generate

the unipartite version from this bipartite graph, all the bottom nodes connected to a

common top node are connected to each other forming cliques. The process is repeated

for each top node to obtain the entire network. The process is illustrated in Figure 2

where (a) shows a bipartite graph and (b) shows the unipartite graph generated from

it. As a result of this model, we obtain random small world networks but the bound-

3 A network of authors where two authors are connected to each other if they publish an
artifact together.
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aries between the cliques cannot be identified as cliques overlap due to the inherent

bipartite structure in the network. These boundaries can be implanted in the bipartite

graph initially generated but it will no longer remain randomly generated and would

be a modified random bipartite graph. This model is quite useful to generate small

world networks having inherent bipartite structure but our goal is to have a generic

model which is not dependent on a bipartite structure. Moreover our objective is to

generate a small world network which emerges from the random connectivity of small

well connected group of nodes. This makes our proposed model easier to comprehend

and analyze.

Another variation to the basic WS model was proposed by Kasturirangan [6] to

generate small world networks. The author proposes the idea that the small world

effect in networks does not occur due to random re-wiring of edges but due to multiple

scales of network. These scales are formed due to the presence of high degree nodes

which are responsible for reducing the overall average path length of a network. The

model starts with a regular network just as the WS model and introduces high degree

nodes by selecting randomly chosen vertices. Again this model uses a regular network

and differs from our objective where we want to have well defined boundaries between

small groups of nodes, to demonstrate that a certain amount of randomness can occur

between groups of nodes, and still the network can exhibit small world properties. This

is different from the classical WS model where introducing random edges does not force

well defined boundaries between well connected nodes.

Another model based on similar justifications was proposed by Kleinberg [18] who

used the notion of searching in these networks and how people are so efficient in finding

these short paths. Developing a model based on how individuals do it in real world

networks, the model will be more realistic and close to how networks are structured.

The model again starts with a regular network and add random links to it, but the

probability of a random link decreases with their distance as measured in the regular

graph. Again this research is directed towards the understanding of how short paths

occur in networks but the underlying network is kept regular. A good review of these

small world models can be found in [25].

Barabasi and Albert [2] proposed a model to generate graphs with only scale free

properties. Other researchers have proposed a number of artificial network generation

models such as [15,8,20,45,10,19,5,44,14]. These models generate small world and

scale free networks. Most of these models introduce triads to increase the clustering

coefficient of the entire network and nodes connect using the preferential attachment

rule to have a scale free degree distribution. These models are extensively reviewed

in [49]. The author has also proposed another model to generate clustered small world

and scale free graphs based on several social traits, readers can refer [49](chapter 4)

for more details.

Models focussing domains such social networks [33] have also been studied where

the goal is to develop more realistic models based on actual data instead of generalized

structural properties. One notable class of such algorithms is the exponential random

graphs [40] but these algorithms do not focus on small world properties and are not

considered in this study.
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Fig. 1 Watts and Strogatz Model. From a Regular Network to a Random Network, where
random rewiring of some edges in a regular network produces a small world network with high
clustering coefficient and low average path length.

Fig. 2 Random Small World models from Bipartite Graphs.

3 Proposed Model

In this section we present the proposed model to generate small world networks from

random networks. As opposed to WS model, we start with a random network. In the

first step we generate a random network using the model of Erdos and Renyi[9]. In the

next step, we replace each node in the random network with a triad, which is a set

of three nodes connected through three edges forming a clique of size 3. In the final

step, for each edge, in the random network an edge is placed between the two triads

that replaced the original nodes in the initial random network connecting one of the

randomly selected nodes from each triad. The final network thus obtained exhibits the

two structural properties of a small world network.

Figure 3 illustrates the steps of the proposed model. In Figure 3(a) the random

network generated using [9] is shown with 5 nodes. Figure 3(b) represents the second

step of the proposed model where all the nodes are replaced with triads. Finally in step
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Fig. 3 Steps of the Proposed Model. (a)Random Network (b) Nodes replaced by triads (c)
Edges connected to randomly selected newly added nodes.

3 shown in Figure 3(c), edges connecting the initial random network are connected to

the one of the randomly selected nodes of the triads that replaced that particular node

in step 2. Steps 2 and 3 transforms the random network into a small world network.

The introduction of triads increases the overall clustering coefficient of the network

which is one of the basic properties of small world networks. The connectivity of these

newly introduced triads in the network is based on the initially generated random

network. We already know that random networks also have the property of small world

effect [32] thus the average path length in the generated network remains low. It is easy

to show that since the proposed model replaces nodes with triads, but the connectivity

of these triads is governed by the initially generated random network, the average path

length of the entire network remains low for the newly generated network.

Networks generated using this model indeed generates small world networks as

shown from the values of clustering coefficient and average path length in Table 1.

Since the metric clustering coefficient measures the presence of triads in a network,

replacing triads for nodes in a random network statistically satisfies the properties

of a small world network with high values of clustering coefficient but for real world

networks, larger size cliques may also exist. A simple modification to this basic model

is, instead of using triads, we can use cliques of larger sizes. Table 1 also shows the

values of clustering coefficient and average path length when cliques of size 5 are used

instead of 3. This value can be used as a parameter for the proposed model along

with a randomly generated network which is given as input. Clearly the network thus

generated also has small world properties. This idea can be further expanded to replace

cliques of varying sizes to generate a small world network and need not to be a constant

value. This can be a range between two constants or can be selected from an arbitrary

distribution depending on how and why this artificially generated network is going to

be used. Domain knowledge can also be used to determine the size of these cliques

which can vary drastically from one domain to the other.

Experimental results are tabulated in Table 1 where we generate artificial networks

for two different sizes of networks with different node-edge densities. This is to demon-

strate the robustness of the proposed model. We use the ER model, the WS model

and the proposed model for two different values cliques sizes 3 and 5. Results clearly

show that the proposed model generates a small world network when compared to the
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Table 1 Artificial Networks generated using Erdos and Renyi Random Graph Model, Watts
and Strogatz Model and the Proposed Model for two different clique sizes (k) 3 and 5. APL
= average path length, CC = Clustering Coefficient.

Size Random Watts and Zaidi Zaidi
Network Strogatz k = 3 k = 5

Nodes Edges APL CC APL CC APL CC APL CC
100 250 3.01 0.062 3.56 0.299 3.03 0.363 3.81 0.694
100 400 2.43 0.080 3.06 0.511 2.48 0.306 2.53 0.402
1000 2500 4.48 0.003 5.70 0.331 4.45 0.393 6.40 0.696
1000 4000 3.55 0.007 4.47 0.418 3.55 0.352 3.71 0.367

statistics for a random network and the values are quite close to that generated by a

WS Model.

Based on the random network initially generated, it is easy to calculate the number

of nodes and edges the generated small world network will have using the proposed

model. For clique size k and given a random network with nodes n and edges e, the

proposed model generates a network with nodes n′ given by equation 1 and edges e′

given by equation 2.

n
′ = k ∗ n (1)

e
′ = e+

k ∗ (k − 1)

2
∗ n (2)

This simple experiment with four artificially generated graphs confirmed our hy-

pothesis to generate small world networks from random graphs. We performed an

extensive experiment using the proposed model where we generated 100 graphs each

with k=3 and k=5 for different graphs sizes and densities. The APL and CC values are

plotted for the generated graphs in Figure 4. For this experiment, we generated random

graphs between sizes 100 and 1000 with edge/node ratio randomly generated between

[2, 6]. Results clearly show that the proposed model for these parameters consistently

generated small world networks as average APL values for the generated 100 graphs

were 5.38 and 5.31, and the average CC values were 0.44 and 0.52 for k=3 and k=5

respectively.

4 Community Structures in Random and Small World networks

Another important property of networks is the presence of community structures or

clusters. It is defined as the decomposition of nodes into ‘Natural Groups’ [36]. A

more precise and mathematically quantifiable definition of a cluster is a set of vertices

with high interconnectivity among vertices of the same cluster and low connectivity of

vertices of different clusters [4]. There are several cluster evaluation metrics that try

to evaluate the quality of a clustering algorithm on the basis of this ratio [50].

One such metric is the Relative Density [21] (RD). It calculates the ratio of the

edge density inside a cluster to the sum of the edge densities inside and outside that

cluster. The final Relative Density is the averaged sum of the these individual relative

densities for all clusters and is given by the following equation:

RD =
degint(Ci)

degint(Ci) + degext(Ci)
(3)
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Fig. 4 APL and CC values calculated for randomly generated 100 small world graphs using
the proposed model. For k=3 and k=5 over 100 graphs, the average CC values are 0.44 and
0.52, and average APL values are 5.38 and 5.31 respectively.

Fig. 5 Consider two graphs with same number of nodes and edges and thus having the same
density in terms of number of nodes and number of edges. (a) Nodes well connected to each
other forming quads, (b) Nodes sharing neighbors to form triads. Clustering Coefficient for
graph (a) is 0.0 and (b) is 0.69 representing the absence of triads in graph (a). This example
shows that nodes can be densely connected even if the clustering coefficient is low.

In the above equation, the term degint(Ci) is the internal degree of cluster Ci defined

as the number of edges connecting vertices in cluster Ci and the term degext(Ci) is the

external degree of cluster Ci defined as the number of edges connecting vertices from

cluster Ci to vertices of other clusters.

This definition of cluster is quite different from the metric earlier discussed called

clustering coefficient. Clustering coefficient only tries to capture the presence of triads

in a network where as a cluster tries to capture the notion of how densely connected

a set of vertices is, regardless of the presence of triads. Two graphs are shown as a

simple example in Figure 5 to highlight the differences of the two metrics. Both these

graphs have 17 nodes and 28 edges making their node-edges density equal. The graph of
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Fig. 6 (a) Shows a Random network with 5 nodes and 4 edges. (b) Shows the Small World
network generated using the proposed model for k=5. We can consider each clique as a cluster
in this generated small world network.

Figure 5(a) is built using quads, which we define as a set of 4 vertices connected through

4 edges forming a cycle (or a circuit). This clearly suggests that there are no triads

in this graph. On the other hand, the graph of Figure 5(b) is built using triads. The

clustering coefficient for the two graphs is 0.0 and 0.69 respectively. Consider if these

two graphs are subgraphs of a another graph and we want to group them as clusters,

the clustering co-efficient would only allow graph (b) to be clustered whereas in terms

of the definition of a cluster, both have equal internal degree and either both should

be clustered or both should not be clustered depending upon the overall topology of

the network.

Coming back to the proposed model, lets consider another example of a random

graph and the generated small world graph shown in Figure 6. Clique size k is set to 5

for this generation of small world graph. If we compare our definition of a cluster to this

small world network, clearly we can see that the replaced cliques are extremely good

candidates to be considered as clusters or natural groups in the network. The internal

degree of each clique is the highest possible value since every node is connected to

every other node in a clique. The external degree is not very high and in some cases,

the external degree is as low as possible which is 1 for the cluster to be connected to

the entire network.

Calculating the Relative Density (RD) from equation 3, we get the value of 0.86

which suggests a very good clustering in terms of RD. The idea can be further expanded

to replace the nodes in the initial random network with not only cliques of larger sizes

but with densely connected set of nodes. These densely connected group of nodes have

certain social implications from our real world. People usually socialize in groups, as we

have a group of friends at school, at work, in the family where every person knows the

other person. This justifies the introduction of cliques or densely connected set of nodes

in the graphs that are supposed to represent real world structures from our society.

These closely knit group of nodes represent clusters of people in our real world. Thus

the proposed model can be used to produce clustered small world artificial networks. An

important perspective to this application of the proposed method is that the clusters

connect to each other randomly and with minimal external degree.

This connectivity pattern is different from how Real world networks connect to each

other as clusters are not so well isolated from the rest of the network. One solution to
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Fig. 7 (a)Random Network with 5 nodes and 4 edges.(b)Nodes a and d replaced by densely
connected set of vertices.(c)Edge between the two newly introduced set of vertices is re-
moved.(d)Multiple edges are introduced to connect the two newly introduced set of vertices.

resolve this interconnectivity of the clusters is that currently in the proposed model,

we only replace nodes with cliques in the initially generated random network. We can

also replace these single edges between clusters with more than one edges to increase

the external degree of a cluster. This step will create fuzzy boundaries between clusters

depending upon how high the external degree of a cluster is as compared to the internal

degree. We summarize the modifications proposed to the basic models below:

– Instead of replacing nodes with cliques, densely connected set of vertices can be

chosen. This requires four parameters, the minimum and maximum size for the set

of vertices, the internal node-edge density and the clustering coefficient for the set

of vertices.

– The edges in between nodes of the initially generated random network can be

replaced with more than one edges. This connects nodes of the two set of vertices

with more than one edges. The number of edges replaced determines the external

node-edge density of the set of vertices representing clusters. This number can be

taken as input from the user or can be generated randomly between 1 and the

maximum number of edges possible between the two set of vertices.

After the above two modifications, the proposed model can be used to generate

clustered artificial networks with small world properties where the internal and exter-

nal densities are parametrized. The low external degree and high internal degree of
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clusters ensures a well structured small world network with well defined clusters. The

interconnectivity of clusters is based on the initially generated random network and

these clusters communicate to each other randomly.

The process is graphically depicted in Figure 7. Again we start with a random

network as shown in Figure 7(a). In the second step, nodes a and d are replaced with

densely connected set of vertices where the size of each group is again chosen randomly.

The resultant graph is shown in Figure 7(b). In step 3, the edge connecting nodes a and

d in the initial random network is removed to be replaced by multiple edges connecting

vertices of the two newly introduced sets of vertices. The number of edges to be added

in between these newly added set of vertices can be given as parameter and the nodes

to be connected from the two sets with these edges can be chosen randomly.

It is easy to show that the network thus generated again is a small world network

as the nodes are replaced with set of vertices with high clustering coefficients. The

inter-connectivity of these clusters is based on the initially generated random network

so it also exhibits the small world effect.

We mention another metric called Modularity (Q) [28] to evaluate the quality of

clusters. This metric has also been used by clustering algorithms [27] to obtain clusters

from a network. The metric values range from 0 to 1 where 0 suggests poor clustering

and 1 suggests the best clustering possible. Mathematically, for a specific division of a

network into C clusters, a symmetric matrix c can be defined as C × C whose element

cij is the fraction of all edges in the network that link nodes in community i to nodes

in community j. For this clustering, the Modularity(Q) can be defined as:

Q = Tr c−
∥

∥c
2
∥

∥ (4)

The term Tr c refers to the trace of the matrix c which gives the fraction of edges

in the network that connect vertices in the same community. The term
∥

∥c2
∥

∥ is the

squared sum of the elements of matrix c.

Modularity tries to capture the idea that if a particular clustering gives no more

internal degree than would be expected by a random network, then clustering this set

of vertices would give a poor value. If we look at the proposed model, this is exactly

what we are trying to mimic when we introduce densely connected set of vertices in

place of randomly connected nodes. The newly added set of vertices is expected to have

a high density and thus high internal degree and low connectivity with nodes of other

clusters, to have low external degree.

Table 2 shows the results of generating clustered small world networks using the

most basic form of proposed model. We replace nodes with cliques of fixed sizes instead

of randomly choosing the size, density and clustering coefficient of vertices. These

cliques are clustered to form communities in the generated networks. Single edges

between the nodes in the random network are not replaced with more than one edge.

The results are shown for two different sets of graphs with different sizes and node-edge

densities. The low average path lengths and high clustering coefficients clearly show

that the generated networks have small world properties. We have used RD and Q

metric to evaluate the quality of clusters produced using this proposed model and the

obvious high values justify the grouping of nodes as clusters. These high values can

be easily be tuned to desired values. For instance, to decrease these values, we can

introduce more inter-cluster edges or we can reduce intra-cluster densities.

Analyzing the proposed model, it is interesting to observes that we have used the

idea of caves from the alpha model [47] to generate a small world network. When we
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Table 2 Clustered Small World Networks generated using the proposed model. The small
world properties of generated networks can be observed with low APL = average path length
and high CC = Clustering Coefficient values.

Random Clique Generated APL CC Q RD
Graph Size k Graph

Nodes Edges No. of Clusters Nodes Edges
10 25 10 100 475 3.28 0.90 0.94 0.90
10 25 5 50 125 2.94 0.70 0.67 0.78
100 400 10 1000 4900 5.12 0.85 0.91 0.85
100 400 5 500 1400 4.54 0.59 0.71 0.56

generate a random network in the first step, it is to decide the number of caves our

small world network will have and how these caves would be connected. When we

extend this basic model to replace single edges with more than one edge, we modify

the inter-connectivity of caves which can be used as a tunable parameter to control the

external degree of a cluster. The size of each cave, the density and clustering coefficient

are other parameters that can help users to generate tunable clustered small world

networks. Thus, this model is useful to develop networks with desired structural as

well as statistical properties for a small world network.

We performed a simple experiment to test how the proposed model behaves if we

recursively apply it to the generated network. The idea was to explore the possibility of

using the proposed model to generate hierarchies in small world networks as several re-

searchers have shown the presence of hierarchical organization of real world networks,

specially using divisive and agglomerative clustering algorithms [11,27,1]. Recursive

application of the proposed model kept the clustering coefficient high but the average

path length increased linearly as the number of nodes increased in the network. This

is because recursively replacing nodes with cliques resulted in increase in the distances

between the nodes in the newly generated networks. To reduce these distances, new

random connections were added to reduce the overall average path length of the net-

work. Since this addition lead to major changes in the proposed model, we leave further

discussion as part of future work and limit this study to generating networks without

hierarchical structures.

Again this simple experiment with four artificially generated graphs confirmed our

hypothesis to generate clustered small world networks from random graphs. We per-

formed an extensive experiment using the proposed model where we generated 200

graphs where the paremeters were changed after the first 100 graphs generated. The

five parameters used are the number of cliques (or clusters) to be added in the graph.

This is essentially the number of nodes in the initially generated random graph. Next

two parameters are the minimum and maximum sizes of the cliques that will replace

the nodes in the random graphs. Fourth parameter is the percentage of edges to be

removed from the graph containing cliques which reduces the overall density of clus-

ters. And finally the percentage of edges to be added between different clusters to

increase the intercluster density of the clustered graph. For this experiment, we gener-

ated random graphs between sizes 100 and 1000. The clique sizes varied between [5,25]

and were randomly generated for each cluster and for each graph. Both these ranges

remain unchanged for all the 200 generated graphs. The percentage of edges to be re-

moved from the cliques varied between [0,10] and [0,40] for the two sets of 100 graphs.

Similarly the percentage of edges to be added between clusters varied between [0,10]
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Fig. 8 RD and Q metric values calculated for randomly generated 200 clustered small world
graphs using the proposed model. ‘Intercluster Edges’ and ‘Density of Cliques’ Parameters are
changed after 100 clustered graphs.

and [0,40]. The percentages were calculated on the basis of the total number of edges

present in the graph after the cliques were added to the graph. Once these clustered

graphs were generated, the RD and Q values were calculated and consistently high

values were obtained for the 200 graphs generated. These high values suggest that the

generated graphs had indeed community structure clearly present. Results are shown

in Figure 8.

One such graph is shown in Figure 9 where we generated a random graph of 10

nodes and 25 edges. These 10 nodes were then replaced by cliques of different sizes and

10% of the total edges of these cliques were removed. Thus making a graph of 67 nodes

and 197 edges. The average clustering coefficient of this graph is 0.68 and the average

path length is 3.29. Considering these clusters, we calculate the Q metric which turns

out to be 0.86 and the RD value to be 0.76. This simple example demonstrates that

indeed our model works well to generate small world clustered networks.

Considering the two extremes for our model,when we simply replace the nodes in a

random graph with cliques representing communities, we have a small world network

with high clustering coefficient and small average path length. As the model can be

parameterized, if we keep reducing the number of edges inside a cluster (intracluster

edges) and keep increasing the number of edges between these clusters, we will end up

with a completely random graph since all the intracluster edges will be removed (thus
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Fig. 9 Shows a graph generated using the proposed model where the initial random graph
contained 10 nodes and 25 edges. These nodes were replaced by cliques of size 5-10. Color
encoding represents nodes belonging to the same cluster with 25 intercluster edges.

removing all the triads) and many intercluster edges that randomly connect nodes

from different clusters will increase. We performed this experiment to show how the

small world graph changes to a random graph if the process of removing intracluster

edges and adding intercluster edges is performed iteratively. The results are tabulated

in Table 3 and Table 4. These results were generated when the initial random graph

contained 100 nodes and 400 edges. These nodes were replaced by cliques of varying

sizes between 5 and 10.

Table 3 shows the results when different percentages of the intracluster edges are

removed from the clusters. We used the percentage ranges from 0% to 90% to remove

edges from the cliques where 0% means no edge was removed from the cliques and

90% means 90% of the total possible edges inside clusters were removed. From Table??

and Figure10(a,c), we can clearly see that removing these edges linearly reduces the

clustering coefficient of the generated graph while slightly increasing the average path

length of the entire graph.

Table 4 shows the results when the intercluster edges are gradually added to the

graph. We increased the edges by multiplying the originally present edges (for these

generated graphs, we used n=100 and e=400) with a factor ranging between 1 and

10 where 1 means no change in the existing number of edges and 10 means original

edges were replaced with 400 * 10=4000 edges in this particular case. From Table??

and Figure10(b,d), we can clearly see that adding these edges linearly reduces the

clustering coefficient of the generated graph while slightly decreasing the average path

length of the entire graph.
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Table 3 Shows how the values of Clustering Coefficient (CC), Average Path Length (APL),
Q and Relative Density (RD) behave as we remove intracluster edges reducing the number of
edges present inside clusters. The values are plotted for removal percentage where for example
90% signifies that 90% of the total edges present inside a network were remove.

Nodes Edges APL CC Q RD Removed Edges Added Edges
707 2637 4.99 .73 .84 .72 0 0
701 2406 4.92 .62 .82 .68 10% 0
687 2108 5.1 .52 .79 .65 20% 0
705 1991 5.3 .44 .78 .62 30% 0
665 1615 5.3 .32 .73 .53 40% 0
694 1505 5.6 .25 .71 .48 50% 0
734 1392 5.9 .18 .69 .40 60% 0
683 1050 5.7 .09 .59 .25 70% 0
736 911 6.38 .05 .53 .19 80% 0
662 620 5.7 .007 .30 .09 90% 0

Table 4 Shows how the values of Clustering Coefficient (CC), Average Path Length (APL),
Q and Relative Density (RD) behave as we add intercluster edges increasing the number of
edges present between clusters. The originally existing edges are multiplied by the nummber
of times for example 9 signifies that (400 * 9) intercluster edges were added to the network.

Nodes Edges APL CC Q RD Removed Edges Added Edges
707 2637 4.99 .73 .84 .72 0 1
706 3038 3.8 .56 .73 .56 0 2
700 3403 3.4 .43 .64 .46 0 3
684 4193 3.05 .29 .51 .34 0 4
659 4342 2.8 .21 .43 .27 0 5
695 4959 2.8 .20 .42 .26 0 6
701 5380 2.7 .18 .39 .24 0 7
696 5753 2.6 .15 .36 .22 0 8
692 6117 2.6 .13 .33 .20 0 9
707 6623 2.6 .13 .32 .19 0 10

From this final set of experiments we can observe the linear change in the Q and

RD values that decreases with the decrease in the intracluster edges and increase in

the intercluster edges. These values along with the low values of clustering coefficient

represent the absence of triads and community structures in a graph where nodes

connect randomly to each other.

5 Conclusion and Future Research Perspective

In this paper, we have introduced a novel algorithm to generate small world networks

based on random networks. The novelty of the proposed algorithm is the introduction

of inherent randomness in the connectivity patterns of groups of nodes. We demon-

strate that with the introduction of some order in a random world, we can still produce

graphs with small world properties. The model is further extended to generate small

world networks with well defined community structures. An extended literature review

suggests that this is the first attempt to generate clustered small world graphs. Ex-

periments clearly show that the generated networks exhibit desired small world and

clustered small world properties.



17

Fig. 10 Shows the behavior of Clustering Coefficient and Average Path length as we decrease
intracluster edges and increase intercluster edges. (a) Clustering coefficient drops linearly as
intracluster edges are removed. (b) Clustering Coefficient again drops as intercluster edges are
increased. (c) Average path length increases slightly as intracluster edges are removed. (d)
Average path length decreases slightly as intercluster edges are added to the network.

We also tested the proposed model to generate hierarchical structures in small

world networks. We recursively used the model to generate hierarchies which resulted

in networks with high clustering coefficient but the average path length also increased

linearly with the introduction of each level. We intend to explore this direction to be

able to generate small world networks with hierarchies. We also intend to extend this

study for scale free networks where the idea is to have clustered scale free networks

generated artificially.
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