
HAL Id: hal-00679388
https://hal.science/hal-00679388

Submitted on 15 Mar 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Observations of the seasonality of the Antarctic
microseismic signal, and its association to sea ice

variability
Mélanie Grob, Alessia Maggi, Eléonore Stutzmann

To cite this version:
Mélanie Grob, Alessia Maggi, Eléonore Stutzmann. Observations of the seasonality of the Antarctic
microseismic signal, and its association to sea ice variability. Geophysical Research Letters, 2011, 38,
pp.L11302. �10.1029/2011GL047525�. �hal-00679388�

https://hal.science/hal-00679388
https://hal.archives-ouvertes.fr


GEOPHYSICAL RESEARCH LETTERS, VOL. ???, XXXX, DOI:10.1029/,

Observations of the seasonality of the Antarctic

microseismic signal, and its association to sea ice

variability

M. Grob,
1,3

A. Maggi,
1

and E. Stutzmann,
2

1Institut de Physique du Globe de

Strasbourg, Université de
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Seismic noise spectra at all seismic stations display two peaks in the 1-20

s period band, called primary and secondary microseisms. They are caused

by the coupling of ocean waves into Rayleigh waves. At most locations, mi-

croseismic power is greater during local winter (when nearby oceans are stormier)

than local summer. This tendency is reversed for stations in Antarctica, where

growth of local winter sea ice seems to impede microseism generation in near

coastal areas. A decade of continuous data from coastal seismic stations in

Antarctica show systematic seasonality in microseismic signal levels, and demon-

strate associations with both broad-scale and local sea-ice conditions. Pri-

mary microseisms are known to be generated at the coast and the modula-

tion that we observe can be associated with sea-ice variations both in the

vicinity of the station and along other Antarctic coasts. The similar mod-

ulation of short-period secondary microseisms corroborates their mostly near-

coastal origin, while the continued presence of long-period secondary micro-

seisms suggests more distant source regions. These observations could be used

to extend the monitoring of climate variability prior to the availability of satellite-

derived climate indicators.
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1. Introduction

Analyses of seismic noise spectra ubiquitously show broad energetic peaks over a 3-20 s

period band, primarily composed of Rayleigh waves, and commonly referred to as primary

(10-20 s) and secondary (3-10 s) microseisms. These microseisms are due to ocean gravity

wave interactions that cause pressure oscillations, which in turn generate seismic waves

at the ocean floor [Longuet-Higgins , 1950; Tanimoto, 2007; Kedar et al., 2008]. Primary

microseisms are generated when ocean gravity waves reach shallow water near the coast

and interact with the sloping seafloor, either by breaking or shoaling [Hasselmann, 1963].

These seismic waves have periods similar to the incident ocean gravity waves. Secondary

microseisms are more energetic, and are generated by standing or colliding waves within

the ocean wave field near the coast or in the deep ocean [e.g. Haubrich and Mc Camy ,

1969; Friedrich et al., 1998; Chevrot et al., 2007; Bromirski et al., 1999]. These in turn

create standing pressure fluctuations at the ocean bottom at half the period of the ocean

waves. The variations in microseismic power have been linked to the presence of ocean

storms [Bromirski and Duennebier , 2002; Barruol et al., 2006; Gerstoft and Tanimoto,

2007; Aster et al., 2008, 2010].

Stutzmann et al. [2009] analyse seismic noise spectra at all stations of the global GEO-

SCOPE network, and show that microseismic power is greater during local winter at

the high latitudes of both hemispheres. This seasonality is explained by the seasonal

increase of nearby oceanic storms. The only GEOSCOPE station that displays a differ-

ent behaviour is Dumont d’Urville (DRV) in Antarctica, where microseismic amplitude is

weaker in winter than in summer. Stutzmann et al. [2009] link this phenomenon to the
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presence of sea ice-floe, which prevents incoming swells from reaching the coast, thereby

impeding both direct coupling at the coast (responsible for the primary microseisms) and

swell reflection (responsible for the secondary microseisms). In this study, we extend the

analysis to seismic stations at other coastal regions of Antarctica, in order to validate the

observations made at DRV.

Sea-ice extension and concentration vary seasonally (following the cycle of ice-floe for-

mation and dislocation) and inter-annually [Cavalieri and Parkinson, 2008]. They are

important factors for modelling climate variability, as they influence the energy exchange

between ocean and atmosphere. Sea ice has been continuously monitored by satellite

since 1979, using passive microwave radiometers. We take advantage of this extensive

data-set to investigate in greater detail the correlation between microseism power and

ice-floe presence, and briefly discuss the use of this seismic observation for investigating

climate variations.

2. Microseism analysis

We analyze microseismic signals over the time period 2000-2009 for ten stations located

on or near the coast of Antarctica: SNAA.GE, SYO.PS, MAW.AU, CASY.IU, DRV.G,

VNDA.GT, SBA.IU, LONW.YT, SIPL.YT, PMSA.IU. The data are available from IRIS

(Incorporated Research Institutions for Seismology) DMC for most stations, and directly

from the station operator for SYO (2005-2009).

We calculate robust power spectral densities (PSD) of waveform data from continuous,

vertical component seismic recordings, using the Chave et al. [1987] method. Specifically,

we remove the instrument response, and segment the waveforms into hour long time
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windows that overlap by 50%. Earthquakes and glitches are eliminated by using an

iterative algorithm, and we calculate a smoothed Fourier transform for each data segment.

The energy spectrum is computed using the median over all windows, and is averaged over

24 hours.

Figure 1a shows a typical microseism spectrogram over a year for CASY station. The

primary microseism energy drops below -150 dB towards day 140 (end of May) and starts

to rise again towards day 310 (November), though it does not reach the same level as

during the beginning of the year. The secondary microseism energy also drops near the

end of May and, like the primary microseism, begins to increase in November. The quiet

period between May and November occurs during the austral winter, when sea-ice is

most prevalent; the stronger microseismic signals at the beginning of the year occur when

the coast is ice-free; the strengthening of the microseisms at year end occurs when ice

concentration starts decreasing.

Decreasing microseism levels are observed at all coastal stations during the austral win-

ter, although there are local variations in average energies and in the duration of the

quiet period (Figure 1b). Average microseism energies are generally comparable between

stations. Inland stations have lower energies due to their greater distance from the micro-

seism source regions. An exception to this trend is MAW, which displays exceptionally

low spectral amplitudes at all periods, possibly due to an incorrect instrument response.

The strongest microseismic signals and the shortest quiet periods are observed at the

most-northern station PMSA, located on the Antarctic peninsula, which is rarely iced-in

and therefore more often exposed to ocean swells.
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The winter-time microseismic attenuation repeats annually, with minor inter-annual

variations. Figure 2 shows the annual microseismic spectra for SYO from 2001 to 2009,

and clearly illustrates the first-order seasonality in both ice-cover and microseism en-

ergy. Lutzow-Holm Bay, near SYO, is ice-bound even in summer, which may explain the

lower summer primary microseism energy at SYO compared to other coastal stations (e.g.

CASY and DRV, see Figure 1b). There is some inter-annual variability in the level of

microseism energy and the duration of the quiet periods at SYO, which can be related to

localized inter-annual variations in ice-concentration. For example, the ∼10dB reduction

in summer microseismic energy at SYO during 2005, 2007 and 2008 seems to be related

to residual sea ice along the coast of Enderby land (see highlighted regions in Figure 2).

The seismic frequency of the microseismic peaks varies over time. Figure 3 contains

1-day spectra for SYO and CASY taken every 40 days throughout 2007, and shows that

this variation is more pronounced for the secondary microseism, which is sensitive to spe-

cific coastal and/or wave-conditions that affect the generation of opposing waves [Aster et

al., 2010]. The primary microseism, generated by the direct interaction between incom-

ing swell with the sloping seafloor, displays more consistent peak frequencies, which are

systematically more stable and lower in winter than in summer (blue vs red highlighted

regions in Figure 3). This shift towards longer periods during winter is likely to be related

to the larger winter storms that produce longer gravity waves [Webb, 1998; Stutzmann

et al., 2000]. In winter, the seafloor interaction predominantly occurs farther from the

Antarctic coast as the nearby regions are ice-covered. Therefore, the primary microseism
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Rayleigh waves detected propagate longer distances to reach the stations, resulting in

attenuation of a greater part of their shorter-period energy.

3. Sea ice observations

In Figures 1 and 2, we have reproduced average monthly ice concentration images from

the National Snow and Ice Data Center (NSIDC) Sea Ice Index [Fetterer et al., 2002].

Ice concentration, i.e. the fraction, or percentage, of ocean area covered by sea ice, is

estimated by exploiting the differing passive microwave signatures of water and sea-ice:

water has a highly polarized signature, while sea ice does not. The spatial resolution of

sea-ice concentration estimates is 25 km. Detailed information about the satellites used,

and the processing applied to obtain the Sea Ice Index images, is available from the NSIDC

(http://nsidc.org/data/g02135.html).

In order to investigate the link between microseism power and ice coverage at temporal

resolutions finer than one month, we also exploit daily gridded sea-ice concentrations from

another NSIDC data product [Cavalieri et al., 1996] that provides a consistent time series

of sea ice concentrations at a grid cell size of 25 × 25 km, spanning the coverage of several

microwave instruments. The raw satellite data are processed using the NASA Team

algorithm developed by the Oceans and Ice Branch of the Laboratory of Hydrophseric

Processes at NASA Goddard Space Flight Center (GSFC). More detailed information is

available from NSIDC (http://nsidc.org/data/nsidc-0051.html). For each coastal seismic

station, we extract daily average values of sea-ice concentration over a ∼25 km-wide beam

trending approximately normal to the closest coastline, and interpolate at regularly spaced

distances from the coast in order to obtain average daily ice-concentration profiles. These
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profiles are plotted alongside our microseism power plots for stations SYO, DRV, SBA

and PMSA in Figure 4.

At all stations, the presence of sea-ice is clearly correlated with a decrease in microseis-

mic power. This correlation is most clear at SYO, at which both primary and secondary

microseism power decrease sharply when ice concentration reaches 80% at approximately

100 km (extent of the continental shelf) and 200 km from the coast respectively. The

longer period primary and secondary microseisms persist for more extended time periods.

Two instances of anomalously high austral winter secondary microseisms at SYO occur

at the same time as localized instances of ice-breakup (black arrows in Figure 4). At

DRV, the shortest period secondary microseisms (periods of 1-2 seconds, white bar) are

no longer detected as soon as the bay ices-up, corroborating the Stutzmann et al. [2009] in-

terpretation that they are probably due to local break-up of the nearby Astrolabe glacier.

The broad-band primary microseisms (Figure 4a, black bar) persist 1-2 months after the

local bay ices-up and the sea ice extends beyond the continental shelf and do not seem

to correlate with local coastal conditions or the position of the local continental shelf.

They may be generated by ice-free coastal regions elsewhere in Antarctica. The longest

period primary and secondary microseisms remain detectable throughout the austral win-

ter. At SBA, detection of shorter period secondary microseisms (Figure 4a, white bars)

terminates as soon as Ross Bay is iced in, suggesting a local, possibly glacier related,

microseism source. The longer period secondary microseisms continue throughout the

winter, like at DRV, although with a broader frequency range. Near SBA, in contrast

to the other stations, winter-time ice concentration is weaker close to the coast than at
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greater distances. It is unclear how this could be related to the winter time microseismic

noise. PMSA, being located on the Antarctic peninsula, is ice-free for most of the year,

and has particularly strong microseisms. Two episodes of low levels of both primary and

shorter-period secondary microseism energy at PMSA correspond to local increases in

ice-concentration (Figure 4, black symbols).

4. Discussion

Antarctica is a perfect natural laboratory for gaining insights into the mechanisms of

microseismic signal generation: the continent is surrounded by an often-stormy ocean,

whose gravity wave interaction with its coasts is modulated by the presence or absence of

sea-ice. Seismometer deployments directly on the Ross Ice Shelf have measured an annual

attenuation by a factor of 100 of its swell-induced motion (7-40s period) at maximum

ice extent [Cathles et al., 2009]. The absence of swell in shallow water surrounding the

continent during the austral winter impedes the formation of local primary microseisms;

furthermore, the absence of free coasts during the same period impedes the formation of re-

flected swell wave-trains that contribute to the generation of near-coastal, high-frequency

secondary microseisms.

During the austral summer, the broad frequency band over which we have observed

primary microseisms is indicative of local coastal generation by well-dispersed oceanic

swells from distant storms [e.g. Bromirski and Gerstoft , 2009]. The persistence of the long-

period component of these primary microseisms during the austral winter is indicative of

generation in more distant source regions (possible candidates are the coastal regions of
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the Antarctic peninsula, South America, South Africa, southern Australia, Tasmania or

New Zealand).

Longuet-Higgins [1950] showed that the largest amplitude secondary microseisms may

be due to wave-wave interference in the mid ocean, although coastal reflexion may be

a more common cause of microseisms of smaller amplitude. Since then, there have been

many observations of both coastal sources [e.g. Haubrich and Mc Camy , 1969; Friedrich et

al., 1998; Chevrot et al., 2007; Bromirski et al., 1999; Bromirski and Duennebier , 2002],

and offshore sources, the latter principally in the North Atlantic Ocean [Stehly et al.,

2006; Kedar et al., 2008] and the Mediterranean sea [Chevrot et al., 2007]. As Antarctic

stations are close to the coast, we expect the secondary microseisms generated by local

coastal sources to be amplified compared to those generated by more distant sources,

since they are less attenuated due to their short propagation paths. This expectation

is consistent with the observed correlation between ice cover and secondary microseism

amplitude, which is particularly visible at short periods.

The persistence of the long-period secondary microseisms we have observed during the

austral winter is indicative of one or more source regions at considerable distance from

the Antarctic coast. A possible non-coastal source region could be the Kerguelen plateau,

whose water-depth (< 2000m) is similar to that of the broad region south of Iceland iden-

tified by Kedar et al. [2008] as an off-shore source of secondary microseisms. Systematic

identification of the source regions of the austral-winter microseisms, which is beyond the

scope of this paper, would give valuable insights into the relative importance of coastal

and pelagic microseism sources.
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5. Conclusions

To first order, we have found that microseism power is anti-correlated with near-coastal

ice presence, which opens the possibility of exploiting long-period seismic data to extend

estimates of average ice-duration prior to the start of satellite measurements. The use of

microseismic signal analysis for climate related inferences has been suggested by Bromirski

et al. [1999]; Aster et al. [2008]; Stutzmann et al. [2009] for ice-free global seismic stations,

by Barruol et al. [2006] for stations in French Polynesia, and by Kedar et al. [2008] for

stations within the Labrador sea, for which the authors found that the microseisms were

particularly sensitive to the exact position of the sea-ice boundary. It may be possible

to extend microseismic studies in Antarctica back to the early to mid-1960s, at least for

stations with a long history of recording such as DRV, which would, if successful, add one

to two decades to the current, satellite-derived trends in climate indicators.

To second order, we have observed that variations in microseism power seem to be de-

pendent on recurring local conditions, as shown from variable summer microseism levels

at SYO and residual ice on the Enderby coast. More detailed study of such dependencies,

including forward modeling of the microseismic signal from known wave and ice condi-

tions, will be a great asset to understanding the regional scale variability associated with

microseismic generation.

In conclusion, we have presented systematic observations of seasonality in microseismic

signals from coastal stations in Antarctica, and have identified associations with both

broad-scale and local sea-ice conditions. Further studies will be required to exploit these
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observations fully in order to make robust inferences on the detailed mechanisms of mi-

croseismic signal generation, and possibly also on trends in climate indicators.
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Figure 1. (a) Variations of microseismic power spectral density for station CASY over a

0.1-80 s period band for 2007. Amplitudes are expressed in dB with respect to 1 m2/s2/Hz,

and indicated by the color-bar (gray represents a lack of data). Also shown are ice concentration

images from the NSIDC Sea Ice Index [Fetterer et al., 2002] for February, July and December 2007.

The approximate location of CASY is indicated by a red triangle. (b) Seismic noise amplitude

variations over one year for all Antarctic coastal stations studied. Red triangles represent the

locations of the stations. The images near each station show the amplitude variations of seismic

noise spectra for different years, chosen for maximum seismic data availability: PMSA 2008,

SNAA 2004, SYO 2004, MAW 2008, CASY 2007, VNDA 2006, LONW 2009, SIPL 2009, DRV

2008, SBA 2004.
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Figure 2. Seismic noise spectrum variability at SYO over a decade. Annual seismic noise

spectra for SYO from 2001 to 2009, using the same color scale as in Figure 1. Also shown are

ice concentration images for February and August of each year from the NSIDC Sea Ice Index

[Fetterer et al., 2002]. The approximate location of SYO is indicated by a red triangle. Summer

microseisms are of lower amplitude during 2005, 2007 and 2008, corresponding to residual ice

near the Enderby Land coast (highlighted in magenta).

Figure 3. Microseismic spectra over a year for stations SYO and CASY. Each curve represents

the seismic noise spectra for one day, color coded by day of the year (see legend). Primary and

secondary microseisms are outlined by grey boxes. Summer and winter time peak frequencies

are highlighted in red and blue respectively.

Figure 4. Correlation between microseismic noise variations and changes in ice concentrations.

(a) Microseismic power at stations SYO (2002), DRV (2005), SBA (2004) and PMSA (2000),

using the same color scale as in Figure 1. Years were chosen among those with good seismic

data availability. Black and white horizontal lines correspond to periods with strong primary

and secondary microseisms respectively. Black vertical arrows on SYO spectrum correspond to

anomalous noise signals, and equivalent symbols on PMSA spectrum correspond to absence of

primary microseism. (b) Sea-ice concentration from NSIDC [Cavalieri et al., 1996] as a function

of distance and time along a 25-km wide beam trending outwards from the coast. Black and

white lines and black arrows / symbols correspond to the same time periods as in (a). (c) Red

points correspond to the NSIDC grid points that lie along the beams used to create images in

(b).
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