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Abstract

In the last 20 years3D angiographic imaging proved its usefulness in the context of variougaliapplications.
However, angiographic images are generally difficult to analyse dueetogize and the fact that useful information
is easily hidden in noise and artifacts. Therefore, there is an ongoirgssigcto provide tools facilitating their visu-
alization and analysis, while vessel segmentation from such images semaimllenging task. This article presents
new vessel segmentation and filtering techniques, relying on receameelyin mathematical morphology. In particular,
methodological results related to variant mathematical morphology amtected filtering are stated, and involved in an
angiographic data processing framework. These filtering and se¢gticenmethods are validated on real and synthetic
3D angiographic data.

1 Introduction

The important rise of medical imaging during the 20th ceptanainly induced by physics breakthroughs related to
nuclear magnetic resonance and X-rays, has led to the geweltt of imaging modalities devoted to visualize vascular
structures. The analysis of such angiographic images iseaf interest for several clinical applications. Inityadlesigned

to generat@D data, these imaging modalities progressively led to tly@ia@tion of 3D images, enabling the visualization
of vascular volumes.

However, suct3D data are generally quite large, being composed of sevetibms of voxels, while the useful
vascular information generally represents less than 5%efhole volume. In addition to this sparseness, the fretquen
low signal-to-noise ratio and the potential presence dfaats (due to acquisition, patient movements, etc.) make t
analysis of such images a challenging task. In order to taf@susers of such data (radiologists, clinicians, ett.), i
is therefore necessary to design software tools enabliewg tfo visualize as well as possible the relevant information
embedded in these images.

One of the main ways to perform such a task is to develop filgeaind/or segmentation methods,, routines which
enhance or extract the vessels from angiographic imaggmrticular, such methods are required to be as ergonomic as
possible, for instance by providing user-friendly and tisawing interactivenodus operandi

Recently, several methodological works have been condunt¢he field of mathematical morphology. Some of
them, and especially those related to spatially varianherattical morphology and connected filtering, can be effitjie

*The research leading to these results has been partiathefLiny a PhD grant of thieégion AlsacéFrance) and th€entre National de la Recherche
ScientifiqugCNRS, France).



involved in the design of relevant tools for vessel filterargd segmentation froi3D angiographic data, especially Com-
puted Tomography Angiography (CTA) and Magnetic Resonarggiography (MRA). This article aims at presenting
some of these new mathematical morphology concepts, aircaghaicative use in this complex field of medical image
processing.

The remainder of this article is organized as follows. $#cf proposes a synthetic state of the art related to math-
ematical morphology in medical image processing (Sectidy), 2nd vessel segmentation fr@d® angiographic data
(Section 2.2). Section 3 provides useful definitions anatims. The next two sections gather the main contributidns
this article. Section 4, which is an extended and improvedioa of the conference articles [71, 70], describes a Vesse
filtering method based on a hybrid strategy, merging both spatially variant mathematical morphology algorithms and
derivative-based approaches. Section 5, which is an esteaitld improved version of the conference articles [56,de],
scribes an example-based interactive vessel segmenta¢ithrod relying on a component-tree-based technique.d®ekti
describes and discusses experimental results relatedsehaegmentation and filtering performed on angiogragtanp
tom images anih vivo cerebral MRA data. Concluding remarks emphasizing caminbs and remaining challenges are
proposed in Section 7.

2 State of the art

2.1 Mathematical morphology in medical imaging

Mathematical morphology is a well-established theory aif-finear, order-based image analysis [51]. It relies ondas
operations (namely erosions, dilations, openings, cfsirinvolving geometric patterns (structuring elemeot$§Es for
brief). These low-level SE-based operations made it ptestibdesign the first image processing segmentation methods
(e.g, for 2D vessel segmentation [73]), and remained furtheqUeatly used for several purposesq, for 2D [83] and

3D vessel segmentation [13], or for skull stripping [16]).

Based on these basic mathematical morphology operatig@ighevel image processing techniques were developed
and used in the context of medical image processing. Waddsq[78] were indeed considered for 3D vessel segmentation
[58], 3D vertebrae labelling [46], 4D heart segmentatiof][Dr 3D brain structure segmentation from newborn brain
MRI [25]. The grey-level hit-or-miss transform [48] was @lsonsidered, essentially in the field of 3D vessel segmen-
tation [49, 6]. Finally, connected filters [65] and espdygigthose based on component-trees (described in Sectign 5.2
were involved in several (bio)medical applications, imthg 3D vessel filtering and segmentation [80, 76, 9], 3Drbrai
structures segmentation [17], and 2D melanocytic nevi segation [47].

The use of mathematical morphology in these techniquesiwasrticular, motivated by the ability of the involved
operators to efficiently integrate and modsgbriori knowledge enabling an efficient detection of the structofesterest
with a wide range of using policies (automated, semi-auteth&nowledge-based and/or interactive ones).

2.2 Filtering and segmentation of 3D angiographic data

Filtering and segmentation of vascular structures (gdilgdram MR and CT angiography) has been an active research
field since the end of the 80’s (semg, [20, 31] for pioneering works). These intensive effortsevmotivated by the
possible use of such segmentation resutg, for pathology detection and quantification, or for surggiganning. A
complete state of the art is beyond the scope of this arfidhe reader will find up-to-date surveys on 3D angiographic
segmentation in [36, 72].

Most of the main image processing and analysis conceptstierm involved in the development of 3D vessel seg-
mentation methods. Non-exhaustively, one can cite: regrowing [74], deformable models [41, 15], statistical lgs&s
[12, 62], minimal path-finding [37], vessel tracking [22 ] 4@ifferential analysis [66], or mathematical morpholdgls-
cussed in Section 2.1). Despite this wide range of methgylmdbd contributions, the results provided by segmentation
methods generally remain perfectible. The handling of misgégmentationd.g, in the case of small vessels, of signal
decrease, or of partial volume effect) and over-segmemtdig, in the case of neighbouring with other anatomical struc-
tures, or of high intensity artifacts), the robustness tagmdegradations (low signal-to-noise ratio), the low cotatonal
cost, the guarantee of termination and convergence, agedhdesirable properties that are not often satisfied.



Consequently, a reasonable trend over the last few yearbdwsto cross methodologies. Indeed, hybrid vessel
segmentation methods present a range of possible solditioogercoming certain weaknesses of each method and com-
bining their advantages. One of the most popular hybridesjias is based on the combination of multi-scale difféaént
analysis with deformable models, such as level-sets [1&plBe snakes [23)] and maximum geometric flow [3]. De-
formable methods with energy minimizing functionals hale®deen combined with statistical region-based inforomati
in a multi-scale feature space [27]. Tracking strategieeweinforced by gradient flux of circular cross-sectionf3is],
while in [24] multiple hypothesis tracking were used withuSsian vessel profile and statistical model fitting. In [&1],
probabilistic method for axis finding was proposed withiniaimal path finding strategy. Note finally that mathematical
morphology has also been used with other techniques, ftarins in [32] where watersheds and neural networks were
combined, and in [69], where multi-scale morphology waglusgether with Gabor wavelets.

An alternative way to improve vessel segmentation effigiesansists of injecting high-level guiding knowledge in
the segmentation process. This can be achieved by desigasoglar atlases devoted to explicitly guide segmentation
tools [60, 59]. Also, instead of using atlases, it may be jpbss$o use segmentation examples, thus leading to thermesig
of example-based segmentation processes. A last stratégdirectly take advantage of users skills in order to gthee
segmentation process, thus leading to interactive methtius last strategy however requires the interaction todih b
easy to carry out and quick, since medical experts genearatinpot afford to spend much time with segmentation tasks.

These considerations motivate, in particular, the newrifilteand segmentation methods described in the next section
Indeed, in Section 4, a hybrid strategy, mixing differeinéinalysis and mathematical morphology is proposed for 3D
vessel filtering. In Section 5, an interactive and exampleeld segmentation method, relying on connected filtering, i
described. These two methods take advantage of recent dodtigical advances in mathematical morphology. We show
that they can also be conveniently fused, leading to immrogsults.

3 Notations

LetE = H?:1 [0,d — 1] (with d € N*) be a subset d&®. The setE provides a (discrete) model for the part®f where
will be defined the considere3D images. An element aF (called point, or voxel), is noted = (21, 2, z3).

LetV =[L, T] (with L < T € Z) be a subset dE. The sefl” provides a (discrete) model for the value space of the
consideredD images. An element df (called value, or grey level), is noted

A (grey-level) imagé is defined as a function

)

x = v

‘I:E—>V

and we notel : E — V orI € V¥, The setE is called the support of. By abuse of notation, a (binary) image
B : E — {0,1} will also be considered as the Sét*({1}) = {z € £ | B(z) = 1}.
The thresholding function at valuec V is defined by
A @ VE - 2F o
I — {xeFE|v<I(z)} )
The cylinder function of suppoX’ C F and of valuev € V' is defined by
Cx, : E — V

7 - v ifreX 3)
t 1 otherwise

The impulse function at point € E and of valuev € V' is defined by

Ipo  H — V

N v fx=p 4)
v {L otherwise

In particular, we have, , = Cy,) -



4 \essel filtering: a morpho-Hessian approach

4.1 Motivation

3D angiographic imaging modalitieg.g, MRA, CTA) can provide a detailed visualization of vascutatworks up to
the resolution of the generated data. However, the smallasizl complexity of the vascular structures, coupled toenois
acquisition artifacts, and blood signal heterogeneitpéeglly signal discontinuity) make the analysis of suctagehard
task, thus justifying intensive efforts devoted, in parkig, to filtering {.e., vessel enhancement).

Vessel filtering has often been considekea the use of Gaussian second derivative analysis, and moeeiap
Hessian matrix analysis. This approach enables the detectithin objects and their principal directions, at polsib
different scales. Compared with first derivativee( gradient) approaches, the Hessian matrix can also captume
shape characteristics. In particular, the eigenvaluebetHessian matrix can be combined in&sselnesginctions in
order to discriminate such shapes [40, 66, 23), 34].

An alternative to these linear approaches is proposed hjaliparariant mathematical morphology (SVMM) [4, 5].
The algorithms defined in this framework are formulated i purpose of filtering images in a way which depends on
the location in the dataset [44, 77, 18]. Such filtering téghes can provide some solutions in order to reduce noise and
possibly reconnect vessels despite signal decreasdilptaking advantage of local shape knowledge.

In this section, we propose a hybrid filtering method devdte@D angiographic image analysis. This method es-
pecially aims to retrieve the smallest (low-intensity) se&ls and correctly reconnect them. Based on Hessian amnalysi
the local orientation of the vessels is first sought. A sfigtizariant morphological closing according to these loca
orientations is then performed.

The combination of linear and non-linear techniques is vateid by several facts. The Hessian analysis is robust
and fast for object direction detection as well as multiglalss, whereas orientation analysis using purely matheahat
morphology methods would require directional samplingiclvlwould be prohibitive in 3D. Conversely, for reconnentio
and noise reduction, anisotropic diffusion, that has beaeripusly used together with Hessian analysig, in [42],
requires several iterations and is subject to convergessces, while a spatially-variant closing or opening cogegiin a
single iteration.

4.2 Background notions: Hessian-based analysis

One of the main challenges in image analysis is to designatpesrthat are translation, rotation and scale-invariant.
Translation invariance is satisfied by all convolution lasn by definition. Rotation invariance can be guarantettei
by using rotation-invariant kernels or when the preferrgdddion is fixed relatively to the image. Scale invarianee c
be satisfied by derivatives of Gaussian filters. Linear coions of derivatives of Gaussian filter kernels congitirt
particular, the basic feature detectors within linearescgace theory [38].

The Hessian matri%{ is obtained from the Gaussian second derivative analysis38f imageF' at each voxel in the
six principal directions

’F o?°F ’F
Ba:f O0x10x2 Ox10x3
_ ’F °F ’F
9*F °F 9*F

Ox30x,  Ox30xa 0x3

This Hessian matrigt can be decomposed into three eigenvalugs), and s (with |A1] < [A2] < |A3]) associated to
three eigenvectors;, e; andes. When )\ is close to zero and much smaller thanand A3, the locally characterized
shape is a linear (bright) structug, a vessel in angiographic data. Its orientation is thenrgiee; (e2 andes then
form a basis for the plane orthogonal to the linear brightcitire).

When appropriately designed and applied at multiple scat@apinations of the three eigenvalues, often caliest
selnesdunction, should give the strongest response at one phatisuale corresponding to the plate-, blob-like and/or
tubular objects [66, 23)]. Hereafter, and in the remaindehis article, we consider the vesselness function propase
[23)] (which has been experimentally assessed as the musstrim the current applicative context). For a 3D greydleve



image, observed at a point and a scale (directly linked to the standard deviation of the consideBaussian kernel),
this vesselness functionis formulated as follows

0 ' if Ao >00rA3 >0 6
v(z,0) = (1- exp(%)) -exp(—%%) (11— exp(%;)) otherwise ©
with A
Ry =
Rp = [Ai]
NS "
§ =i

whereR 4 differentiates between planar and line-like objedts; differentiates blob-like ones, ar§l accounts for the
intensity difference between objects and background. Hnarpetersy, 5 andc influence the sensitivity of the filter to
the corresponding measures.

As stated in Equation (6), the filter can be applied at difieszales, which can provide results in a large range of
object sizes. After normalization, the maximal vesselwasise is selected for each point The corresponding scale then
provides an estimate of the object width.

4.3 Background notions: (Spatially variant) mathematical norphology

We now introduce some notions of mathematical morphologysgatially variant mathematical morphology.

Definition 1 (Adjunction) Let £ and M be two complete lattices (a complete lattice is a partialigeved set X, <),
such that every subsétof X has an infimum inX denoted/ S, and a supremum itX denoted\/ S). Two operators
0: L — Mande : M — L form anadjunction(e, §) if and only if for allz € £ and ally € M, we have

i(z)<yez<e(y) (8)

From these notions, it is then possible to introduce thechgsérators of morphology, namely, dilation, erosion, dpgn
and closing.

Definition 2 (Erosions, dilations, openings and closingsWith the same hypotheses as in Definition 1, the operator
commutes with the supremum operaigrand is called adilation, while the operator: commutes with the infimum
operator A\ and is called arerosion Moreover, the operatoy = Je is called anopening and the operatorp = &4 is
called aclosing

We have the following general properties of openings ansiictfs.

Property 3 Let £ and M be two complete lattices. Letand be the opening and closing induced by an adjunction for
L, M. Letx € Landy € M. Then we have:

Idempotence)! 17 T 7 9
( p ){ oo — 9)

(Increasingness)y < y = { ;(é)) 2;((?;)) (10)
((Anti-)extensivity) { j é)é(“; (11)

These properties are useful from both algebraic and pedqtmints of view. Indeed, the behaviour of morphological
operators is well defined. It is therefore possible to desigm operatorsd.g, gradients, top-hats) exploiting differences
between these operators.



We now assume thal = M. In the “grey-level” cased.q, in flat morphology [26]),L is the family of grey-level
imagesV/ ” equipped with the point-wise partial order on functieaisLet B C E be a binary set, also calletructuring
elemen(SE). Letdz,cp : VE — V¥ be the dilation and the erosion induced By The dilation of the impulse function
ip (With p € E andv € V) is defined a$p(ip,,) = Cp, o, With B, = {z + p | 2 € B}. From this expression, we
derive the classical definitions of the dilation and ero$mra functionf : £ — V'

(@) =\ fa-p =\ flp (12)
pEB pGBm

es(@)= N\ fle+p) = N\ f) (13)
pEB pEB,

whereB = {—p | p € B} is thetransposeof B.

In the (more general) case of SVMM, the involved $Eis often denoted astructuring functionand is actually
defined asB : £ — 2F. ConsequentlyB(z) is the structuring element considered at paint £. Thetransposeof a
structuring functionB, still notedB : E — 2F, is now defined, for alk € E by

B(z)={y € E |z <€ B(y)} (14)

Here, the dilation of the impulse functiap , is defined a9z (i) = Cp(p),.- From this expression, we derive the
spatially-variant definition of the dilation and erosiom &functionf : £ — V

sp(N=) =\ fp) (15)
pEB(x)

es(Nx)= N\ f) (16)
pEB(x)

With the definitions given above, the standard and SV monaical erosion and dilation form an adjunction. Then,
we can define, in both cases, the morphological opening arsihg, as

YB = 5353 (17)
vB =¢€plp (18)

The transpose3 of B is used in Equation (15) for the computation®j. In addition to being computationally
expensive, it can, under some conditions, be of larger extem any of theB function, although if the family of3
is bounded, so is3. This may become computationally problematic for impletimnfilters based on adjunctions of
dilations and erosions in order to compute a closing or amioge However, by considering the (equivalent) alterretiv
following formulation of Equation (15)
o5(f) = \/ CBp),f(p) (19)

peEE
it turns out that the computation 6f;(f) can be performed independently Bf then leading to the following result.

Proposition 4 The SV dilation and the SV adjunct erosion can be computddthét same algorithmic cosd(M N)
whereN = |E|, and M = O(maxzecp{|B(x)|}).

4.4 Methodology

In this section, we describe a vessel filtering methodolagih a focus on the detection of small vessels and their
correct reconnection. This morpho-Hessian filter perfolikesa reconnecting inverse diffusion filter, in some wayts. |
first distinguishes the vessel-like objects and their lacgntation. Then, it performs a spatially-variant moriolgical
closing (assuming that vessels are bright structures onkebdakground) according to these local directions.
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Figure 1: Visual outline of the filtering method describe®iection 4.4. Step 1: vessel detection (see Section 4.46)). S
2: directional field correction (see Section 4.4.3). Stepe3sel reconnection (see Section 4.4.4).

4.4.1 Outline of the method

The method takes as input:
e a 3D grey-level angiographic imadg, : ¥ — V, e.g, a MRA or CTA image.

The proposed filter is fully automatic. It is however parancetn order to allow the user to choose the size of the vessel

to detect, and the gap length between vessels to reconrteeprocess, visually summarized in Figure 1, is divided into
three main steps:

1. the Hessian matrix aof;, is computed for each point df’ at different scales, resulting into a vesselness image
I,.s and leading to define three images corresponding to theipaheessel directions?,,, I,, andI,, (see
Section 4.4.2);

2. from a thresholded version df., and the direction images,,, I,,, I,,, and with the help of morphological
thinning and dilation, dense and regular vessel directidgir? , 1¢ andI;gl3 are obtained (see Section 4.4.3);

xr1! T2
3. a family of structuring elements, composed of segmentsed length, oriented with respect Iﬁl, 152 andfgg,
is involved in an SV morphological closing operation catrait onl;,, (see Section 4.4.4).

The method finally provides as output:

e a 3D grey-level filtered imagé& (I;,) : E — V of the input imagel;,,, such thatl,,, < F(I;,) (i.e, Lin(z) <
F(Iin)(x) foranyx € E), and enabling in particular to reconnect high intensitg#r structures af;,, .

4.4.2 Step 1: vessel detection

Given a set of different scales enabling to characterize vessels among different radiijriagel;,, is first convolved

|2 . . . .
with a Gaussian kern€l (z, s) = (2ms%)~N/2. exp(— 21, ) at each scale € S. For each point: € E, its Hessian matrix
'Hs is then computed. The eigen form of this matiig,,

A0 0
He=| 0 X 0 (20)
0 0 X



enables the computation of a scorecifrom the vesselness function defined in Equation (6). Theimabscore among
the scales of is chosen for each pointas its best responsg, .. (x) = maxses{v(z, s)}.

The associated basis vectdks,, ez, e3) (forming the basis of the eigen form @{,) are assumed to define the
orientation of the characterized shapezin In particular, the vectorse; are stored in three images as the principal
directions (along the principal axed);,, I..,, I, : E — [—1, 1], defined, for all: € E, by

€1 (I) - Iﬁfl ('r)'ex1 + Iﬂfz (I).GX2 + I'Ed (x)'exs (21)

where(ey, , ex,, €x, ) iS the canonical basis @t>.

4.4.3 Step 2: directional field correction

In order to propagate objects outside their own boundary thig spatially-variant morphological closing (or, in fagith
many other filtering methods as well), it is necessary to ledlensedirection vector field. In our case, the directional
information is necessary only as far as the dilation cantre@mne could use the gradient vector flow [82] or an average
square gradient within a diffusion scheme to obtain a deimsettbn field as in [77].

On the other hand, the directions obtained by second-orelévatives can get chaotic at the end of tubular object
segments, which might cause problems in methods that useithiirther procedures. For thisregularizeddirection
vector field is highly desirable. Here, in order to obtainthdénse and regularized direction field, we have come up with
a procedure based on several simple morphological opegatio

At first, as the expression of vesselness (see EquationXpjgeses the probability of being a vessel for each point
(thus varying between 0 and 1), the vesselness imageis thresholded so that most of the vessel-like objects are
preserved. By using the thresholded vesselness rEsyjtwe make sure that we use the tubular objects as markers for
direction field propagation. Then, we perform a binary mefpbical thinning of the direction fieldl(,, I, andl,,)
guided by the thresholded vesselness reyltwith a structuring element of fixed size. After follows theuattt dilation
—still solely of the direction field— guided by the thresteddvesselness result. This results into dense and regdariz
direction fieldsl¢ , I¢ andI¢ . A schematic representation of the operation is illusttateFigure 2.

r1' T

@ (b) ©

Figure 2: Vector field regularization. (a) Original brokepieder. (b) Direction field of the thresholded vesselnesthe
cylinder. (c) Regularized direction field guided by the #irelded vesselness (blue) and original object (yellow).

4.4.4 Step 3: vessel reconnection

In this last step, an SV morphological closing operationaggrmed over the imagg,, with the aim of reconnecting
vessels. First, a morphological dilation is applied withtracturing functionB : E — 2 (see Section 4.3), providing,
for eachz € F, a structuring elemen®(x) centred on, of fixed length, and oriented accordingetp(z). The (discrete)
directione; of B(xz) is approximated from the images of regularized directioti$iel¢ , ¢, andIZ , by defining a
discrete (Bresenham) segment.

The SE-based adjunct dilation, resulting in the imagél,,,), is followed by the adjunct erosiars. Both compu-
tations ¢ andepg), whose results are formally defined by Equations (19) a®)l (@spectively, then provide the final
filtering result7(I;,,) = ¢ (1;,) with a low algorithmic cost (see Propaosition 4). Also notattthis processing ensures
idempotence, guaranteeing that the filter obeys morphodbgiles. This methodology is validated in Section 6.



5 Interactive vessel segmentation: a component-tree based approach

5.1 Motivation

Most 3D vessel segmentation techniques are designed to be glahathmated (except, sometimes, for initialization
and/or termination, or for the determination of parameteksitomation is generally justified by the difficulty for miedl
experts to spend too much time for guiding such segmentatathods. The counterpart of this fact is that such automatic
methods do not take much advantage of the user’s expeetige dlinician, radiologist, etc.), thus leading to possible
segmentation errors (in addition to a frequently high cotaponal cost).

The recent rise of interactive segmentation in severaliegan fields can modify this conception of vessel segmenta
tion [45]. Indeed, by opposition to standard automatic ssgation, interactive segmentation strongly relies orusges’s
skills. In particular, the user must generally initialibetprocess, by providing (background and/or object) mankéich
strongly influence the results (for instance in the case ¢érgheds [78], graph-cuts [7] or binary partition tree altipons
[63]). Interaction also implies such methods to be very igffit(especially in terms of computational cost).

Such guidance may be potentially time consuming for the, ilesgrecially in the case &D images. However, a
compromise between automatic and interactive segmentediold be proposed, based on the concept of example-based
segmentation, which has been considered in several apipficields before being applied to medical imaging [21].
Indeed, the use of segmentation examples may lead to an atitgumresegmentation of the image, which may constitute
the object markers.

Thecomponent-trees a graph-based structure which models some charaatsrigta grey-level image by considering
its binary level-sets obtained from successive threshgldperations (see.g, [51], Chapter 7). It has been involved,
in particular, in the development of morphological opersi{®, 64], and used for designing segmentation proceduares i
several medical applications (see Section 2.1).

By definition, component-trees are particularly well-editfor the design of methods devoted to process and/or
analyse grey-level images basedapriori hypotheses related to the topology (connectedness) arspduific inten-
sity (locally/globally minimal or maximal) of structures mterest. It has to be noticed that several works related to
component-trees have been devoted to enable their effaemputation [64, 50, 79]. In particular, the ability to conte
component-trees in quasi-linear time opens the way to theldement of interactive and efficient segmentation method

Based on recent theoretical developments [56] related teyantive segmentation based on component-trees, we
propose in the sequel a segmentation method that combieesitlantages of example-based segmentation in terms of
automation (since it avoids manual marker positioning espgmentation by the user) and the ability to take into attcou
the skills of the user in a quite simple and intuitive fashibmeed the only interaction consists of a thresholdingess,
which only requires a few seconds.

5.2 Background notions (component-trees)

Let us consider a given connectivity &¥, for instance the standagt or 26-connectivity [33] (in the sequel of this
section, some alternative morphological connectivitidsalso be considered). For a given binary imafelefined on

E, we denote by’ [B] the set of the connected componerits,(the maximal connected sets) Bfwith respect to this
connectivity. Note that a grey-level imade= V¥ can be expressed as

1=\ 'V Cxu (22)

veV XeC[\,(I)]

Let £ = U,cv ClA(1)] be the set of the connected components generated by thbdltiegs of/ at all valuesy € V.
The Hasse diagram of the partially ordered @€tC) is a tree {.e., a connected acyclic graph), and more especially a
rooted tree, the root of which is the supremam(7) = E. This tree is called theomponent-treef .

Definition 5 (Component-tree) Let I € V¥ be a grey-level image. Theomponent-tre@f I is the rooted treel’ =



@1 (b) Ao (1) (©) A1) (d) A2 (1 (e) As(1 () a1

Figure 3: (a) A grey-level imagé: E — V = [0,4] (from 0, in black, to4, in white). (b—f) Threshold images, (1) (in
white) for v varying from0 (b) to 4 (f).

Figure 4. The component-trgeof I (see Figure 3(a)). The letters (A—R) in nodes corresponget@ssociated connected
components in Figure 3(b—f).

(K, L, R) such that:

K= e 23)
veV

L={(X,Y)eK*|YCXAVZeK,YCZCX=Y =21} (24)

R=suwp(K,O)=X,I)=FE (25)

The elements of (resp. ofL) are thenodes(resp. the(oriented) edggsof 7. The nodeR is theroot of 7. For any
N € K,weseth(N) ={N" € K| (N,N') € L}, ch(N) is the set of thehildrenof V.

An example of component-tree defined foR@ image is illustrated on Figures 3 and 4. Component-treasbea
used to develop image processing/analysis procedured badgtering or segmentation strategies [30]. Such procesiu
generally consist of determining a sub&et_ K among the nodes of the component-tiee- (K, L, R) of a considered
imagel : £ — V. R

When performing segmentation, the (binary) resulting imBg€ F is defined as the union of the nodeskofi.e., as

B= U X (26)
Xek

In this context, determining the nodes to be preserved isrgplEx issue, which can be handled by considering attributes
[75] (i.e., qualitative or quantitative information related to eacll®) to characterize the nodes of interest. An alternative
solution, based on an example-based paradigm, can alsmbelered. This strategy is described below.

5.3 Theory

A way to consider the previously enunciated segmentatioblpm is to search the set of nodés_ K which generates a
binary object being as similar as possible to a given appraté precomputed segmentation. This issue can be forrdalize
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as the resolution of the following optimization problem
K = i N, M 27
= ang iy {a( \J .21} (27)

whereM C E is the (binary) approximate segmentation, drisl a measure o2”. An intuitive solution for determining
a useful measure is to consider the amount of false poditiegatives induced b = (. IV with respect taV/

d*(X, M) = a.|X \ M|+ (1 - a)|M \ X| (28)

wherea € [0, 1] controls the trade-off between the tolerance to false pesiand false negatives.
The functionF“ proposed hereafter enables to build a binary image whoseected components form a gétwhich
is a solution of Equation (27).

Proposition 6 ([56]) Leta € [0,1]. Let] € VE. LetT = (K, L, R) be the component-tree éf LetM C E. Let
Fo: K — 2K andc® : K — R be the functions recursively cross-defined, foréle K, by

a AN} if a.n(N, M) < (1 —a).p*(N, M)+ 3 e ¢ (N')
FHN) = { Unveonc) FE(N') - otherwise (29)
and
SN — a.n(N, M) if a.n(N, M) < (1= a)p"(N, M)+ 3 neenn ¢ (N')
c*(N) = (L= a).p"(N, M)+ > nreconvy (V') - otherwise
(30)
wherep* (N, M) = [(N \ Unreenny N') N M|, andn(N, M) = [N \ M|. LetM® = Jy¢za(g) V. Then, we have
d*(M*, M) = ¢*(B) = min {d (NLEJ]C/N,M)} (31)

It has to be noticed that such a solution can be computedeaiitime.

Proposition 7 ([56]) F*(E) = C[M“] (and thusM ¢) can be computed with the linear algorithmic complekdmax{| |, |E|}).
Moreover, the increasing property of thresholding is dbtuaherited by the developed method.

Proposition 8 ([57]) LetI € V¥ be a grey-level image. Lét/ C E. Leta; < as € [0, 1]. Then we hava/®2 C M1,
Remark 9 A consequence of this property is the ability to stere 2 different results obtained fat increasing values
0<a; <as<...<ap_1<a,<1,asagrey-levelimagéy : E — [1, k] defined, similarly to Equatio(22), by

k
Sk = \/ Chrei i (32)
=1
whereM % C F is the binary result of the segmentation method for the patana;. In such a situation, we can avoid
to storek distinct binary images, and the interactive choice of treuteby the user can be made (in real-time) by actually
performing a standard thresholding 6%, among the valuefl, k].

5.4 Methodology

In this section, we focus on the description of a methodolfagwessel segmentation by means of an example. This
method is automated in the first part of its process, and @gjyires user interaction once a set of binary results has bee
precomputed and stored in a grey-level image. The intemaptrt of the method is, in particular, a single threshadin
step where the user can tune a parameter controlling the-tfidetween false positives and false negatives betwesn t
segmentation example and the expected result.

11
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Threshold

Registration
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Figure 5: Visual outline of the segmentation method describ Section 5.4. Step 1. example fitting (see Section 5.4.2)
Step 2: interactive segmentation (see Section 5.4.3). Byegs: automatic steps; white box: interactive step. @ootiis
arrows: standard workflow; dash arrow: optional suppleamgrgtep (filtering, see Sections 4.4 and 5.5, and Figure 1).

5.4.1 Outline of the method
The method takes as input:
e a 3D grey-level angiographic imadeg, : £ — V, e.g, a MRA or CTA image;

e a 3D vessel segmentation example consisting of a binaryemiag C E of vascular structures similar to those
presentin;,, and the grey-level imagk,. : E — V from which this segmentation has been obtained.

(In Section 5.4.2, it will be observed that it may be also iegfito provide images;,, J.. : £ — V for visualizing
the morphological structures neighbouring the vesselsalized in/;,, I.,.) The only parameter is a threshold value
a € [0,1] (see Section 5.3), which has to be tuned by the user at the fetheé segmentation. The process, visually
summarized in Figure 5, is divided into two main steps:

e the first one consists of fitting the binary imagk, onto the imagel;,, using to a registration procedure (see
Section 5.4.2);

e onceB,, is correctly positioned, the second step mainly consiste®interactiven-tuned segmentation process
described in Section 5.3 (see Section 5.4.3).

The method finally provides as output:

e the 3D binary vessel segmentati®y,; C E, associated td;,, and induced by the examplg, and the chosen
parametery.

5.4.2 Step 1: example fitting

Fitting the binary exampl&,, onto;,, requires a registration/warping process to be performedidation of vascular
images is a complex task. Indeed, while registration allgor$ have arguably reached a satisfactory degree of efficien
for the processing oflenseimages, such as morphological cerebral data [28], the dpmeint of efficient registration
procedures in the case spparse-and specifically angiographic— data seems to remain alfjfaiy@en question, despite
few recent works [2, 29, 68]. This &sfortiori the case for interpatient registration (it is indeed inérexwt that/;,, andl.,
are images of a same patient).

Consequently, except in the cases where the angiograpligeisncontain (a sufficient amount of) morphological
information, which can happen sometimes for certain arrgiolgic data €.g, phase-contrast or time-of-flight MRA,

12



depending on the acquisition parameters), it may be negessassociate to each angiographic data, namglgnd/.,., a
corresponding morphological profile of the same patiert,(@ T1 MRI data). Since itis quite frequentin clinical praeti
to acquire such data during an angiographic image acauisitius providing couples of morphological/angiogratzita
(Lin, Jin), (e, Jez ), SUCh @ requirement is actually not a real difficulty.

Under these conditions, registration algorithms devoteahdrphological images (see.g, [52]) can be involved in
the current step. These algorithms consist of determinitefarmation fieldD : £ — E such that the composition @?
andI., is “semantically” equal td;,,, or, more formally, that for al: € E, we have

Iin(2) ~ (Iy 0o D™1)(2) (33)

Such registration procedures can be based on more or lassBestrategies, leading to either rigid, affine, or nddrig
deformation field9D.

OnceD is computed from the angiographic ddta and ., (or, more frequently, from the morphological ongs
and.JJ.,), which can be done in an automatic fashion, the segmentaxiampleB., remains to be fitted onto the vascular
imagel;, to be segmented. This is actually equivalent to computiedthary imageB;,, C F as

Bin = D(Bez) ={D(x) | € By}

Such a warping procedure can be performed by a simple irtgipo step (in order to retrieve a binary result), or by
more sophisticated techniques, enabling in particularésgrve structural properties of the segmentation exaragle
proposede.g, in [21].

5.4.3 Step 2: interactive segmentation

Once B;,, has been computed, it becomes possible to perform a segioanté/;,,, guided both by the examplB;,,
(which provides an approximate result of the structuresi@rest inl;,,), and by the user (who may adjust this approxi-
mate result to more accurately fit the semantic$; gf.

In the proposed methodological framework, this task is h@sethe approach developed in Section 5.3 (the “approx-
imate segmentation/ defined in this section actually corresponds to the exarfpleconsidered here). In particular,
once the component-trée = (K, L, R) of I,,, is computed, the purpose is to determine the set of nkdesK defined
in Equation (27),.e., the set of binary connected components which leads to teepessible segmentatiod/~, in
Section 5.3, which corresponds i8,,;, here) with respect to the chosen measifrecontrolling the trade-off of false
positives/negatives between this solutieft / B,,: and the examplé//B.,. (see Equation (28)).

Practically, as stated in Remark 9, it is necessary to comnpexeral segmentation results for distinct values of the
parametery, leading to a grey-level image (see Equation (32)), theldsets of which (obtained by a simple user-defined
threshold) will finally lead to the final segmentatiéfy,;. Note that an alternative solution to this precomputatioats
egy may be to compute on-the-flight the results successolgtiyined for different values af chosen by the user (see
Section 7).

5.5 Mask-based connectivity

As stated at the beginning of Section 5.2, the connectivitensidered when computing the component-treg,phre
generally the “standard” oneise., those induced by the well-known notions@for 26-adjacency.

A (morphological) alternative definition for connectivihas been proposed with the notion sfcond-generation
connectivity [61, 67]. In this contextnask-basedonnectivity [54] proposes to use some (grey-level) masktions in
order to characterize the connected sets. In the binary easkeby only considering masks which are supersets of an
image, we derive from [54] the following definition.

Definition 10 (Mask-based connectivity)Let X C E be a binary image. Let(X) O X be a mask ofX. Thew-
connected components &f, notedC,,[X], are the sets{ NY’, for any connected componéritof w(X).
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In the sequel, for a given (grey-level) image E — V, we consider extensive mask§7) : £ — V, i.e, such
that7 < Q(I). We callQ-connected components éfthe set of all thes-connected components &f (1) induced by
the masksv(A, (1)) = A, (Q(I)), at all valuesy € V. Typical examples of masks verifying these properties laosée
induced by:

e (flat) dilations,e.g, I, 6(1), ...,6%(I), ...;
e (flat) closingse.g, I, (0 0)(I), ..., (¥ 0 6%)(1), ...;

with a (well-chosen) structuring element, avoiding in arar translation effects.

Itis, of course, possible to build the component-treé;gfinduced by the2-connected components of the successive
level-sets ofl [55]. Note in particular that each element of the &gt of the Q-connected components &f, will be
composed of one or several connected componenfs dfiore precisely, the component-tree and thkecponnected)
component-tree af;,, induce a (surjective) morphism betwe@g, C) and(Kq, C).

Broadly speaking, mask-based connectivity involving sextensive masks makes it possible to symbolically recon-
nect structures which are physically disconnected},in In particular, by considering as mask the filtered im&gé;,,),
computed with the method proposed in Section 4, which ptessdhthe required properties, and corrects the disconnec-
tion effects resulting from noise, artifacts and/or sigloak, it may be possible to develop an improved version of the
segmentation method proposed above. Such an improvedrersy simply consist of computing,,; from B., and
I;,, equipped with the connectivity provided by the filtered m#gk;,,). This strategy is experimentally assessed in the
next section.

6 Experiments and results

This section describes experiments carried out to assegetiaviour of the proposed two methods. The filtering method
described in Section 4 is validated in Section 6.1 from a tjtadive point of view, on synthetic images, and from a
qualitative point of view on samples of 3D (MR) angiograptiata. The segmentation method described in Section 5 is
validated in Section 6.2, on 3D (MR) angiographic data fraraliative and/or quantitative points of view, dependimg o
the assessed criteria, and on the available ground-truths.

6.1 Vesselfiltering

We first assess the filtering method described in Section 4s ihdone in the context of vessel reconnection in 3D
angiographic data. By opposition to the case of vessel segtien (see Section 6.2), quantitative validations arelga
tractable on real data. Some qualitative.( visual) validations are provided on few 3D samples of reahdsame TOF
MRAs as those used below, for segmentation experimentf)eand of this section. However, most of the validations
presented hereafter, and in particular the quantitaties oare performed on the synthetic dataset considered.in [1]

This dataset is based onl@0 x 100 x 100 isotropic image visualizing a tortuous, branching vesigel-object of
varying radii (0.5 to 4 voxels), which does not simulate ac#firpanatomical structure. The object contained in thisgma
is depicted in Figure 6(a). A slice of the corresponding 3Bygevel image (at different levels of noise) is provided in
Figure 6(b—e). The object cross-section intensities ptesgarabolic profile, ranging from 150 at the object borders
to 200 at its medial axes, while the background intensity08, Wwhich corresponds to a standard (intensity) model for
MRAs, in small vessels neighbourhoods.

In addition to the discrete sampling of the continuous dbjetich generates errors (dueg, to partial volume
effects), a Gaussian noise is added to the data, with diffestandard deviations, namety= 10, 20, 40 and80, in the
considered images (see Figure 6(b—e)). Notedhat 20 globally corresponds to the expected noise in MR or CT data,
while o = 40 is closer to the noise expected in ultrasound data. The atdrbviations = 80 has been considered to
explore the limits of the method in the worst cases which nuegetimes happen in clinical applications.

These experiments aim at estimating the efficiency of therifil methodology, and in particular the cost of the
reconnections in terms of supplementary noise. This is do@equantitative fashion in Section 6.1.1, and in a more
visual (and then subjective) fashion in Section 6.1.2.
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Figure 6: (a) Synthetic 3D object [1] used for validationsSiection 6.1. (b—e) Slices of the grey-level image for vagiou
levels of additive white Gaussian noise: (b} 10, (¢) o = 20, (d) o = 40, and (e)o = 80.

6.1.1 Experiments on synthetic data

In order to carry out these first validations, we considerfthue 3D imagesl, : E — V, namelylyq, I, 149, andlgg,
illustrated in Figure 6(b—e), whereis the standard deviation of the Gaussian noise in the inlageet G C E be the
object visualized in this image, viewed as a binary (grotmth) object for/,.

When performing a thresholding d@f, at a given valuer € V, we obtain a binary (segmented) resyj{7) C FE
which (more or less accurately) approximatésFrom a quantitative point of view, this approximation candxpressed
in terms of true positives{ N A\, (1)) and false positives\(, (1) \ G).

For experiments, parameters of vesselness were se@ = 0.25 andy = 5. We performed a multi-scale Hessian
analysis with scales € [1, 4] in geometric progression with 5 steps.

We first consider the global quality of the filtering, in terimisproportions of false positives/negatives induced by
a subsequent thresholding operation. These are visuaizd®OC curves, allowing for a comparison of the proposed
filtering with (¢) the thresholding of the non-filtered imade;) the thresholding of a Hessian-based vesselness function
[23)]; and (ii7) the thresholding of the image filtered by anisotropic diffus[42]. The four induced ROC curves are
computed and compared for the four levels of neise 10, 20, 40 and80. The results of these experiments are shown
on Figure 7.

The main purpose of the proposed morpho-Hessian filterinthades its ability to reconnect vessel-like structures.
The presence of noise ii} may lead to a disconnection of the segmented objgck) into several connected components,
especially where the radius of the object becomes cloSe @n the other hand, while reconnecting objects is desirable
it is also an inverse operation that may lead to connectinigentm the main object. In order to assess the “cost” of
these reconnections in terms of supplementary noise, fr @ae of the images previously considered (namely the non-
filtered image, vesselness function, anisotropic diffusinage, and morpho-Hessian filtered image), we show the first
high accuracy reconnection on each ROC curve correspotalihgeshold value of the segmented imagé¢!,, ). In other
words, these points correspond to the best accuracy reswtiich the main object is still connected. These recorioect
points are depicted by triangular dots in Figure 7.

In the case of lower noise levelse., o = 10 and 20, the proposed morpho-Hessian filter exhibits similar rtssul
compared to the original image and anisotropic diffusicerfilwhile Frangi vesselness is the least accurate. Thiagnea
the morpho-Hessian filter does not degrade image qualityeset cases. For higher levels of noise, the morpho-Hessian
filter exhibits better (for = 40) or slightly better results (fos = 80) than the original image or anisotropic diffusion
filter. However, for the highest level of noises., o = 80 (which is infrequent in clinical practice), the best perfiance
is achieved by Frangi vesselness. In this final case, it séefs better not to use inverse filtering at all, unless prior
filtering is applied.
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Figure 7: ROC curves of thresholding operations performethe imagel,,, on its Hessian-based vesselness function,
on the image obtained by anisotropic diffusionigf and on the imagé-(1,,) obtained by multiscale morpho-Hessian
filtering. The triangular dot on each curve indicates theapat which a correct reconnection of the segmented streictur
has been obtained. Results for different levels of noises @ 10, (b) o = 20, (c) o = 40, (d) o = 80.

6.1.2 Experiments on real data

In order to conclude this first part of the validations dedadie the proposed morpho-Hessian filtering method, we now
consider a few examples obtained from real images. The sasnagpicted in Figure 8(a,d,g) show maximum intensity
projections (MIP) of 3D angiographic data (namely TOF inggaltered by signal heterogeneity, resulting in visible
disconnections. The corresponding morpho-Hessian filtenages associated to these data are depicted (still in MIP)
in Figure 8(b,e,h). In these examples, noise was reduceddoghulogical openings after applying the morpho-Hessian
filter for the sake of visualization.

Qualitatively, these results confirm expectations derifrech the synthetic data, namely that the morpho-Hessian
filter reconnects vessel without amplifying noise signffitta in medium-noise data. However, it also introduces som
undesirable effect®.g, in Figure 8(b) the red arrow points to a vessel presentirgidar border artifacts. This effect
is due to the initial discrete representation of the objechlsined with scale detection errors. Since both very small
vessels and vessel boundaries are sensitive to discretizat spite of earlier filtering it can still happen thatefitions
are estimated incorrectly near large vessel boundarieselAsr in practice this effect is observed to be of limiteceakt
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Figure 8: Morpho-Hessian filtering results on real imagad,) MIP images of (samples of) 3D TOF data. (b,e,h) MIP
result of the morpho-Hessian filter. (c,f,i) 3D isosurfaeadering of the morpho-Hessian filter (in yellow) superisg
over the initial image (in red). Green arrows indicate soneasof reconnection and red arrows indicate some undésirab
effects (see text).

6.2 \essel segmentation

We now assess the segmentation method described in SecfidnisSis done in the context of artery segmentation from
3D angiographic data, namely phase contrast (PC) MRAs (&@és) and time of flight (TOF) MRAs (2 images), of the
brain. For each angiographic image, a morphological imddleeopatient (acquired during the same acquisition) is also
considered for registration purpose (a PC MRA magnitudayaria the case of PC MRAs, and a T1 MRI in the case of
TOF MRAS).

Some examples of images of the considered datasets atediledsin Figure 9. One can observe that these data are
of distinct resolutions (millimetric for PC MRAs, and hatfillimetric for TOF MRASs) and of varying quality (low SNR
for PC MRAs, and higher SNR for TOF MRAs, all data being withoantrast agent injection). Also note that some
data visualize both veins and arteries (PC MRAS, with a betietrast on venous structures), or essentially artefies$-(
MRAs, where veins are visible but with a quite lower inteysit

These experiments aim at estimating the global efficienaph@fmethodology, but also the influence of some key-
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elements of the technique, such as registration accuream@e accuracy, interpatient anatomical variability] affects

of connectivity policies. As in Section 6.1, these experitseare assessed from both quantitative and qualitatige (
visual) points of view. This is justified by the fact that ristit example-based segmentation cannot be performed on
phantoms, while not much ground-truth is available for MRa#at

(b)

Figure 9: Examples of data considered for vessel segment@atiaximal intensity projection, sagittal plane). (a) sha
contrast MRA (resolutioni.0mm, no contrast agent injection). (b) Time of flight MRA (reg@n: 0.5mm, no contrast
agent injection).

6.2.1 Evaluation of the component-tree approach

These first experiments are aimed to assess the relevanioe example-based interactive approdah, to validate the
segmentation theory exposed in Section 5.3. In order to daveaonsider an experimental context where neither the
registration nor the example quality may affect the resdités can be done by focusing on intra-patient and intragiena
experiments.

Practically, for a given MRA image, for which a ground-trgigmentation is available, we perform the example-based
interactive segmentation by using, as example, this samengrtruth. This is actually done for one (low resolutiaw!|
SNR) PC MRA, and two (high resolution, high SNR) TOF MRA.

Ideally, one may retrieve as result the ground-truth ingdhas examples. This (expected) correlation is expressed
here by using the standard measures of sensitigity.} and positive predictive value?(PV)

tp and PPV = tp
tp+ fn tp+ fp
wheretp, fp, andfn are the true positives, false positives and false negatigspectively. Due to the “one-dimensional”
nature of the small vessels, which may bias the relevandeesttvolumic-based measures, both sensitivity and pesitiv
predictive values are computed on the 3D results (32" and “3D PPV™) and on the skeletonized ones (“1§xn”
and “1D PPV™). These results are summarized in Table 1, and partidilgtilated in Figure 10(a,d).

They tend to show the correct behaviour of the method in chsercect and well positioned example. Note that the
results are less satisfactory for low resolution imagess ®hshown here for PC #1, but also note that the 1D measures
are higher than the 3D ones, emphasizing the ability of thinoakto correctly detect the structure of the vessels, tkespi
possible volumic errors. Also note that some of the grounthtdata are sometimes incomplete (seg, the red parts of
Figure 10(d)) which may lead to lower quality measures asilshioe expected.

It may also be noticed that the use of an example to guide tpmesetation process allows users to select specific
structures of interest among a set of homogeneous onesstanice here, arteries among the whole arteriovenous rietwo

Sen =

(34)

INote, moreover, that the use of vascular ground-truth, anghiticular manual segmentations performed by experts, ihereit necessary nor
a sufficient condition to guarantee the correctness of aabtds. Seeeg.g, [9], where some of the authors point out the significant \mlitst in
inter-experts segmentation results, which strongly biagjtiantitative measures provided by standard criteria.
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Table 1: Sensitivity and positive predictive value meastioe experiments of Section 6.2.1 (see text). thelue is the
one for which the best segmentation has been obtained.

3D 1D
Sen PPV Sen PPV
TOF#1 0.970 99.99 99.27 99.77 99.79
TOF#2 0.995 100.00 100.00 100.00 100.00
PC#1 0940 65.77 86.31 82.76 92.70

Image a

@ (b) (d)

Figure 10: Segmentation results in an intra-patient caseyréen: true positives. In yellow: false negatives. In red:
false positives. (a) TOF MRA (TOFt1) segmentation using the TOF MRA ground-truth as examplg T MRA
segmentation using the PC MRA ground-truth as example. cMRA (PC #1) segmentation using the TOF MRA
ground-truth as example. (d) PC MRA segmentation using @&RA ground-truth as example.

6.2.2 Evaluation of the example quality

Secondly, we intend to evaluate the impact of the examplétgua the segmentation accuracy, still without considgri
the effects of registration and of interpatient anatomveaiability.

In order to do so, we consider two images of the same patienttiecch the segmentation ground-truth is available.
One of these images is a (high resolution, high SNR) TOF MRBKE1, considered above) thus associated to an accurate
ground-truth. The other one is a (low resolution, low SNR)MRA (PC #1, considered above), associated with some
less accurate ground-truth (which may be seen as a “bluateses’ of the TOF MRA ground-truth).

From these two images and associated ground-truths, wepirdorm four segmentations, which emphasize the
behaviour of the segmentation method when applied on arrae¢non-accurate image with an accurate/non-accurate
example.

As previously, the obtained results are expressed in tefrsgrsitivity and positive predictive value, gathered in
Table 2. These results are also depicted in Figure 10. Asiameabove, the value of the standard measure are better in
1D than in3D. These results emphasize the (expected) fact that thepbedras to present the same degree of details as
the structures of interest to maximize the ability to cotlsesegment them. In case of heterogeneity between the deamp
and the sought structures, an example of lower quality s pesalizing than an example of better quality, especially i
terms of sensitivity.

6.2.3 Impact of the interpatient anatomical variability

We now intend to estimate the robustness of the segmentat&ihod to vascular anatomical variations. These are
generally high for vessels, by comparison to other (cetatoraon-cerebral) structures. Our experiments have been
carried out from a quantitative point of view on the three eamages as above, and from a qualitative point of view on a
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Table 2: Sensitivity and positive predictive value meastiog experiments of Section 6.2.2 (see text). thelue is the
one for which the best segmentation has been obtained. Bhaffid fourth lines correspond to the first and third lines of
Table 1.

3D 1D
Sen PPV Sen PPV
TOF#1 TOF#1 0.970 99.99 99.27 99.77 99.79
TOF#1 PC#1 0.855 92.48 86.46 93.72 92.13
PC #1 TOF#1 0.855 41.41 7449 63.99 83.73
PC #1 PC #1 0.940 65.77 86.31 82.76 92.70

Image Example «

Table 3: Sensitivity and positive predictive value meastiog experiments of Section 6.2.3 (see text). thelue is the
one for which the best segmentation has been obtained. Eedsellts are squared.

3D 1D
Sen PPV Sen PPV

TOF#1 0.655 92.16 63.43 96.18 70.12
One image (case 1) TOF #2 0.870  76.87 75.31 93.35 90.09
PC #1 0.740 43.28 61.96 66.23 72.93

TOF#1 0.630 |93.85 63.95 94.85 70.56
One image (case 2) TOF #2 0.885  77.32 74.53 93.38 90.43

PC#1 0.880 [50.99] 5185 [69.86] 68.60
TOF#1 0.680 93.67 [74.25] 95.02  [80.63
Mean image TOF#2 0925 [78.54| [78.30] [93.56] [92.12
PC#1 0.830 47.34 [7321] 68.05 [82.02

Example Image «a

Table 4: Sensitivity and positive predictive value meastioe experiments of Section 6.2.4 (see text). thealue is the
one for which the best segmentation has been obtained. Bedseilts are squared.

3D 1D
Sen PPV Sen PPV

TOF#1 0.805 93.37  64.64 [96.92] 75.93
Rigid TOF#2 0.855 89.00 [86.04] 97.50 [94.68]
PC#1 0935 [49.05] 6524 [69.38] 76.48
TOF#1 0.680 90.17 [77.77| 9458 |8L.77]

Affine TOF#2 0.960 |97.74 78.97 99.39 93.01
PC#1 0910 46.61 71.22 67.58 78.75

TOF#1 0.680 |93.67 74.25 95.02 80.63
Nonrigid TOF#2 0925  78.54 78.30 93.56 92.12

PC#1 0.830 47.34 73.21 68.05 82.02

Registration  Image «@

Table 5: Sensitivity and positive predictive value meastiog experiments of Section 6.2.5 (see text). thealue is the
one for which the best segmentation has been obtained. Eedsellts are squared.

3D 1D
Sen PPV Sen PPV

TOF#1 0.825 |93.19 39.42 93.79 46.56

Connectivity Image Q@

6- TOF#2 0.970 9260 3883 9444  68.90
o6 TOF#1 0.680 90.17 [77.77] [94.58] [81.77

TOF#2 0960 [97.74] [78.97] [99.39] [93.01
Filter TOF#1 0.895 87.54 6035 8418  76.35

TOF#2 0940 38007 6612 9542  92.62




(b) a = 0.910

(d) & =0.795 (e) a = 0.830 (f) a = 0.860

Figure 11: Segmentation results, on one of the 10 tested P&s\iRpending on the kind of example and the registration
policy (see text). (a—c) Example consisting of one segnieimage. (d—f) Example consisting of a mean image obtained
from several segmented images. (a,d) Rigid registratipe) @ffine registration. (c,f) Nonrigid registration. Thevalue
indicated for each subfigure is the one for which the best seggtion has been obtained.

dataset of 10 PC MRA images.

Experiments consist of performing segmentation with wsiexamples, namely two examples obtained from two
distinct PC MRA images (not considered for segmentatioe)y@nd a third example which is a “mean image” obtained
from the preliminary segmentation of 20 PC MRA images (notsitdered for segmentation here). These examples are
applied on the images to be segmented by performing nomegidtration.

The obtained results for the first three images are gatharéakle 3. For the other 10 images, since no ground-truths
are available, the validations have been made from a visuysis (partially illustrated in Figure 11).

The first remark which can be made is related to the varighifithe results with respect to the considered example,
when such an example consists of one segmented image. CadeChse 2, in Table 3, tend to suggest that the method
is globally robust to the such example variability, in theseavhere the different examples are of similar accuracy, in
particular for images of high resolution.

The second remark is related to the increase in quality iedlby the use of an example consisting of a mean image
of several segmented data. For such a mean example, thé\égnsieasure is comparable to the case of single image
examples, but the positive predictive value measure isfgigntly improved, both in terms of 3D and 1D results. This
argues in favour of the use such mean examples, which arefria ways, comparable to vascular atlases [11, 59], which
better model the anatomical variability among a whole papaoih.

6.2.4 Evaluation of the registration

The previous experiments have experimentally shown tleatife of a mean image as example provides better results
than the use of a single segmentation. In the further exgetisn we then consider examples corresponding to such mean
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images.

The purpose is here to evaluate the impact of the registratiouracy on the segmentation quality. By still considgrin
the same datasets of 3 and 10 images as above, three segonsraet computed, by fitting the example thanks to a rigid,
an affine, and a nonrigid registration procedure, respelgtiv

The obtained results for the first three images are gathar€dhle 4. The results for the 10 images, still analysed in
a visual fashion, are patrtially illustrated in Figure 11.

It appears that there is no clear correlation between theracg of the results and a specific registration policy. This
probably denotes the limitations of the use of registratechniques mainly devoted to morphological structures. It
emphasizes, in particular the actual need to propose \&asoriénted registration strategies, enabling to bettiee into
account the specificities (sparseness, noise, etc.) obgragihic data, as already stated in Section 5.4.2.

6.2.5 Evaluation of the connectivity

In these last experiments, we finally assess the influendeeafeighborhood connectivity on the quality of the segmen-
tation results. In particular, we compare on the one hand¢lgenentation results obtained using the component-tree of
an image/ using the connectivity induced by tiée and the26-adjacencies, respectively; and on the other hand the ones
obtained using the component-tree defined by the connigcimduced by the (extensive) magk(/) of I, computed in
the way described in Section 4.

These comparisons are performed on the two TOF MRAs (TOF #1T&F #2), by using the same mean image
example as above. The segmentation results are depictéglire2. Numerical results are given in Table 5.

From a quantitative point of view, the results are bettehim ¢ase of the 26-adjacency. Nevertheless, from a visual
inspection, we find the use of connectivity induced by theln#ad ) does allow some vessel reconnection. This fact does
not appear in the numerical results, because of the difficalacquire correct ground-truth.

7 Conclusion

Two original methods have been proposed for 3D angiograipmage filtering and segmentation. Both rely on recent
advances in mathematical morphology. In particular, thee tadvantage of the mixture of discrete and continuous
approaches (filtering method, Section 4.4.4), and of thedlmwrithmic cost of the involved strategies (filtering ndk
Proposition 4, and segmentation method—Proposition djdgao time-saving (fast, and automatic or interactiveaga
processing and analysis tools. It may be noticed that thveseethods can be easily interfaced (Section 5.5) to dyrectl
integrate the filtering results in the segmentation pracess

These methods have been validated on synthetic and realgraghic data, emphasizing their relevance. The ability
to discriminate specific parts of the vascular structurgar(@le-based approach) and to integrate the user’s skithsav
low time cost has, in particular, led to use them in processe@dving possibly large image datasets.

The following further works may also lead to improvementshaise methods. Regarding vessel orientation computa-
tion (Section 4.4.2), the consideration of not only secordkr derivatives, but also first-order ones may providetgebe
robustness to noise, and then improve vessel orientattonass. Moreover, as for linear scale-space approachra mo
elaborate analysis should be used, like automatic scadgets®i [39]. Finally, in terms of computation efficiencygeth
closed-form of Hessian matrix could be calculated [53]aast of the complete one. Regarding the morphological part
of the filtering method, (Section 4.4.4), the size of the igfigtvariant structuring elements could vary [18] acdaglto
the eigenvalues of the Hessian matrix. In addition, it isigaryed to use variable and more flexible structuring element
shapes, such as paths instead of segments.

Regarding vessel segmentation (Section 5.4.3), insteadmputing several segmentation results for different{cho
sen/sampledy values, an alternative solution may be to provide the exheu@inite) setS of possible binary segmenta-
tions, modeled as a grey-level imagg, : F — [1,|S]]. Such an approach —which may present a better time complexit
than the current one— will be proposed soon.

Finally, vascular image registration (Section 5.4.2) atsnains a challenging issue, in the case of the proposectimag
segmentation technique. The way to use not only morphabgiformation from standard images, but also (sparse and
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(d) o = 0.995 (e) a = 0.960 (f a =0.940

Figure 12: Segmentation results depending on the chosarectivity (see text). Each column corresponds to a specific
image (first row: TOF #1; second row: TOF #2). (a,d) Resuit$tfe 6-connectivity. (b,e) Results for the 26-connedtivit
(c,f) Results for the connectivity induced by the filterinfigS@ction 4. Thex value indicated for each subfigure is the one
for which the best segmentation has been obtained.

varying) vascular information from angiographic data,l\also be considered in (longer term) further works, with the
purpose of improving the accuracy of the example fitting.
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