On the recirculation of ammonia-lithium nitrate in adiabatic absorbers for chillers

R. Ventas, A. Lecuona, Michel Legrand, M.C. Rodríguez-Hidalgo

To cite this version:

HAL Id: hal-00678805
https://hal.archives-ouvertes.fr/hal-00678805
Submitted on 14 Mar 2012

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
On the recirculation of ammonia-lithium nitrate in adiabatic absorbers for chillers

Ventas R., Lecuona A., Legrand M., Rodríguez-Hidalgo M. C.

Departamento de Ingeniería Térmica y de Fluidos, Universidad Carlos III de Madrid, Avda. Universidad 30, 28911 Leganés, Madrid, Spain, rventas@ing.uc3m.es

Abstract

This paper presents a numerical model of single-effect absorption cycles with ammonia-lithium nitrate solution as the working pair and incorporating an adiabatic absorber. It is based on $UA - \Delta T_{lm}$ models for separate regions of plate-type heat exchangers and it assumes an approach factor to adiabatic equilibrium. The results are offered as a function of external temperatures. A loop circuit with a heat exchanger upstream the absorber produces subcooling for facilitating absorption process. The effect of the mass flow rate recirculated through the absorber is studied. Results show a diminishing return effect. The value at which the recirculation mass flow yields a reasonable performance is between 4 and 6 times the solution mass flow. With a heat transfer area 6 times smaller than with a conventional diabatic shell-and-tube type absorber, the adiabatic absorber configured with a plate heat exchanger yields a 2% smaller maximum COP and a 15-20 % smaller cooling power.

Keywords: Absorption chiller, ammonia-lithium nitrate, adiabatic absorber, mass flow recirculation.

Nomenclature

A Heat transfer area, m2
1 COP Coefficient of performance
2 cr Circulation ratio
3 D Solution mass diffusivity, m² s⁻¹
4 d Droplet diameter, m
5 F_{ad} Approach factor to adiabatic equilibrium
6 F_d Approach factor to diabatic equilibrium
7 F_{d,max} Approach factor to maximum ammonia mass fraction diabatic equilibrium
8 F_{d,max} Ratio of approach factor to diabatic equilibrium and approach factor to maximum ammonia mass fraction diabatic equilibrium for the same cycle.
9 h Specific enthalpy, J kg⁻¹
10 Le Lewis number = thermal diffusivity/mass diffusivity
11 l Path length
12 \dot{m}_r Refrigerant mass flow rate, kg s⁻¹
13 \dot{m}_{rr} Recirculated mass flow rate, kg s⁻¹
14 \dot{m}_s Solution mass flow rate at absorber outlet, kg s⁻¹
15 \dot{m}_p Solution mass flow rate pumped by the solution pump, kg s⁻¹
16 \dot{m}_g Solution mass flow rate at generator outlet, kg s⁻¹
17 \dot{m}_{i0} Solution mass flow rate at absorber inlet, kg s⁻¹
18 P Pressure, Pa
19 P_{inj} Injection pressure, Pa
20 \dot{Q} Thermal power, W
21 rr Recirculation ratio
22 T Temperature, ºC
23 T_c Condensation temperature, ºC
<table>
<thead>
<tr>
<th>No.</th>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>T_e</td>
<td>Evaporation temperature, °C</td>
</tr>
<tr>
<td>2</td>
<td>t</td>
<td>Residence time, s</td>
</tr>
<tr>
<td>3</td>
<td>U</td>
<td>Global heat transfer coefficient, W m$^{-2}$ K$^{-1}$</td>
</tr>
<tr>
<td>4</td>
<td>v</td>
<td>Droplet velocity, m s$^{-1}$</td>
</tr>
<tr>
<td>5</td>
<td>$\dot{W}_{p,rr}$</td>
<td>Recirculation pump power, W</td>
</tr>
<tr>
<td>6</td>
<td>$\dot{W}_{p,s}$</td>
<td>Solution pump power, W</td>
</tr>
<tr>
<td>7</td>
<td>$X_{eq,ad}$</td>
<td>Adiabatic equilibrium ammonia mass fraction, outlet of absorber</td>
</tr>
<tr>
<td>8</td>
<td>$X_{eq,d}$</td>
<td>Diabatic equilibrium ammonia mass fraction, outlet of absorber</td>
</tr>
<tr>
<td>9</td>
<td>$X_{eq,dmax}$</td>
<td>Maximum diabatic equilibrium ammonia mass fraction, outlet of absorber</td>
</tr>
<tr>
<td>10</td>
<td>X_5</td>
<td>Ammonia mass fraction, outlet of absorber</td>
</tr>
<tr>
<td>11</td>
<td>X_8</td>
<td>Ammonia mass fraction, outlet of generator</td>
</tr>
<tr>
<td>12</td>
<td>X_{10}</td>
<td>Ammonia mass fraction, inlet of absorber</td>
</tr>
<tr>
<td>13</td>
<td>ΔT_{ml}</td>
<td>Mean logarithmic temperature difference, °C</td>
</tr>
<tr>
<td>14</td>
<td>η_{hb}</td>
<td>Pump hydraulic efficiency</td>
</tr>
<tr>
<td>15</td>
<td>η_{mb}</td>
<td>Electro-mechanical pump motor efficiency</td>
</tr>
<tr>
<td>16</td>
<td>τ</td>
<td>Non-dimensional time</td>
</tr>
</tbody>
</table>

17

18 Subscripts

19 a Absorber

20 ahx Absorber heat exchanger (subcooler)

21 ad Adiabatic

22 bo Boiling

23 c Condenser

24 col Vapour cooling
1. Introduction

The absorber is currently the largest size element of absorption single-effect machines due to transferring heat and mass at the same time [1]. The most common type of this element is a falling film configuration, either along horizontal or vertical tubes in a shell-and-tube arrangement. The main problem for these configurations is the bad liquid distribution/surface wetting [2], hence lossing efficiency in the absorption process. A similar process is performed in spray and plate heat exchanger (PHE) absorbers, as they rely on falling film diabatic absorption. Other types of absorbers are bubble absorbers and spray adiabatic absorbers [3].

The adiabatic absorber separates the processes of heat and mass transfer. The heat evacuation occurs in an external conventional single-phase heat exchanger, which allows reducing its size and cost, as it can be a commercial model. Moreover, if the heat
A plate-type heat exchanger is a plate-type one, the heat transfer area needed is around 30% of the area of an equal power shell-and-tube heat exchanger [4]. Therefore, the plate heat exchanger technology with adiabatic absorber seems to be an enabling factor for reducing the size of the absorber.

The cooling happens before the poor in refrigerant (herewith ammonia) solution flow enters the adiabatic absorber, where an adiabatic mass transfer process takes place [5]. Usually mass transfer limits the absorption rate [6], being the liquid molecular diffusion the factor that controls the absorption process. In order to reduce the penetration length of the absorbed vapour into the liquid, the solution is sprayed. When the drops start absorbing vapour their temperature rises, slowing absorption rate. If the absorber is long enough, the adiabatic equilibrium is reached at the outlet of the absorber because of a large residence time. However, as the absorption heat is not evacuated the usual diabatic (non-adiabatic) equilibrium cannot be reached inside this single pass absorber [1]; instead the equilibrium is at a higher temperature, thus with less refrigerant absorbed. For this reason, there is need of an external recirculation and subcooling of poor solution, so that a continuous multiple pass configuration results.

Different authors, e.g. [7, 8, 9 and 10], have studied the adiabatic absorption process theoretically. Few authors [6, 11] carried out experimental studies. The results on these works support its potential.

H₂O-LiBr and NH₃-H₂O are the best-known working pairs for single-effect absorption cycles [12]. H₂O-LiBr is commonly employed for air-conditioning purposes due to its overall favourable performance. For industrial refrigeration, NH₃-H₂O solution is the most common working fluid. NH₃-LiNO₃ is a promising alternative that has been studied by [13, 14 and 15], among others. Single-effect absorption using this solution offers slightly higher coefficients of performance (COP) and a lower
investment cost and size than NH$_3$-H$_2$O, as it does not require a rectification tower, e.g. [15] and [16]. Lower driving temperatures for similar cooling purposes were reported in [16]. Theoretical studies about adiabatic absorption using this solution have been carried out in the last years [9] and [10].

There are still no rules on the suitable ratio of recirculation mass flow to solution mass flow rates (rr) in adiabatic absorbers. This work aims at showing the influence of rr on the absorption efficiency itself and also on the performance of a single-effect based absorption cycle, using the promising NH$_3$-LiNO$_3$ solution. Comparison with two diabatic absorbers with saturated solution at their outlet is offered as a reference and discussed in terms of efficiency, size and electricity consumption.

2. Description of the single-effect absorption with adiabatic and diabatic absorbers

Fig. 1 shows the cycle layout of an absorption cycle with the adiabatic absorber. The rich in refrigerant solution exits the absorber and is divided into two flows, the recirculated flow (\dot{m}_{rr}) returning to the absorber and the flow that goes to the generator (\dot{m}_5). \dot{m}_5 is pumped (point 6 in the cycle) through the solution heat exchanger and preheated by the poor solution that comes from the generator. The rich solution enters the generator (7) where ammonia vapour is desorbed and removed from the solution. Poor solution returns to the absorber through the solution heat exchanger (8-9) and lowers its pressure through the solution expansion valve (9). Downstream the valve, the poor solution mixes with the recirculated flow and is cooled through the absorber heat exchanger (subcooler). Finally, this flow is sprayed through injectors into the absorber plenum by the remaining overpressure. This facilitates the incorporation of ammonia vapour into the liquid solution. Ammonia liquid is produced in the condenser (1-2) at
condenser pressure \((P_c) \) and is expanded (2-3). At low pressure \((P_e) \) ammonia enters the evaporator and produces cold. The resulting ammonia vapour (4) enters the adiabatic absorber where it is absorbed by the solution spray.

Fig. 2 shows the same scheme of the absorption cycle but now with the diabatic absorber, either single pass (no recirculation) or with recirculation. Now inside the diabatic absorber the heat and mass transfer occurs simultaneously. This cycle will serve to evaluate the differences with the adiabatic absorber. The differences in thermodynamic state would vanish if both cycles reach diabatic equilibrium at the exit of the absorber. This would happen with infinitely large absorption residence time (ideal absorption, thus reaching saturation) and eventually with the cooperation of recirculation.

3. Model

3.1. System of equations

The numerical model is based on the simultaneous resolution of mass and energy steady state balance equations in all the components for either of both cycles. Correlations of Infante Ferreira [17] are used for the solution thermodynamic properties. Mechanical and chemical equilibrium are assumed at the exit of the components, excepting the absorber, e.g. at generator outlet, saturation is imposed at condenser pressure \(P_{eq}(X_h, T_h) = P_c \). Losses and irreversibilities are concentrated at discrete points. The model is explained in detail in [18]. Only the fundamental issues that are related to absorption processes will be presented here.

For both cycles, solution and refrigerant mass balances in the generator are:

\[
\dot{m}_g = \dot{m}_k + \dot{m}_r
\]
The recirculation and refrigerant mass balance for the adiabatic absorption cycle are:

\[\dot{m}_0 X_5 = \dot{m}_8 X_8 + \dot{m}_r \]
\[\dot{m}_{10} = \dot{m}_8 + \dot{m}_6 \cdot rr \]
\[\dot{m}_{10} X_{10} = \dot{m}_8 X_8 + \dot{m}_6 \cdot rr \cdot X_5 \]

The recirculation ratio \((rr)\) defines the mass flow recirculated towards the absorber over the mass flow that goes to the generator, while circulation ratio \((cr)\) refers to solution mass flow pumped over the refrigerant flow:

\[rr = \frac{\dot{m}_r}{\dot{m}_6}; \quad cr = \frac{\dot{m}_6}{\dot{m}_r} \]

3.2. Absorption figures of merit

The approach factor to adiabatic equilibrium \(F_{ad}\) is the ratio of the change in mass concentration achieved at the outlet of the adiabatic absorber spray plenum over the change in concentration reaching adiabatic equilibrium:

\[F_{ad} = \frac{X_5 - X_{10}}{X_{eq, ad} - X_{10}} \]

In order to illustrate the values of this figure of merit and to shed some light on its dependence on the operative parameters some discussion follows. The collision probability of the spray under conditions practical to absorption is very small, so that independent droplet absorption is currently accepted, e.g. [9], [19] and [23]. \(F_{ad}\), in other words the efficiency of the mass absorption process in respect to the adiabatic equilibrium state, mainly depends on the diameter of the droplet \((d)\), its velocity \((v)\) and the length of its flight inside the absorption plenum chamber \((l)\), which determines the residence time \((t)\). Besides that, it depends on the diffusion coefficient of
ammonia in the solution \((D)\), properties of the liquid and vapour phase, its turbulence intensity and Reynolds number in the liquid droplet, which determines the fluid motion inside the droplet. The droplet forming process and the external viscous flow shear causes it. This motion enhances absorption. If this phenomenon is neglected jointly with the external convection, a lower absorption rate results. Under this circumstance, a simple estimation of \(F_{ad}\) is obtained if homogeneous temperature is assumed inside a spherical droplet, which requires that the liquid Lewis number \(Le \gg 1\), which is the case. The resulting equation for \(F_{ad}\) (Newman [19]) shows a growing value when the characteristic non-dimensional residence time \(\tau\) (a mass transfer Fourier number) grows, so that for \(\tau > 0.183 \Rightarrow F_{ad} > 0.9\):

\[
F_{ad} = 1 - \frac{6}{\pi^2} \sum_{i=1}^{\infty} \exp\left(-\pi^2 i^2 \tau\right) \frac{i^2}{i^2} ; \quad \tau = \frac{tD}{(d/2)^2} \tag{7}
\]

Estimation of \(t\) is not straightforward owing to the varied trajectories the droplets will follow inside the plenum and the decelerating effect of the ammonia vapour. An even lower bound for \(F_{ad}\) is obtained if a constant velocity rectilinear trajectory is assumed, so that \(t = l/v\). For order of magnitude estimation, taking \(l = 0.2\) m, \(v = 1\) m/s and \(d = 300\ \mu\)m yields \(F_{ad} = 0.63\), which still is an interesting figure. The mere inclusion of internal motion inside the droplet will lead to \(F_{ad} = 0.85\), according to the Kronig and Brink model [23], which is expressed in similar terms as eq. (7). This indicates that including the rest of neglected phenomena and the residual absorption of the liquid film on the walls, according to theory a value for \(F_{ad}\) near unity would result in practice for this case. A selection of supporting studies on the topic is [19] to [23], indicating that even higher values are possible when the remaining parameters are considered. Both, experimental and numerical studies of exothermic adiabatic droplet absorption have been expressed in similar terms as the Newman equation, [6] and [11]
but using just the first ones of the series. Results of a numerical model for film absorption [24] has showed that film absorption follows the same time evolution functional form than Newman model predicted for droplets.

Experimental results, offered below, corroborate the above considerations. As F_{ad} depends on complex thermo-fluid process of spray absorption, here it will be used as input variable not precising how it will be achieved, but being sure that values near unity are achievable.

The adiabatic equilibrium mass concentration $X_{eq,ad}$ is calculated at the constant pressure of the absorber P_e and at the higher adiabatic equilibrium temperature $T_{eq,ad}$, which comes from the following equation:

$$P_{eq}(X_{eq,ad}, T_{eq,ad}) = P_e$$

(8)

The energy balance in the absorber for the case of reaching the adiabatic equilibrium is:

$$\dot{m}_8 \cdot h_{10} + \dot{m}_{r,eq} \cdot h_4 = (\dot{m}_8 + \dot{m}_{r,eq}) h_{eq,ad}$$

(9)

$$h_{eq,ad} = h_{eq}(X_{eq,ad}, T_{eq,ad})$$

(10)

The corresponding refrigerant mass balance in the absorber is:

$$\dot{m}_8 \cdot X_8 + \dot{m}_{r,eq} = (\dot{m}_8 + \dot{m}_{r,eq}) \cdot X_{eq,ad}$$

(11)

The approach factor to diabatic equilibrium F_d is used to compare the performance of the adiabatic absorber with what can be achieved in an equivalent diabatic absorber reaching saturation, thus ideal. This parameter is defined as the ratio of the change in refrigerant mass concentration achieved at the exit of the adiabatic absorber over the change in concentration reaching the diabatic equilibrium at the same pressure:

$$F_d = \frac{X_5 - X_8}{X_{eq,d} - X_{8,d}}$$

(12)
The concentration at the outlet of the absorber that reaches saturation the diabatic equilibrium (in this sense ideal, i.e. involving the maximum X reachable with a finite value of UA) $X_{eq,d}$ is calculated modelling, the same way as before, an absorber in which the mass and heat transfer proceed inside the absorber, as shown in Fig. 2. This simulation is carried out with the same inlet parameters as the adiabatic absorber cycle, Table 1. This simulation was performed with a same finite value of heat conductance (UA_a) as the adiabatic absorber (UA_{adh}), thus it is called “equivalent”. For this purpose, the mean logarithmic temperature difference at the diabatic absorber is defined as usual:

$$\Delta Tlm_a = \ln \left(\frac{(T_{10} - T_{ao}) - (T_5 - T_{ai})}{(T_{10} - T_{ao}) / (T_5 - T_{ai})} \right)$$

(13)

It is worth to note that diabatic equilibrium with finite heat conductance can be approached in practice with a high enough recirculation rate. Recirculation, indicated in Fig. 2, is common in large size absorption machines.

Still another reference is useful, again considering saturation at the exit of the diabatic absorber, but at the external circuit inlet temperature, what is common in cycle calculations [1], representing the maximum possible. The approach factor to the maximum ammonia mass fraction F_{dmax} considers reaching this diabatic equilibrium, as the reference. Therefore, it corresponds to the same eq. (12), but now using a conductance UA_a of infinite value, and infinite value for the external flow rate. As above indicated the temperature of equilibrium now coincides with the external inlet temperature to the absorber ($T_{a,i}$), usually named recooling inlet temperature:

$$F_{dmax} = \frac{X_5 - X_8}{X_{eq,dmax} - X_{8,dmax}}$$

(14)
\(F_{d,d_{\text{max}}} \) compares both diabatic absorbers considered, the equivalent one, and the one that reaches the maximum diabatic absorption at its outlet, so reaching the external circuit inlet temperature. Thus it is the ratio of \(F_{\text{d_{\text{max}}}} \) to \(F_{\text{d}} \) for the same fixed operating conditions, shown in Table 1.

\[
F_{d,d_{\text{max}}} = \frac{X_{eq,d} - X_{b,d}}{X_{eq,d_{\text{max}}} - X_{b,d_{\text{max}}}}
\]

(15)

3.3. Cycle efficiency

The new mass concentration \(X_{eq,d_{\text{max}}} \) comes from an equilibrium condition:

\[
P_{eq}(X_{eq,d_{\text{max}}}, T_{a,a}) = P_e
\]

(16)

The coefficient of performance of the cycles is defined as follows:

\[
\text{COP} = \frac{\dot{Q}_g}{\dot{Q}_c}
\]

(17)

The following equations allow calculating the electrical power consumptions of the solution pump and the recirculation pump:

\[
\dot{W}_{p,s} = \frac{m_b}{\rho_s} \frac{(P_c - P_e)}{\eta_m \cdot \eta_h}
\]

(18)

\[
\dot{W}_{p,rr} = \frac{m_{rr}}{\rho_s} \frac{(P_{\text{inj}} - P_e)}{\eta_m \cdot \eta_h}
\]

(19)

3.4. Working conditions

Table 1 summarizes the input parameters to the cycle that are kept constant. All the characteristics of the external flows are input constants: inlet temperatures and mass flow rates as well as the characteristics of the heat exchangers, i.e., the global heat transfer coefficients \(U \) for each type of flow region (single or two-phase) and the total transfer areas, are input constants. As can be seen in Table 1, different values for \(U \) are taken for each phase region inside each heat exchanger and the corresponding area is
part of the system of equations solution, excepting the two alternative absorber heat exchangers as they embrace a single region. Moreover, according to [18] energy and mass balances at the saturation condition determine the surface area for each region until phase change is complete. Downstream or upstream this boundary, surface area is determined by the corresponding subcooling or superheating conditions and the total prescribed heat transfer surface. This way the resulting equivalent U for the whole exchanger allows matching the prescribed UA and the resulting total area A through the system of equations. However, to compare the performance of the adiabatic cycle with the diabatic one, the overall conductance of the absorber in the diabatic case was calculated with the same value as the adiabatic one ($UA_{ahx} = UA_a$). Therefore, the input variable for calculating both the diabatic absorber cycle performance was UA_a and not U_a and A_a separately.

The model equations were numerically solved by means of the software EES®, [25].

4. Results and discussion

Figure 3 shows the variation of COP with recirculation ratio rr for different values of F_{ad} (considered as an input everywhere) and a representative but moderate hot driving water temperature $T_{g,i} = 85$ °C. One can observe that when F_{ad} is increased the COP rises for every rr because of the improvement on the ammonia absorption. The lower the F_{ad} the higher are the differences between the curves. For each curve, when rr increases, the value of COP rises, again as a result of the increased ammonia absorption. For values of rr lower than about 4, for the case of $F_{ad} = 1$, the COP rises rapidly, meanwhile for higher values the curves switch to a smaller slope. The switching point rises slightly for lower F_{ad}.
The variation of the cooling capacity \dot{Q}_c with the recirculation ratio rr for different values of F_{ad}, again for $T_{g,i} = 85 ^\circ C$, is shown in Figure 4. \dot{Q}_c rises when F_{ad} and rr increase, similarly as commented for the COP curves, but with a higher sensitivity, as now more refrigerant absorption means a twofold improvement, more COP and more mass. For $F_{ad} = 1$ \dot{Q}_c rises rapidly up to $rr \approx 5$ meanwhile for higher values of rr \dot{Q}_c rises at a lower pace, but the change in slope is not such apparent as in Figure 3. When F_{ad} decreases the value for which the curves change in slope slightly decreases, in contrast with the case of the COP curves. \dot{Q}_c seems to continue rising significantly up to $rr \approx 10$.

Figure 5 shows the variation of the approach factor to diabatic equilibrium F_d and the approach factor to maximum ammonia mass fraction diabatic equilibrium $F_{d,max}$, with recirculation ratio rr, for different approach factors to adiabatic equilibrium F_{ad}, again for $T_{g,i} = 85 ^\circ C$. Both F_d and $F_{d,max}$ rise with the increase of F_{ad}, being the rise higher for the curves of F_d. The maximum values are reached for the best possible value $F_{ad} = 1$ (adiabatic equilibrium). They were computed up to $rr = 10$ yielding $F_d = 0.8$ and $F_{d,max} = 0.64$. These values indicate that the adiabatic absorption efficiency is far from unity, the respective maxima possible, and that not much difference exists between F_d and $F_{d,max}$, respectively the diabatic saturated absorbers with equivalent UA and the one with $UA_a = \infty$. As already commented for \dot{Q}_c, the values where the curves switch their slope slightly decrease for lower rr.

Figure 6 shows the variation of the coefficient of performance COP with driving inlet temperature $T_{g,i}$ for different recirculation ratios rr and the best value possible: $F_{ad} = 1$ (adiabatic equilibrium) for the adiabatic and as a reference, the equivalent saturated diabatic absorption cycles. The COP curves rise when rr increases for all the
$T_{g,i}$ simulated. The differences between curves are slight for $rr = 4, 6$ and 8, meanwhile for $rr = 0$ (single pass) the curve tendency is different from the others and the values are noticeably lower. The differences between curves decrease slightly with increasing $T_{g,i}$. The recirculation ratio that almost reaches the maximum COP is $rr \approx 4$. The maximum COP found for the highest recirculation ratio used, $rr = 8$, is close to the diabatic COP, being 0.66 for the adiabatic absorber and 0.67 for the diabatic one, which represents less than 2% loss. It is worth to mention that these differences are lower with higher driving temperatures, as a result of the higher driving force for absorption. Figure 7 shows the variation of cooling capacity \dot{Q}_c with driving inlet temperature $T_{g,i}$ for different recirculation ratios rr and again $F_{ad} = 1$. This figure also shows \dot{Q}_c for the cycle with equivalent diabatic absorber. The curves rise almost linearly with the increase of $T_{g,i}$. Thus indicating that neither evaporator overflow nor condenser insufficient condensation appears, according to [18]. The figure depicts a higher cooling capacity \dot{Q}_c for a higher rr, decreasing the differences between curves for the highest values of rr. In contrast with the COP curves the differences between curves herewith enlarge with the increase of $T_{g,i}$ as well as the differences between $rr = 4$ and $rr = 8$ are larger. \dot{Q}_c for $rr = 6$ is almost the maximum, so the increase of rr above $rr = 6$ does not substantially improve the cooling capacity. The differences between the maximum recirculation ratio considered, $rr = 8$, and the diabatic cycle grow with $T_{g,i}$, but the proportion diminishes, being the adiabatic cooling power 20% lower at $T_{g,i} = 90$ °C and a mere 15% lower at $T_{g,i} = 110$ °C.

Table 2 shows the values of the enthalpy, temperature and concentrations at the inlet and outlet of the absorber for the cases of the adiabatic absorber with $rr = 0$ and $rr = 6$, for $F_{ad} = 1$ and the equivalent diabatic absorber cycle for $T_{g,i} = 85$ °C.
Figure 8 shows the variation of F_d and $F_{d_{\text{max}}}$ with $T_{g,i}$, for different recirculation ratios rr and as before, $F_{ad} = 1$. All the curves grow with the increase of $T_{g,i}$, rapidly for low driving temperatures and slower for higher one’s. This rise is greater for F_d than for $F_{d_{\text{max}}}$, especially for high rr values, indicating that high $T_{g,i}$ is especially in favour of the adiabatic absorber approaching the equivalent diabatic absorber performance. As the curves show, the values for $rr = 6$ and $rr = 8$ are very close together for all the $T_{g,i}$ simulated, suggesting that an increase above 8 does not much improve the performance of the adiabatic absorber. The range of values of F_d for $rr = 8$ from $T_{g,i} = 85$ °C to 122 °C, whereas the machine will likely operate, is from 0.74 to 0.88, meanwhile the range of values of $F_{d_{\text{max}}}$ is from 0.62 to 0.65. This difference increases with an increase in $T_{g,i}$, as Figure 8 shows, as a consequence of higher heat power evacuated through UA_a. Figure 8 shows too the above defined parameter $F_{d,d_{\text{max}}}$. The results indicate that with conventional diabatic absorbers, a loss in absorption efficiency has to be accepted owing to finite heat conductance, similarly to what has been described for adiabatic absorbers.

The variation of F_d with driving inlet temperature $T_{g,i}$ for different absorber heat exchanger conductances UA_{ahx} is shown in Figure 9. Again $F_{ad} = 1$ has been chosen to isolate the effect of heat transfer conductance and solution thermodynamics from mass transfer conductance. The increase of UA_{ahx} improves F_d, but the improvement is more important for the smallest values of UA_{ahx} considered. This growth approaches the performance of the adiabatic absorber to the diabatic equivalent one.

The increase of UA_{ahx} in the adiabatic absorption cycle does not mean that this heat exchanger is larger than the diabatic absorber. As explained in the introduction, the falling film configuration is the most common for diabatic absorbers and they use to rely on a shell-and-tube type heat exchanger. In [4] it is commented that the heat
transfer area for an equal power plate heat exchanger is 30% of a shell-and-tube heat exchanger. In addition to that, in [2] Jeong and Garimella comment that the wetted surface in a falling film absorber can be around 50% of the total available. This means that the heat transfer area, for the same conductance, with the diabatic shell-and-tube absorber can be more than 6 times larger than with a plate type one. Nevertheless, to compare both absorber types on a fair basis it is necessary to consider also the adiabatic absorber plenum size. The plenum height of a spray absorber needed to reach $F_{ad} = 0.8$ with LiNO$_3$-NH$_3$ as working fluid is around 205 mm. This has been found experimentally, [26], for a solution mass flow rate ranging between 0.041-0.083 kg/s, relying on 7 commercial swirl pressure injectors of the fog type, nominally producing an average droplet diameter of $d = 310 \mu m$. This means that the adiabatic absorber does not eliminate the size advantage so far, neither signifies a substantial cost overrun. The consequence is that the total area and volume saved with the adiabatic absorber can be quite significant.

The recirculation pump power $\dot{W}_{p,rr}$, is obtained using eq. (17) and the experimental data available in [26], being $P_{inj}-P_a = 1.5 \times 10^5$ Pa. The results are $\dot{W}_{p,rr} = 231$ W for $rr = 8$ and the solution pump power $\dot{W}_{p,s} = 216$ W, eq. (16), both for a nominal capacity $\dot{Q}_c = 4$ kW at $T_{g,i} = 85 ^\circ C$.

5. Conclusions

Detailed models for a single-effect absorption cycle with an adiabatic absorber and both a diabatic saturated equivalent and an ideal absorber have been implemented using
the NH$_3$-LiNO$_3$ solution. The following conclusions can be drawn from the present study:

- Saturation at the external recooling temperature is not reached neither with adiabatic nor diabatic absorber with finite absorber heat conductance, even in the case of equilibrium complete absorption (saturation), affecting both the \(\text{COP} \) and the cooling capacity \(\dot{Q}_c \).

- The recirculation loop is necessary in adiabatic absorbers for the cycle to operate with a reasonable performance.

- For operating conditions leading to a reasonably high value of \(\text{COP} \), this parameter is less sensitive to recirculation ratio \(rr \) than the cooling capacity \(\dot{Q}_c \).

- The recirculation ratio to almost reach the maximum performance for adiabatic absorbers could be found to be between \(rr = 4 \) and \(rr = 6 \).

- For the same heat conductance \(UA_a \), the adiabatic absorber offers almost the same \(\text{COP} \) figures as a complete absorption diabatic absorber, but with 15-20 \% lower cooling capacity, at the maximum recirculation explored \(rr = 8 \).

- The size of the absorber subcooler in the adiabatic arrangement could be down to 6 times smaller than with the diabatic arrangement and the plenum size is not excessive. The price to pay is an extra pump, being its electricity consumption almost the same than the solution pump.

- An increase of the subcooler heat conductance \(UA_{ahx} \), for the adiabatic absorber, improves the performance of the cycle, but at the expense of a minor size reduction.
Acknowledgements

The financial support of this study by the Spanish Ministry of Education and Science research grant ENE2005-08255-C02-02 and Project CCG07-UC3M/ENE-3411, financed by the Local Government of Madrid and UC3M, are greatly appreciated.

References

Figure 1. Layout of the single-effect absorption cycle with the adiabatic absorber.

Figure 2. Layout of the single-effect absorption cycle with a diabatic absorber, showing the optional recirculation circuit.

Figure 3. Coefficient of performance COP versus recirculation ratio rr for different approach to equilibrium factors, $F_{ad} = \{0.5, 0.6, 0.7, 0.8, 0.9, 1.0\}$ and $T_{g,i} = 85^\circ C$, for the adiabatic absorber.

Figure 4. Cooling capacity \dot{Q}_e versus recirculation ratio rr for different approach to equilibrium factors, $F_{ad} = \{0.5, 0.6, 0.7, 0.8, 0.9, 1.0\}$ and $T_{g,i} = 85^\circ C$, for the adiabatic absorber.

Figure 5 Equivalent approach factor to diabatic equilibrium F_d and approach factor to maximum ammonia mass fraction diabatic equilibrium $F_{d,max}$ versus recirculation ratio rr for different approach factors to adiabatic equilibrium $F_{ad} = \{0.5, 0.6, 0.7, 0.8, 0.9, 1.0\}$ and $T_{g,i} = 85^\circ C$ for the adiabatic absorber.

Figure 6. Coefficient of performance COP versus driving inlet temperature $T_{g,i}$ for different recirculation ratios, $rr = \{0, 2, 4, 6, 8\}$, using $F_{ad} = 1$ for the adiabatic absorber. The COP of the equivalent diabatic absorber is depicted as a reference.

Figure 7. Cooling capacity \dot{Q}_e versus driving inlet temperature $T_{g,i}$ for different recirculation ratios, $rr = \{0, 2, 4, 6, 8\}$ and $F_{ad} = 1$ for the adiabatic absorber. The cooling capacity of the equivalent diabatic absorber is depicted as a reference.

Figure 8. Approach factor to diabatic equilibrium F_d and approach factor to maximum ammonia mass fraction diabatic equilibrium $F_{d,max}$ versus driving inlet temperature $T_{g,i}$ for different recirculation ratios, $rr = \{0, 2, 4, 6, 8\}$ and $F_{ad} = 1$, for the adiabatic absorber. $F_{d,dmax}$ versus driving inlet temperature $T_{g,i}$.
Figure 9. Diabatic approach to equilibrium factor F_d versus driving inlet temperature $T_{g,i}$ for different absorber heat exchanger conductances, $U A_{ahx} = \{2,250; 3,000; 3,750; 4,500; 5,250\}$ W m$^{-2}$ K$^{-1}$, $F_{ad} = 1$ and $rr = 8$, for the adiabatic absorber. Table 1. Constant input variables for the simulation. Table 2. Enthalpy, temperature and concentrations at the inlet and outlet of the absorber for $T_{g,i} = 85$ °C and $F_{ad} = 1$.
Figure 1. Layout of the single-effect absorption cycle with the adiabatic absorber.
Figure 2. Layout of the single-effect absorption cycle with a diabatic absorber, showing the optional recirculation circuit.
Figure 3. Coefficient of performance COP versus recirculation ratio rr for different approach to equilibrium factors, $F_{ad} = \{0.5, 0.6, 0.7, 0.8, 0.9, 1.0\}$ and $T_{g,i} = 85$ °C, for the adiabatic absorber.
Figure 4. Cooling capacity Q_c versus recirculation ratio rr for different approach to equilibrium factors, $F_{ad} = \{0.5, 0.6, 0.7, 0.8, 0.9, 1.0\}$ and $T_{g,i} = 85 ^\circ C$, for the adiabatic absorber.
Figure 5. Equivalent approach factor to diabatic equilibrium F_d and approach factor to maximum ammonia mass fraction diabatic equilibrium $F_{d,max}$ versus recirculation ratio rr for different approach factors to adiabatic equilibrium $F_{ad} = \{0.5, 0.6, 0.7, 0.8, 0.9, 1.0\}$ and $T_{g,i} = 85$ °C for the adiabatic absorber.
Figure 6. Coefficient of performance COP versus driving inlet temperature $T_{g,i}$ for different recirculation ratios, $rr = \{0, 2, 4, 6, 8\}$, using $F_{ad} = 1$ for the adiabatic absorber. The COP of the equivalent diabatic absorber is depicted as a reference.
Figure 7. Cooling capacity Q_e versus driving inlet temperature $T_{g,i}$ for different recirculation ratios, $rr = \{0, 2, 4, 6, 8\}$ and $F_{ad} = 1$ for the adiabatic absorber. The cooling capacity of the equivalent diabatic absorber is depicted as a reference.
Figure 8. Approach factor to diabatic equilibrium F_d and approach factor to maximum ammonia mass fraction diabatic equilibrium $F_{d,\text{max}}$ versus driving inlet temperature $T_{g,i}$ for different recirculation ratios, $rr = \{0, 2, 4, 6, 8\}$ and $F_{ad} = 1$, for the adiabatic absorber. $F_{d,\text{max}}$ versus driving inlet temperature $T_{g,i}$.

1
2 Figure 8. Approach factor to diabatic equilibrium F_d and approach factor to maximum
3 ammonia mass fraction diabatic equilibrium $F_{d,\text{max}}$ versus driving inlet temperature $T_{g,i}$
4 for different recirculation ratios, $rr = \{0, 2, 4, 6, 8\}$ and $F_{ad} = 1$, for the adiabatic
5 absorber. $F_{d,\text{max}}$ versus driving inlet temperature $T_{g,i}$.

32
Figure 9. Diabatic approach to equilibrium factor F_d versus driving inlet temperature $T_{g,i}$ for different absorber heat exchanger conductances, $UA_{ahx} = \{2,250; 3,000; 3,750; 4,500; 5,250\}$ W m$^{-2}$ K$^{-1}$, $F_{ad} = 1$ and $rr = 8$, for the adiabatic absorber.
<table>
<thead>
<tr>
<th>Input Variable</th>
<th>Value</th>
<th>Input Variable</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>η_{hb}</td>
<td>0.5</td>
<td>A_c</td>
<td>1.8 m²</td>
</tr>
<tr>
<td>η_{mb}</td>
<td>0.5</td>
<td>A_e</td>
<td>1.0 m²</td>
</tr>
<tr>
<td>m_a</td>
<td>0.35 kg s⁻¹</td>
<td>A_g</td>
<td>0.9 m²</td>
</tr>
<tr>
<td>m_c</td>
<td>0.35 kg s⁻¹</td>
<td>A_{shx}</td>
<td>0.7 m²</td>
</tr>
<tr>
<td>m_e</td>
<td>0.4 kg s⁻¹</td>
<td>UA_a</td>
<td>2.25 \cdot 10³ W K⁻¹</td>
</tr>
<tr>
<td>m_g</td>
<td>0.15 kg s⁻¹</td>
<td>$U_{c,col}$</td>
<td>200 W m⁻² K⁻¹</td>
</tr>
<tr>
<td>m_6</td>
<td>0.05 kg s⁻¹</td>
<td>$U_{c,tp}$</td>
<td>1.8 \cdot 10³ W m⁻² K⁻¹</td>
</tr>
<tr>
<td>$T_{a,i}$</td>
<td>30 ºC</td>
<td>$U_{c,sub}$</td>
<td>1.0 \cdot 10³ W m⁻² K⁻¹</td>
</tr>
<tr>
<td>$T_{c,i}$</td>
<td>30 ºC</td>
<td>$U_{c,tp}$</td>
<td>2.5 \cdot 10³ W m⁻² K⁻¹</td>
</tr>
<tr>
<td>$T_{e,i}$</td>
<td>8 ºC</td>
<td>$U_{e,sub}$</td>
<td>200 W m⁻² K⁻¹</td>
</tr>
<tr>
<td>T_{c}</td>
<td>39 ºC</td>
<td>$U_{g,bo} = U_{shx,bo}$</td>
<td>2.0 \cdot 10³ W m⁻² K⁻¹</td>
</tr>
<tr>
<td>T_e</td>
<td>0 ºC</td>
<td>$U_g = U_{shx}$</td>
<td>1.5 \cdot 10³ W m⁻² K⁻¹</td>
</tr>
</tbody>
</table>

Table 1. Constant input variables for the simulation.
Table 2. Enthalpy, temperature and concentrations at the inlet and outlet of the absorber for $T_{g,i} = 85$ ºC and $F_{ad} = 1$.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Adiabatic absorber $rr = 0$</th>
<th>Adiabatic absorber $rr = 6$</th>
<th>Equivalent diabatic absorber</th>
</tr>
</thead>
<tbody>
<tr>
<td>h_5 (kJ kg$^{-1}$)</td>
<td>104.8</td>
<td>90.1</td>
<td>81.97</td>
</tr>
<tr>
<td>h_{10} (kJ kg$^{-1}$)</td>
<td>76.5</td>
<td>79.8</td>
<td>97.59</td>
</tr>
<tr>
<td>T_5 (ºC)</td>
<td>39.05</td>
<td>34.75</td>
<td>31.9</td>
</tr>
<tr>
<td>T_{10} (ºC)</td>
<td>30.01</td>
<td>31.46</td>
<td>37.22</td>
</tr>
<tr>
<td>X_5</td>
<td>0.4897</td>
<td>0.5129</td>
<td>0.5276</td>
</tr>
<tr>
<td>X_8</td>
<td>0.4793</td>
<td>0.4866</td>
<td>0.4913</td>
</tr>
<tr>
<td>X_{10}</td>
<td>0.4793</td>
<td>0.5093</td>
<td>0.4913</td>
</tr>
<tr>
<td>$\Delta X = X_5 - X_8$</td>
<td>0.0104</td>
<td>0.0263</td>
<td>0.0363</td>
</tr>
</tbody>
</table>