Stable continuous branching processes with immigration and Beta-Fleming-Viot processes with immigration

Abstract : Branching processes and Fleming-Viot processes are two main models in stochastic population theory. Incorporating an immigration in both models, we generalize the results of Shiga (1990) and Birkner et al. (2005) which respectively connect the Feller diffusion with the classical Fleming-Viot process and the alpha-stable continuous state branching process with the Beta(2-alpha, alpha)-generalized Fleming-Viot process. In a recent work, a new class of probability-measure valued processes, called M-generalized Fleming-Viot processes with immigration, has been set up in duality with the so-called M-coalescents. The purpose of this article is to investigate the links between this new class of processes and the continuous-state branching processes with immigration. In the specific case of the $\alpha$-stable branching process conditioned to be never extinct, we get that its genealogy is given, up to a random time change, by a Beta(2-alpha, alpha-1)-coalescent.
Type de document :
Article dans une revue
Electronic Journal of Probability, Institute of Mathematical Statistics (IMS), 2013, 18, pp.1-21. 〈10.1214/EJP.v18-2024〉
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00678259
Contributeur : Clément Foucart <>
Soumis le : samedi 12 mai 2012 - 15:11:43
Dernière modification le : jeudi 27 avril 2017 - 09:46:36
Document(s) archivé(s) le : lundi 13 août 2012 - 02:21:11

Fichiers

CBI-GFVI-6-2.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Clément Foucart, Olivier Hénard. Stable continuous branching processes with immigration and Beta-Fleming-Viot processes with immigration. Electronic Journal of Probability, Institute of Mathematical Statistics (IMS), 2013, 18, pp.1-21. 〈10.1214/EJP.v18-2024〉. 〈hal-00678259v3〉

Partager

Métriques

Consultations de
la notice

177

Téléchargements du document

94