N

N

A Scalable Security Model for Enabling Dynamic Virtual
Private Execution Infrastructures on the Internet
Pascale Vicat-Blanc Primet, Jean-Patrick Gelas, Olivier Mornard, Guilherme

Koslovski, Vincent Roca, Lionel Giraud, Johan Montagnat, Tram Truong Huu

» To cite this version:

Pascale Vicat-Blanc Primet, Jean-Patrick Gelas, Olivier Mornard, Guilherme Koslovski, Vincent Roca,
et al.. A Scalable Security Model for Enabling Dynamic Virtual Private Execution Infrastructures on
the Internet. Proceedings of the 2009 9th IEEE/ACM International Symposium on Cluster Computing
and the Grid (CCGRID ’09), May 2009, Shanghai, China. pp.348-355, 10.1109/CCGRID.2009.76 .
hal-00677790

HAL Id: hal-00677790
https://hal.science/hal-00677790

Submitted on 11 Mar 2012

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-00677790
https://hal.archives-ouvertes.fr

A scalable security model for enabling Dynamic Virtual
Private Execution Infrastructures on the Internet

Pascale Vicat-Blanc
Primet, Jean-Patrick
Gelas, Olivier Mornard,
Guilherme Koslovski
INRIA - University of Lyon

Pascale.Primet@inria.fr

ABSTRACT

With the expansion and the convergence of computing and
communication, the dynamic provisioning of customized pro-
cessing and networking infrastructures as well as resource

virtualization are appealing concepts and technologies. There-

fore, new models and tools are needed to allow users to
create, trust and exploit such on-demand virtual infrastruc-
tures within wide area distributed environments. This pa-
per proposes to combine network and system virtualization
with cryptographic identification and SPKI/HIP principles
to help the user communities to build and share their own re-
source reservoirs. These ideas are implemented in the HIPer-
Net framework enabling the creation and the management of
customized confined execution environments in a large scale
context. Based on the example of biomedical applications,
the paper focuses on the security model of the HIPerNet
system and develops the key aspects of our distributed se-
curity approach. Then the paper discusses and illustrates
how HIPerNet solutions fulfill the security requirements of
applications through different scenarios.

Keywords
Execution Infrastructure as a service, resource virtualiza-
tion, authorization, SPKI.

1. INTRODUCTION

Today, the usage of the Internet is fundamentally changing.
The convergence of communication and computation por-
trays a new vision of the Internet. It is no longer "only” a
huge shared communication facility between edge hosts. In-
stead, it is becoming a world wide cloud increasingly embed-
ding the computational and storage resources able to meet
the requirements of emerging applications. This resulting
vision of a global facility, that brings together distributed
resources to build large-scale computing environments, re-
calls the promising vision of Grid computing enabling both
data-intensive and computing-intensive applications. How-

This work has been funded by the ANR CIS HIPCAL grant (contract
ANRO06-CIS-005), the French ministry of Education and Research, INRIA,
and CNRS, via ACI GRID’s Grid’5000 project and Aladdin ADT.
Permission to make digital or hard copies of all or part of this work for
personal, or classroom use is granted without fee provided that copies are
not made or distributed for profit of commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
to republish, to post on servers on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

Vincent Roca,
Lionel Giraud
INRIA

Vincent.Roca@inria.fr

Johan Montagnat,

Tram Truong Huu
CNRS / I3S, Sophia Antipolis

johan@i3s.unice.fr

ever, it is difficult to adapt it to sensitive application areas,
such as biomedical applications, due to the stringent security
requirements encountered (e.g., in terms of confidentiality,
privacy, and content integrity) and their complex implemen-
tation in an open environment. The goals of this work are (i)
to address data and processing security requirements of sen-
sitive applications and (ii) to provide agile resources access
control policies that can adapt to real-life application needs.
This paper proposes a framework to create and manage con-
fined Virtual Private eXecution Infrastructure, called VPXI,
in a large scale distributed environment such as Internet.
The key idea of this framework is to combine network and
system virtualization with the cryptographic identification
of (virtual) resources. Resources in a VPXI are virtualized
to ease allocation and improve applications confinement.
They are securely interconnected by a virtual private over-
lay network. The cryptographic identification scheme is the
core of the Simple Public Key Infrastructure (SPKI), which
defines a flexible private authorization management layer for
the VPXI resources. The cryptographic identifiers are au-
tomatically translated to IP addresses thanks to a mapping
layer such as the Host Identity Protocol (HIP), which de-
couples the locator /identifier roles of addresses. This paper
focus and details how these last two components (SPKI and
HIP) work together to provide the required security.

The rest of the paper is structured as follows. Section 2 out-
lines the challenging security requirements of the biomedical
community and the shortcomings of traditional approaches
to address these needs. In section 3, we illustrate how end
users can benefit from customized private execution infras-
tructures. We then develop our combined network and sys-
tem virtualization approach embedded in the HIPerNet soft-
ware. In section 4 we detail the security model and present
our use of the SPKI and HIP protocols. Section 5 discusses
the system implementation and reports experiments on a
real-scale testbed using a medical image analysis applica-
tion. Section 6 discusses related works. Finally conclusions
and perspectives are developed in section 7.

2. SECURITY REQUIREMENTS

This section focuses on the security requirements, taking as
a representative example the case of medical applications.
Then it reviews the techniques found in classical Grid sys-
tems and discusses how they match (or not) the above re-
quirements.



2.1 Medical data analysis security requirements

The medical imaging community faces several challenges
making it one of the most constraining community for dis-
tributed infrastructure: a) the amount of data to process
(tens of TB of data yearly); b) the distribution of data
sources over the territory); c) the heterogeneity of data;
and d) the confidentiality of medical data to preserve pa-
tients privacy. Moreover, the security requirements can not
be tempered with, at the risk of discarding distributed com-
puting usage in this area. All data belongs to patients whose
confidentiality needs to be preserved in order to fulfill strict
hospital privacy rules, in particular when data is transported
from acquisition sources to processing sites and for storage
of intermediate computing results. Secured communication
channels alone are not sufficient to guarantee the protec-
tion of stored data and the associated metadata (minimally
the file name which usually carries some meaningful infor-
mation by itself, and possibly additional information). The
data analysis process applied to data itself is sensitive as it is
characterizing the kind of pathology a patient is affected by.
Many scientific studies of medical data are performed using
anonymized data sets, and on local resources only to enforce
these constraints. Yet, re-identification of data is important
for clinical applications, and may even be an obligation en-
forced by clinical ethical committees (the potential benefits
for a patient whose data is used in a scientific study should
always be applicable to this person).

Additionally, it is not acceptable for any clinical institu-
tion that the access to its data resources be managed ex-
ternally by a centralized organization. The access control
policy should ensure that each health organization solely
controls its own data. The access control technique should
allow for reactive access control rules to be set-up in the con-
text of medical studies, whose life time is short (typically
weeks) and the group composition highly dynamic (small
specialist groups are involved in each study, possibly evolv-
ing along time to embark larger consortiums as needed by
the experiments). Despite these strong constraints, Grids
have been identified years ago as important tools to support
various biomedical research efforts, including the processing
of large medical databases, large-scale epidemiology, statis-
tical study over populations, medical simulation or research
on rare diseases.

To summarize, medical applications require i) Protection
to ensure that data is not accessible to any outsider even
though the execution infrastructure may physically expand
to multiple institutions. In particular the data should nei-
ther be exposed during transfer, nor during on-disk storage;
ii) Privacy to ensure that no outsider is able to track the
data flow nor the computations applied for a particular pa-
tient; iii)Adaptable and dynamic access control to en-
able a fully customized access control policy, within a given
institution or between several institutions;

2.2 Limit of classical Grid security approach
Grid infrastructures enable the federation of large-scale cross-
institution user communities and resources Institutionally,

user communities are identified as Virtual Organizations (VOs)

composed of cross-institution computing resource users who
collaborate in the context of a common scientific objective.
Technically, VOs are implemented in Grids infrastructures

through the security layer that comes at the very foundation
of Grid middlewares. VOs implementation requires at least
the authentication of cross-institution users. The ”GLOBUS
Security Infrastructure” (GSI) [8] for instance is an exten-
sion of the standard X509-certificate based on Public Key se-
curity Infrastructures (PKI). It has been extensively used in
existing Grid infrastructures, including the very large scale
EGEE European Grid ! and OSG US Grid °.

GSI provides fundamental security functionality such as user
authentication and data transfer encryption. The authen-
tication functionality is used to control the access to re-
sources. The minimal requirement to access resources in a
GSI-enabled Grid is to own a valid user certificate that has
been delivered by a recognized Certification Authority (CA).
Therefore, Grid access is controlled within a high level orga-
nization, a CA being typically operated at the national level.
VO Management Servers (VOMS) have been introduced in
order to provide a smaller scale, per-VO, access control man-
agement. FEach VO server is managed independently by a
local VO administrator.

These techniques, proposed in current Grid environments,
feature several limitations. Relying on a global PKI plus a
mix of global and local access control policies to make an
authorization, they have major drawbacks in terms of scala-
bility with respect to the number of participating domains.
In particular, the burden required to reconfigure the shared
environment (e.g. the addition or removal of a resource, a
user, or an organization) is relatively high compared to the
promises of dynamic resource sharing envisioned. And al-
though it might be legitimate to require user authentication
at a local site, authentication at the shared resource is not
required per se to make an authorization decision. Moreover
the security mechanisms proposed in current Grid environ-
ments fail to fulfill the possibly short-lived requirements of
some applications. The deployment and management of se-
cure communication channels between very dynamic coali-
tions of nodes should be tackled by the communicating end-
points themselves because they have a better view of what
the user and the application communication needs are. In-
stead of that, they are managed in a centralized way by the
GSI and their trusted third parties.

In some contexts, as medical area, delegation to an external,
centralized entity such as a CA or a VO, is not acceptable.
In addition, current production grid infrastructures provide
little isolation between users, especially users from a same
VO, while much finer grain protection of data and compu-
tations is needed. The following sections will describe an
alternative approach to overcome these limitations. They
address (i) resources confinement, as provided by virtualiza-
tion techniques, and (ii) an agile access control infrastruc-
ture, as provided by SPKI.

3. THE HIPERNET FRAMEWORK

3.1 The VPXI concept
We define the Virtual Private eXecution Infrastructure (VPXI)
concept as the aggregation of virtual computing resources
interconnected by a virtual private overlay network. Ideally,

"http://www.eu-egee.org
Zhttp://www.opensciencegrid.org



re% oot

HIPerNET engine: select, allocate, schedule virtual resources

T

7

Figure 1: Global infrastructure (HIPerSpace)

any user of a VPXI has the illusion that he is using his own
system, while in reality he is using multiple systems, part of
the global system. The resulting virtual instances are kept
isolated from each others. The members of a VPXI have a
consistent view of a single private TCP /IP overlay, indepen-
dently from the underlying physical topology. A VPXI can
span multiple networks belongings to disparate administra-
tive domains. A user can join from any location, and use
the same TCP/IP applications he was using on the Internet
or its intranet.

A VPXI can be formally represented as a graph in which a
vertex is in charge of active data processing functions and an
edge in charge of moving the data between vertices. Its spec-
ification comprises the recursive description of: a) individual
end resources or resource aggregates (clusters) involved, b)
performance attributes for each resource element (capacity),
¢) security attributes for each resource element (access con-
trol, confidentiality level), d) commercial attributes for each
resource element (maximum cost), e) temporal attributes
for each resource element (time window for provisioning),
) elementary functions, which can be attributed to a sin-
gle resource or a cluster, for example: request of computing
nodes, storage nodes, visualization nodes, or routing nodes,
g) specific service provided by the resource (data mining ap-
plication, data compression software), h) the virtual network
topology, including the performance characteristics (typi-
cally bandwidth and latency), the security, commercial and
temporal attributes of the virtual channels.

To support the specifications of these VPXI, the VXDL lan-
guage [12] has been studied and developed.

3.2 HIPerNet design principles

The HIPerNET engine is a key component in our proposal®.
Its goal is to provide a framework to build and manage
VPXIs which are private, dynamic, predictable and large-
scale computing environments, that high-end challenging
applications can use with traditional APIs: standard POSIX
calls, sockets and Message Passing (MPI, OpenMP) commu-
nication libraries. A user preempt and interconnect virtu-
ally, for a given time-window, a pool of virtual resources
from a hardware distributed infrastructure in order to ex-
ecute his application. The originality of HIPerNet is to
combine system and networking virtualization technologies
with crypto-based-security, bandwidth sharing and advance
reservation mechanisms. To make hosts allocation flexible,
the OS-virtualization permits multiple virtual nodes to co-

3The HIPerNET software is under development within the
HIPCAL project *

habit on the same physical host. The network is virtualized
as well in order to permit multiple virtual overlay networks
to cohabit on a shared communication infrastructure. An
overlay network has an ideal vantage point to monitor and
control the underlying physical network and the applications
running on the VMs. All networks overlays and nodes are
kept isolated both at the network and OS level to ensure
security, performance-control and adaptability. To achieve
this, HIPerNet leverages on network (and sub-transport)
layer security (IPsec at layer 3, and HIP at layer 3.5), self-
certifying naming (i.e. CBID/HIT) and SPKI delegation
certificates to implement the security functionalities.

The HIPerNet substrate is transparent to all types of upper
layers: upper layer protocols (e.g. TCP, UDP), APIs (e.g.
sockets), middleware (e.g. Globus, Diet), applications, ser-
vices and users. Hence, the HIPerNet model maintains back-
ward compatibility with existing APIs, Middlewares and
Applications which were designed for UNIX and TCP/IP
APIs. Therefore, users do not need to learn new tools, devel-
opers do not need to port applications, legacy user authen-
tication can still be used to enroll a user into a VPXI, and
a middleware laid on the HIPerNet secure communication
paradigm can securely provide the remaining services con-
stituting the computing environment: Secure Storage and
Secure Computation.

3.3 Resource management in HIPerNet

The HIPerNet framework aims at partitioning a distributed
physical infrastructure (computers, disks, networks) into ded-
icated virtual private computing environment dynamically
composed. When a new machine joins the physical resource
set, HIPerNet prepares its operating system to enable sev-
eral virtual machines (VMs) to be instantiated dynamically
when required. This set of potential virtual machines is
called an HIPerSpace and it is represented in the HIPerSpace
Database. The HIPerSpace is the only entity that can see
the physical entities.

A resource, volunteer to join the resource pool, is automati-
cally initiated and registered in the HIPerSpace database.
The discovery of all the devices of the physical node is
also automatic. An image of the specific HIPerNet oper-
ating system is deployed on it. In our current HIPerNet
implementation, the operating system image contains basi-
cally the Xen Hypervisor and its domain of administration
called domain 0 (Dom 0). The HIPerSpace registrar (Op-
erational HIPerVisor) collects and stores persistently data
and manages accounts (e.g., the authentication database).
It is therefore hosted by a physical machine outside of the
HIPerSpace itself. For the sake of robustness and scalability,
HIPerSpace registrar can be replicated or even distributed
(section 4.2.2).

4. SECURITY MODEL AND TOOLS

In this section we detail our access control policies and vir-
tual resource and channel privatization approach.

4.1 Towards a private, authorization centric

approach
HIPerNet security model is based on the Simple Public Key
Infrastructure (SPKI) [5][6] which follows a lighter approach



to authentication and authorization than Virtual Organiza-
tions. An SPKI certificate carries an authorization granted
to a certain entity and includes five attributes: 1) the public
key of the sender (also called issuer), who grants the autho-
rization; 2) the public key of the receiver (also called sub-
ject), who benefits from the authorization; 3) the description
of this authorization (formulated according to a formalism
called S-expression); 4) the optional delegation capabilities
granted to the subject, i.e., whether or not, and under which
conditions, he can delegate this authorization to other enti-
ties; 5) and a validity period for this authorization.

The certificate is then digitally signed by the sender, us-
ing its private key. Upon receiving the certificate, the re-
ceiver verifies the signature, using the sender’s public key
available in the certificate, in order to check the message
integrity and authenticate the sender. This method is safe
because the public key is the one and only identifier that
fully identifies the entity (in this case the sender). Unlike
the traditional PKI model, there is no indirection through
a high level name, to which a public key is attached, and
which is associated to a list of authorizations: the SPKI
certificate itself carries a signed authorization associated to
the resource identified by its public key and granted to a
receiver, also identified by its public key.

This authorization transfer and delegation mechanism is
used throughout HIPerNet as an efficient and scalable way to
enforce security policies between the various entities: users,
resources (virtual and physical) and HIPerNet Registrar(s).
For instance, once a physical resource is registered, each
virtual resource generates a {public key; private key} pair.
Then it issues an SPKI certificate to the HIPerNet Registrar
to grant this latter the right to access and use this virtual
resource, and more importantly, the right to delegate this
authorization to users. A virtual resource can limit this
right to certain users (e.g., those who belong to a certain
community). These rules, if any, are described in the SPKI
certificate itself.

Then a user asks for the creation of a VPXI, composed of a
certain number of virtual resources, specifying certain crite-
ria that the resource will have to satisfy (e.g., the resource
must be provided by a certain trusted community). The
HIPerNet engine selects the virtual resources (after match-
ing the criteria provided both by the user and the resources)
and sends an SPKI authorization certificate for each re-
source. The user can then contact directly each virtual re-
source and provide it the SPKI authorization certificate he
received. Once the resource has checked this SPKI certifi-
cate, the access is granted for the specified period. Before
the validity period expires, the whole process must be re-
issued. A few detailed examples are provided in section 4.2.

Of course an additional mechanism is needed to prevent ma-
licious users or resources to join the HIPerNet system, since
SPKI only solves the problems of identity and authorization
management. This is made possible by means of a tradi-
tional registration step, in which the identity of the regis-
tered users and physical resources is collected, and in which
the end users have to accept a “good use” agreement form.

4.2 Examples of SPKI certificates exchanges

Let us illustrate these mechanisms with three scenarios, rep-
resentative of the target applications.

4.2.1 Basic scenario

Resource

T
<H, PU,A &, V>

@

N

Figure 2: SPKI certificate flow in an VPXI.

Figure 2 illustrates the authorization certificates flow be-
tween the three main entities: the virtual resource, the
HIPerNet Registrar, and the user. The <R, H, A, *, V>
certificate is issued by the virtual resource (identified by
its public key R), addressed to the Registrar (identified by
its public key H), with certain authorizations (expressed as
an S-expression whose semantics has been specified sepa-
rately”), with a delegation capability to anybody (hence the
*), for a certain validity period (V).

This SPKI certificate is kept by the HIPerNet Registrar,
along with the similar certificates from other resources.

When a user asks for a VPXI creation, the Registrar first
checks the rights associated to this user, selects the set of
virtual resources that will constitute the VPXI, and sends
to this user the associated SPKI certificates (Figure 2, step
2). The user therefore receives one or more certificates of
the form: <H, U, A, empty, V>, that grant the access to
the resource. However, this user does not have the right to
delegate this authorization to anybody else, hence the empty
delegation field. Note that providing the public key of the
resource (its identifier) is sufficient to localize this resource
thanks to HIP (see section 4.3).

Finally, the user contacts the resource, providing the certifi-
cate it received, in order to initiate the connection (Figure 2,
step 2). The virtual resource checks the digital signature of
the certificate, signed by the Registrar. The virtual resource
also checks the certificate, making sure it corresponds to an
authorization it has granted to the Registrar (we assume
that this resource has kept a copy of the certificates it has
generated to the HIPerNet Registrar). Once everything is
okay, the secure connection is set up. In simple situations,
it can mean storing the public key of the user locally, in
order to initiate an SSH connection between the user and
the virtual resource. In other situations, it can also mean
creating the security association required to set up an IPsec
link in mode transport.

®In simple use-cases where the authorization consists in an
access to the resource, this field can contain the resource
identifier and the nature of the authorization can be im-
plicit. In more complex use-cases, the rules will be specified
separately.



Authorizations are by nature valid for a limited period (in-
finite periods are not recommended). Therefore new SPKI
certificates must be issued periodically by the resource be-
fore the expiration of the previous ones and then be propa-
gated throughout the VPXI. The fact that an authorization
is valid only for a limited period is a key feature. Associated
to an enforcement mechanism (e.g, to shut an existing SSH
connection when the resource realizes that the user’s SPKI
certificate has expired), this is a simple and natural way of
managing authorizations.

Of course SPKI certificates can get lost (e.g., if UDP is used
as the transport mechanism, or because a component like the
HIPerNet Registrar temporarily fails). The validity period
(V) and the SPKI certificate renewal frequency should be
specified in such a way to make HIPerNet robust in front of
SPKI certificate losses.

4.2.2 Managing several HIPerNet Registrars for im-

proved scalability and robustness

Several extensions to the basic scenario are feasible. For
instance, for the sake of scalability and robustness, several
HIPerNet Registrars can be used. Physical/virtual resources
register to one of them, indifferently. Then a secure synchro-
nization mechanism between the Registrars enables them to
be informed of the available virtual resources and their asso-
ciated policies (e.g., by propagating the {SPKI certificates,
Registrar} tuples).

When a VPXI is created, the Registrar R1 selects the needed
resources. When R1 is not the Registrar that the resource
contacted (let call this Registrar R2), he asks R2 the possi-
bility to use this resource. If the resource is available, R2
generates a new certificate to R1 that enables it to delegate
the resource to the user and marks the virtual resource as
used.

4.2.3 Managing several users per VPXI

Resource

—
<PU, SU,A, @, V>

—
<H, PU, A, SU, V>

T
<PU, SU,A, @, V>
<H,PU, A, SU, V>

Figure 3: SPKI authorization certificate flow when
a secondary user joins an existing VPXI.

®

—
<H, PU, A, SU, V>

Another common extension consists in having several users
per VPXI. Let us call U1 the primary user that asked for the
creation of the VPXI, and U2 the additional user. Once the
VPXI is created, U2 contacts Ul for an access to the VPXI.
This later has the possibility to deny this access (e.g., be-
cause of incompatible confidentiality requirements). If ev-
erything is okay, Ul propagates the access request to the
HIPerNet Registrar, who can also deny the access (e.g., be-
cause U2 is not a registered HIPerNet user). If everything

is okay, for each virtual resource, the Registrar generates
a new SPKI authorization certificate to Ul with delegation
capabilities to U2. Ul can then forward this SPKI certificate
to U2 along with a new certificate signed by itself to U2, but
this time without any delegation capability. This is needed
since U2 must be able to prove to the virtual resource that
an access has been (indirectly) granted to him by the Regis-
trar (which is what the first SPKI certificate says) and that
he also received directly from U1 this authorization (which
is what the second SPKI certificate says). U2 then forwards
the two certificates to the virtual resource.

4.3 Associating public keys to entities with HIP
In this section, we explain how the HIP protocol automati-
cally associates public keys to entities.

Traditionally, the IP address plays two independent roles:
it is both a locator and an identifier. Network Layer Pro-
tocols (NLPs, e.g. IPv4, IPv6) use the locator role to route
packets, while the Upper Layer Protocols (ULPs, e.g., TCP,
UDP) use the identifier role. Because of this deliberate con-
fusion, ULPs depend on location and fail when mobility and
multi-homing cause a modification of the IP address.

The Host Identity Protocol (HIP) [14] decouples these two
roles while maintaining a binding between an identifier and
a set of associated locators. This is a virtualization of the
network infrastructure from an upper layer or application
standpoint. The identifier namespace defined by HIP is
composed of the public key of the host (in our context,
an HIPerNet entity, typically a VM) and is called a Host
Identity (HI). For convenience, HIP also defines the Host
Identity Tag (HIT), a 128 bits long truncated hash of the
HI. Thanks to HIP, an application can now use directly the
HIT instead of an IPv6 address. The HIP layer is then in
charge of mapping the HI/HIT into the appropriate IP ad-
dress during communications, transparently.

We see that there is a perfect match between HIP and SPKI.
The entity’s public key is the one and only meaningful iden-
tifier at the HIPerNet level (which does not prevent to use
higher level names during interactions with humans). These
keys are carried during SPKI exchanges and each entity in-
volved in a given VPXI can collect the public keys of the
other entities. Finally, the translation to/from the network
level locator (i.e., the IP address) is performed by the HIP
layer, just on time, when sending or receiving IP datagrams.

4.4 Set-up of secure channels between entities
To provide secure communications, HIPerNet relies on IPsec,
TLS/SSL or SSH. For instance, with IPsec, an encrypted
link (in ESP mode) provides a secure point-to-point link
while packets are actually traveling through a multi-hop,
insecure path. In that case, the local HIPerNet system, de-
pending on the authorizations gathered by SPKI, interacts
with the IPsec layer in order to authorize or deny the estab-
lishment of an IPsec connection. The principles are similar
with TLS/SSL.

In the particular case of SSH, the authorization enforcement
mechanism is even simpler since an entity (e.g., a virtual
resource of a VPXI) can simply store the public key of the
remote entity who asks for a secure access (e.g., a user). The



availability of this public key is sufficient for the remote en-
tity to connect. When the authorization expires, the entity
removes the public key, thereby denying any further con-
nection by the remote entity, and in case an SSH connection
is currently up and active, this connection is closed by the
HIPerNet system running on the entity.

5. EXPERIMENTS IN GRID’5000
5.1 HIPerNet software

To evaluate the combination of system and network virtual-
ization with our security approach based on SPKI and HIP,
we are developing and experimenting the HIPerNet software
within the Grid’5000 testbed[1]. Grid’5000 enables user to
request, reconfigure and access physical machines belonging
to 9 sites distributed in France. In our experiment, we re-
serve several Grid’5000 nodes to compose a pool of physical
resources that we initialize to form an HIPerSpace. To in-
stantiate an HIPerSpace, specific tools provided by the host-
ing Grid are used. This is the only part aware of the physical
infrastructure of the HIPerNet Software. All the other parts
are independent of the physical resources because they use
them indirectly through the services provided by HIPerNet.
In Grid’5000, the HIPerSpace appears like a set of ordinary
jobs scheduled by OAR [3] with the use of a specific operat-
ing system image deployed by kadeploy °.

5.2 HIP layer evaluation

Currently, several implementations of HIP are available but
do not implement the same version of the draft describing
the HIP protocol and then do not always interoperate. We
evaluated the three following implementations: OpenHIP 7,
HIP for Linux (HIPL) ® and HIP for FreeBSD °.

OpenHIP (figure 4) consists of a user-space HIP daemon
(hipd) that implements the control plane protocol. Open-
HIP can be entirely in user-space or in user-space with ker-
nel support. The user-space version does all ESP encryp-
tion of data packets in user-space, while the Linux kernel
version uses patches to IPsec tools and a kernel patch to ex-
tend/reuse the Linux ESP implementation. As represented
in the figure, in our architecture, the data submitted to
the IP layer are rerouted to a virtual driver (TAP driver)
and redirected to the HIP/SPKI layer which operate the
HIT /TPaddress mapping and the SPKI validity check.

Host Identity Protocol for Linux (HIPL) enables to encrypt
and protect all Internet connections similar to TLS, but
does not require changes in applications and works also with
UDP. HIPL also provides public key based access control, di-
rect end-to-end connectivity and strong end-to-end authen-
tication.

With OpenHIP, applications use the same IP addresses in
their sockets. With HIPL, applications use HIT (section 4.3).

To implement the HIPerNet software and test it within Grid’5000,

we chose the OpenHIP stack which is available for IPv4 as
well as IPv6. We did a simple evaluation to measure IPsec

Shttp://kadeploy.imag.fr
"http://www.openhip.org
Shttp://infrahip.hiit.fi
“http://hip4inter.net

HIP service

ipd | gpK]

user space E jPF_INET E jPF_RAW gj PF_INET
kernel space

y4

TCP/IP ]/ TAP

”””””””””””””” driver

Figure 4: Our architecture based on OpenHIP with
Linux kernel support.

overhead. Our experiment has been made over a 100Mbps
Ethernet link connecting two PC back-to-back. We used
the iperf tool to measure the achieved mean throughput of
a TCP connection. The raw performance obtained with the
standard IP stack were about 94.3 Mbps. Over IPsec we
obtained a mean throughput of about 33 Mbps. The first
run was even worse (due to the Security Association estab-
lishment) since we only reached 27 Mbps. This overhead
is obviously due to encryption operations (AES in this ex-
periment) and is of course very dependent of the processing
power of the end nodes.

5.3 Medical imaging application deployment

on the testbed

The HIPerNet engine was tested through a complex, real-
scale medical image analysis application known as bronze
standard. This section reports on its porting for execution
in a private VPXI infrastructure. The bronze standard [10]
technique tackles the difficult problem of validating of med-
ical image analysis procedures.

The bronze standard workflow is enacted with the data-
intensive grid-interfaced MOTEUR workflow manager [9]
designed to optimize the execution of data-parallel flows.
It submits the workflow tasks to the VPXI infrastructure
through the DIET middleware, a scalable grid scheduler

based on a hierarchy of agents communicating through CORBA.

The algorithm performance estimated is valid for a typical
image database sample. In the experiments reported be-
low, we use a clinical database of 32 patient image pairs
to be registered by the different algorithms involved in the
workflow. For each run, the processing of the complete im-
age database results in the generation of approximately 200
computing tasks (30 seconds to 5 minutes computation time
each on a state of the art PC). The data volume transferred
for each task is in the order of 30MB. The makespan of the
application parallel execution is in the order of 20 minutes.

For testing VPXIs, a system image containing the operat-
ing system based on a standard Linux distribution Debian
Etch with a kernel version 2.6.18-8 for AM D6/, the domain-
specific registration services and the middleware components
(MOTEUR and DIET) was created. The application runs
are performed on a testbed composed of 35 nodes: one node
is dedicated to the DIET master agent, the execution traces
collector and CORBA services; a second node is reserved
for the MOTEUR workflow manager; a third node is the file


http://www.openhip.org
http://infrahip.hiit.fi
http://hip4inter.net

server containing the input image database and storing the
computation results; and 32 virtual nodes are running the
application services. The VPXI infrastructure is reserved in
the HIPerNet hosted on the capricorne Grid’5000 cluster, in
Lyon, France. Each node runs in a virtual OS instance on
one of the 2.0 GHz Opteron CPUs dual-cores: each virtual
node runs on a dedicated core with 512 MB of memory.

Three experiments were performed: (i) sequential runs (base-
line), (ii) parallel runs on the physical grid and (iii) par-
allel runs on the VPXI. In each experiment, we repeated
the application 10 times to measure the average and stan-
dard deviation of the application makespan, the data trans-
fer and task execution time. In the base-line experiment,
the application makespan obtained is 3h 49min 17s (£13s)
on a physical resource and 3h 5lmin 9s (£67s) on a vir-
tualized one. The average execution time overhead of the
tasks is low: +2.1% (46.76% in the worst case and usu-
ally less than 4+2%). In the parallel runs, the application
makespan is 14min 31s (+£2min) on the physical grid and
17min 37s (+2min) on the VPXI. This corresponds to a
+21.3% makespan increase, that is due to +2.1% tasks av-
erage execution time overhead and +91.3% average data
transfer overhead (+168% in the worst case and +7.9% in
the best case). The impact on the makespan is partly com-
pensated for by parallel execution and data transfers.

The following metrics are useful to assess the experimental
results:

Portability: the application porting from the physical to
the virtual infrastructure was almost transparent. Apart
from minor user environment configuration issues (use of of
64 bits libraries on the VPXI 64 bits OS), the application
was successfully executed on the virtualized infrastructure
without need for any adaptation thanks to the transparency
of the VPXI network and OS virtualization.

Security: the application running on the virtual infrastruc-
ture is fully confined. Data is neither exposed to outsiders
during storage on disk nor network transfer. In the future,
the SPKI file access control mechanism will enable for more
elaborate control on the resources utilization.
Performance: the virtualized environment is highly se-
cured but it comes at the cost of execution and the transfer
overheads. The execution time is not impaired by a fac-
tor higher than +6.76%. Disk to disk data transfers are
more critical and may experience an overhead of +168%.
This overhead does not increase much with the distance.
These delays are however compensated by parallel execu-
tion. Overall, the application makespan measurement shows
that the VPXI overhead does not exceed a 21.3% loss in the
worst case.

6. RELATED WORKS

In this section, we briefly describe the security approach of
some projects that explore a virtual infrastructure compo-
sition on distributed resources.

In [2], the authors propose VINI, a virtual network infras-
tructure that allows several virtual networks to share a sin-
gle physical infrastructure in a similar way to HIPerNet.
Researchers can run experiences in isolated virtual network
slices with real routing software they can personalize. HIPer-
Net pushes this facility a step further by allowing the user to

deploy a personalized operating system on his virtual nodes
running each one its own kernel inside Xen virtual machines.
This provides also a full isolation between virtual nodes and
a controlled resource sharing. VINI has dedicated IP ad-
dress blocks, while HIPerNet interposes a HIP-layer between
the network and the application level that provides each re-
source with a unique identifier (HIT).

VioCluster [10] logically gather machines between virtual
domains, allowing a cluster to dynamically grow and shrink
based on resource demand. Network virtualization in Vio-
Cluster is made by an hybrid version of VIOLIN [11] which
gives to a machine the ability to connect to the private net-
work through a distributed virtual switch (in user space)
which forward the network traffic to corresponding processes
on other nodes of the virtual domains. VNET, a virtual pri-
vate network that implements a virtual local area network
spread over a wide area using layer 2 tunneling, was ex-
tended in Virtuoso middleware [17]. These extension im-
proves VNET to act as an adaptive overlay network for
virtual machines that can be optionally encrypted using
SSL. The session establishment among VNET servers and
clients is performed using a text-based protocol. The clients
presents a password or an SSL certificate.

PVC [15] explores the combination of various Grid, P2P and
VPN approaches in the creation of instant grids. This dis-
tributed system is composed by a daemon process (peer) and
a brokering service, which helps in the connections establish-
ment. The security policies are implemented in two levels:
intra and inter-domain. Each host connected to PVC has
a private/public keys pair, and knows the public key of its
master, before connecting to PVC infrastructure. Only the
master peer registers participants on the brokering service.
To start connection both peers obtain the other public key
from the brokering service and decode the message with the
master public key. The peers authentication is performed
using the classical security challenge-response.

XtreemOS [13] is proposing new services that should be
added to current operating systems to build Grid infras-
tructure in a simple way. For security XtreemOS imple-
ments a VO manager which grants a set of short-lived VO
credentials (XOS-Cred) to users applications. Each creden-
tial is composed by a private and a public part: the first
one is a private keys and the second one includes VO iden-
tity, VO attributes and public keys. The system assumes
that resource nodes trust the VO manager through a pre-
installation of manager’s root CA certificate in all nodes.
None of these approaches rely as HIPernet on SPKI autho-
rization certificates to manage authorizations, improving the
delegation and multi-users authentication. Decoupling iden-
tifier /locator roles as does HIP is a hot topic as it provides
many advantages. Alternatives to HIP like AIP (Account-
able Internet Protocol) [1] have recently been proposed. AIP
is a pure layer 3 protocol replacing current IPv4 and IPv6
addressing models. AIP targets Future Internet design and
does not envision an incremental deployment in the current
Internet. While HIP adopts the same philosophy for IP ad-
dress role it is less ambitious. It is a layer 3,5 protocol and
can be deployed without the change of all Internet routers.
Another advantage of HIP is that it can currently be used
with standards programming interfaces (e.g Socket). There



is no AIP implementation available yet. Another recent al-
ternative, called LISP (Locator/Identifier Separation Proto-
col) [7] proposes to insert a new IP layer below the current
IP layer. This additional layer is used to map and encapsu-
late packets. This operation, applied by the border router
is called map-n-encap. HIP required a mapping operation
too, however this mapping is performed by the end nodes
which is more realistic. AIP and LISP can not directly ad-
dress the problems raised by the convergence of computing
and communication and resource virtualization as HIP does
when combined with SPKI.

7. CONCLUSIONS

This paper proposes the “Virtual Private eXecution Infras-
tructure” (VPXI) paradigm to transform the Internet into
a huge shared computing and communication facility for
many purposes, including sensitive applications. This pa-
per examines in particular data and processing security re-
quirements of sensitive applications and describes a solution
to implement agile resource access control policies that can
adapt to real-life application needs. This work proposes a
substrate, named HIPerNet, to create and manage confined
Virtual Private eXecution Infrastructures in a large scale
distributed environment. The HIPerNet security model is
based on the combination of network and system virtual-
ization with the cryptographic identification of (virtual) re-
sources. We have highlighted how SPKI defines a flexible
private authorization management layer for these resources
(section 4.1). We also presented another key component of
our proposal which is the mapping layer, the Host Identity
Protocol (HIP). HIP which decouples the locator/identifier
roles of addresses (section 4.3) and handles the automatic
translation of the cryptographic identifiers to IP addresses.
We have then discuss implementation issues and experimen-
tations in Grid’5000. Finally we have illustrated how HIPer-
Net addresses the challenging security requirements of the
biomedical community. In future work we plan to investi-
gate and integrate, trust-aware resource management solu-
tions within the HIPerNet tool and a trust level constrain
in VPXI specification to customize the security cost.

8. REFERENCES
[1] David G. Andersen, Hari Balakrishnan, Nick
Feamster, Teemu Koponenand Daekyeong Moon, and
Scott Shenker. Accountable Internet Protocol (AIP).
In ACM SIGCOMM, August 2008.

[2] Andy Bavier, Nick Feamster, Mark Huang, Larry
Peterson, and Jennifer Rexford. In VINI Veritas:
Realistic and Controlled Network Experimentation.
ACM SIGCOMM Computer Communication Review
(CCR), 36(4):3-14, 2006.

[3] Nicolas Capit, Georges Da Costa, Yiannis Georgiou,
Guillaume Huard, Cyrille Martin, Gregory Mounie,
Pierre Neyron, and Olivier Richard. A batch scheduler
with high level components. In Cluster Computing and
Grid 2005 (CCGrid05), 2005.

[4] Franck Cappello, Frederic Desprez, Michel Dayde,
Emmanuel Jeannot, Yvon Jegou, Stephane Lanteri,
Nouredine Melab, Raymond Namyst, Pascale
Vicat-Blanc Primet, Olivier Richard, Eddy Caron,
Julien Leduc, and Guillaume Mornet. Grid5000: a

(13]

nation wide experimental grid testbed. Int. Journal on
High Performance Computing Applications, 2006.

C. Ellison. SPKI Requirements, September 1999.
IETF Request for Comments, RFC 2692.

C. Ellison, B. Frantz, B. Lampson, R. Rivest,
B. Thomas, and T. Ylonen. SPKI Certificate Theory,
Sept. 1999. IETF Request for Comments, RFC 2693.

D Farinacci. Locator/ID Separation Protocol (LISP).
Internet Engineering Task Force (IETF),
draft-farinacci-lisp (work in progress), October 2008.

I. Foster, C. Kesselman, G. Tsudik, and S. Tuecke. A

Security Architecture for Computational Grids. In 5th
ACM Conference on Computer and Communications

Security (CCS), 1998.

T. Glatard, J. Montagnat, D. Lingrand, and

X. Pennec. Flexible and efficient workflow
deployement of data-intensive applications on grids
with MOTEUR. Int. Journal of High Performance
Computing and Applications (IJHPCA),
22(3):347-360, August 2008.

T. Glatard, X. Pennec, and J. Montagnat.
Performance evaluation of grid-enabled registration
algorithms using bronze-standards. In Medical Image

Computing and Computer-Assisted Intervention
(MICCAI’06), October 2006.

X. Jiang and D. Xu. VIOLIN: Virtual Internetworking
on Overlay Infrastructure. In ISPA, pages 937-946,
2004.

G. P. Koslovski, P. Vicat-Blanc Primet, and A. S.
Charao. VXDL: Virtual Resources and
Interconnection Networks Description Language. In
2nd Int. Conference on Networks for Grid
Applications (GridNets’08), Oct. 2008.

Christine Morin. Xtreemos: A grid operating system
making your computer ready for participating in
virtual organizations. In 10th IEEE Int. Symposium
on Object and Component-Oriented Real-Time
Distributed Computing (ISORC’07), 2007.

R Moskowitz and P Nikander. Host Identity Protocol
(HIP) Architecture. IETF Request for Comments,
RFC 4423, May 2006.

Ala Rezmerita, Tangui Morlier, Vincent Néri, and
Franck Cappello. Private virtual cluster:
Infrastructure and protocol for instant grids. In
Euro-Par 2006, Parallel Processing, 12th International
Euro-Par Conference, volume 4128 of Lecture Notes in
Computer Science, pages 393—404, Dresden, Germany,
August 2006. Springer.

P. Ruth, P. McGachey, and Dongyan Xu. Viocluster:
Virtualization for dynamic computational domains.
Cluster Computing, 2005. IEEE International, pages
1-10, Sept. 2005.

A. Sundararaj and P. Dinda. Towards Virtual
Networks for Virtual Machine Grid Computing. In
Proceedings of the third USENIX Virtual Machine
Research and Technology Symposium (VM 04), May
2004.



	Introduction
	Security requirements
	Medical data analysis security requirements
	Limit of classical Grid security approach

	The HIPerNet framework
	The VPXI concept
	HIPerNet design principles
	Resource management in HIPerNet

	Security model and tools
	Towards a private, authorization centric approach
	Examples of SPKI certificates exchanges
	Basic scenario
	Managing several HIPerNet Registrars for improved scalability and robustness
	Managing several users per VPXI

	Associating public keys to entities with HIP
	Set-up of secure channels between entities

	Experiments in Grid'5000
	HIPerNet software
	HIP layer evaluation
	Medical imaging application deployment on the testbed

	Related works
	Conclusions
	References 

