Overdetermined systems of sparse polynomial equations

Francesco Amoroso 1 Louis Leroux 1 Martin Sombra 2
2 ICREA \& Universitat de Barcelona
ICREA - Institució Catalana de Recerca i Estudis Avançats [Barcelona]
Abstract : We show that, for a system of univariate polynomials given in the sparse encoding, we can compute a single polynomial defining the same zero set, in time quasi-linear in the logarithm of the degree. In particular, it is possible to determine if such a system of polynomials does have a zero in time quasi-linear in the logarithm of the degree. The underlying algorithm relies on a result of Bombieri and Zannier on multiplicatively dependent points in subvarieties of an algebraic torus. We also present the following conditional partial extension to the higher dimensional setting. Assume that the effective Zilber conjecture holds true. Then, for a system of multivariate polynomials given in the sparse encoding, we can compute a finite collection of complete intersections outside a hypersurface that defines the same zero set, in time quasi-linear in the logarithm of the degree.
Type de document :
Article dans une revue
Foundations of Computational Mathematics, Springer Verlag, 2014, 15 (1), pp.53-87
Liste complète des métadonnées

Littérature citée [14 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00677676
Contributeur : Francesco Amoroso <>
Soumis le : jeudi 18 février 2016 - 07:53:02
Dernière modification le : vendredi 26 janvier 2018 - 16:22:01

Fichier

SparsePolys_2014-02-14.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00677676, version 4

Collections

Citation

Francesco Amoroso, Louis Leroux, Martin Sombra. Overdetermined systems of sparse polynomial equations. Foundations of Computational Mathematics, Springer Verlag, 2014, 15 (1), pp.53-87. 〈hal-00677676v4〉

Partager

Métriques

Consultations de la notice

80

Téléchargements de fichiers

36