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By examining the rupture of fluid necks during droplet formation of surfactant-laden
liquids, we observe deviations from expected behaviour for the pinch-off of such
necks. We suggest that these deviations are due to the presence of a dynamic (time-
varying) interfacial tension at the minimum neck location and extract this quantity
from our measurements on a variety of systems. The presence of such dynamic
interfacial tension effects should change the rupture process drastically. However, our
measurements show that a simple ansatz, which incorporates the temporal change of
the interfacial tension, allows us to understand the dynamics of thinning. This shows
that this dynamics is largely independent of the exact details of what happens far from
the breakup location, pointing to the local nature of the thinning dynamics.

Keywords: breakup/coalescence, liquid bridges

1. Introduction
Droplet formation is needed for a variety of processes such as the formation

of emulsions, inkjet printing, as well as microfluidic applications. In many of
these instances, surface-active material is present. When drop formation from
such surfactant-laden solutions is considered, the detailed dynamics of the rupture
process leading to drop formation and eventually to satellite drops will be affected
by the properties of the surface (Eggers 1997; Eggers & Villermaux 2008).
Several studies have focused on drop formation in the presence of insoluble
surfactants (Ambravaneswaran & Basaran 1999; Craster, Matar & Papageorgiou 2002;
Timmermans & Lister 2002; Liao, Franses & Basaran 2006; McGough & Basaran
2006; Xu, Liao & Basaran 2007). Fewer studies have been devoted to soluble
surfactants (Jin, Gupta & Stebe 2006; Craster, Matar & Papageorgiou 2009). In both
cases, the surfactant surface concentration in the neck region may change significantly
during the rupture process, engendering Marangoni stresses that affect the size of the
satellite drops (Craster et al. 2009) and the shape of the neck connecting the drop
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to the fluid reservoir (Liao et al. 2004; Jin et al. 2006). Theoretical work on drop
formation with insoluble surfactants suggests that the ultimate stages of the thinning
of the fluid neck just before breakup may be accompanied by a total depletion of
the surfactants from the rupture zone leaving the surface bare, i.e. without surfactant
(Timmermans & Lister 2002). That the surfactant is depleted significantly from the
rupture zone, engendering large gradients of the surface concentration of the surfactant
has been confirmed by numerical work for both soluble (Craster et al. 2009) and
insoluble surfactants (Craster et al. 2002; Xu et al. 2007). The thinning of the neck
engenders large stretching rates of the surface area so that surfactants have no time to
either diffuse over the interface or to arrive from the bulk to saturate the interface in
the thinning region. It is in this respect that soluble and insoluble surfactants differ: in
the former both surface diffusion and replenishment of the surface by surfactants from
the bulk are allowed, with a non-trivial relation between bulk surfactant concentration
and surface tension; while in the latter surfactant redistribution occurs only through
diffusion along the surface. In practice, experiments using insoluble surfactants are
difficult to carry out but recent experimental work using soluble surfactants showed
that the thinning dynamics is indeed affected by their presence and that the effective
interfacial tension at the neck location may increase in time as the liquid thread tends
to break up (Roché et al. 2009). This increase is directly related to the change of
surface coverage by the surfactant, in agreement with previous numerical work for
soluble surfactants (Craster et al. 2009).

Here we examine several cases of the dynamics of liquid bridge rupture going
from the fast inertial thinning regime all the way to the viscous-dominated regime to
explore the rupture process in the presence of soluble surfactants in the most complete
experimental study to date. Our results highlight the role of surface-active agents in
pinch-off dynamics in a variety of cases including a set of surfactants with different
adsorption and desorption dynamics, the case of interfaces of microemulsions where
the exchange of surfactant between the bulk fluid and the interface is different from
the case of micellar solutions, and the case of surfactant mixtures. To analyse these
measurements we make use of known solutions for the thinning of the neck of bare
interfaces (i.e. in the absence of surfactants). We then introduce a time-dependent
surface tension to account for departures from such behaviour. The rationale behind
this time-varying surface tension is the possible depletion of surfactant from the
pinch-off region as found in numerics (Craster et al. 2009). This procedure is similar
to that used for the pinch-off dynamics of a class of complex fluids for which the
viscosity depends on the deformation rate and therefore on time (Doshi et al. 2003;
Renardy & Renardy 2004; Savage et al. 2010). The conclusion from the large set of
experiments presented here is that the thinning dynamics may be understood based
solely on the local interfacial tension at the neck location, pointing to the local nature
of the thinning process. This procedure therefore does not shed light on other effects,
which are not local, such as satellite formation (Craster et al. 2009).

2. Brief overview of pinch-off dynamics in the inertial and viscous regimes
The thinning dynamics of a rupturing fluid neck during drop detachment is

governed by different quantities such as the viscosity, the density and the interfacial
tension of the interface. When viscous effects can be neglected, the dynamics of
the neck thinning is said to be in the inertial range where only interfacial tension
and density play a role. The radius of the neck then follows the well-known law:
R(t) = 0.35 (γ /ρ)1/3 (tc − t)2/3 (Eggers 1997; Eggers & Villermaux 2008). Here γ is
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the interfacial tension, ρ is the density of the liquid, t is time and tc is the time at
which the fluid neck breaks. In the opposite limit of small inertial forces, viscous
effects are the dominant force resisting the motion, and the thinning dynamics obeys
a linear thinning law given by R(t) = C(γ /η)(tc − t), where η is the shear viscosity
of the fluid undergoing pinch-off. Note that this equation is obeyed for length scales
smaller than the so-called viscous length given by: lν = (η2/ργ ) (Eggers 1997). The
constant C takes a value of 0.07 (Papageorgiou 1995), for the case where the Reynolds
number is negligible, a regime known as visco-capillary breakup. For later stages in
the thinning process, the velocity of the fluid at the neck increases and the assumption
of negligible Reynolds number is no longer valid. A new regime then sets in, known
as visco-capillary-inertial breakup (Eggers 1993). In this case the thinning is still linear
in time, but with C = 0.03. The characterization as well as the transition between these
two regimes has been documented in Rothert, Richter & Rehberg (2001).

When, in addition, the breakup of the fluid occurs in an outer fluid of non-
negligible viscosity the pinch-off dynamics also changes. Consider a fluid of viscosity
η2 rupturing in an external fluid of viscosity η1. Breakup may enter the so-called
Stokes regime of two-fluid pinch-off when the scales of interest are of the order
(η1/η2)lν (Lister & Stone 1998). The thinning of the minimum neck radius in this
case follows the scaling law R(t) = V(tc − t) where the thinning velocity is given
by V = H(η2/η1)γ /η1. The function H(η2/η1) has been measured experimentally and
partially understood theoretically (Lister & Stone 1998; Cohen et al. 1999; Zhang &
Lister 1999; Cohen & Nagel 2001).

3. Experimental systems used
The systems studied include: (i) water containing surfactant (we study three different

types), pinching in air; (ii) water pinching in an oil phase, the latter containing a
surfactant allowing ultralow interfacial tensions; and (iii) water pinching in oil, with
both phases containing a different surfactant. The capillaries used for system (i) have
an internal diameter of 1.95 mm. The droplets were released from syringe-pump-fed
glass capillaries of 200 µm in internal diameter and 330 µm external diameter for
systems (ii) and (iii). System (iii) was also studied in a microfluidic device where
breakup was induced in a junction producing droplets or forced through the use of a
laser beam to break up a liquid jet. All surfactant solutions are sufficiently dilute that
changes of their density or viscosity or the presence of visco-elastic effects that can
profoundly alter the breakup (Amarouchene et al. 2001; Wagner et al. 2005; Savage
et al. 2010) can be neglected.

Our measurements were based on imaging the rupture process using a high-speed
camera working at rates which were adapted to the situation studied. The imaging
system uses microscope objectives of different magnifications. The resulting pictures
were analysed using an in-house program to extract the minimum neck radius versus
time for the different systems studied. High surface tensions were measured using the
drop weight technique; low interfacial tensions were measured using a spinning drop
tensiometer or the surface deformation due to the radiation pressure of a laser beam
focused at the surface (Mitani & Sakai 2002).

Figure 1 shows pictures of detaching drops for our different systems. In the
photographs of figure 1(a), and from top to bottom, different snapshots taken at
different times from the rupture point are shown for pure water, and solutions of
Heliosol, SDS, and Silwet surfactant. Note that the shape of the neck hardly changes;
however, and as we will see below, the thinning dynamics is different for each case.
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(a) (b)

(c)

FIGURE 1. (Colour online available at journals.cambridge.org/flm) (a) Water and surfactant
solutions (from top to bottom: water, Heliosol, SDS, and Silwet solutions); the images at the
left are taken 0.25 ms before rupture and the successive images are 0.05 ms apart. The line
is 300 microns. (b) Microemulsion system (the line is 100 microns); the images are at 7, 2.7,
1.4 and 0 ms before rupture. (c) Two surfactant systems and different ways to induce breakup:
dripping from a capillary (left, same scale as b with 26 ms between images) and jet breakup
in a microchannel (right, the upper and lower lines are 100 and 50 microns; the images are
13 ms apart.

Figure 1(b) shows snapshots at different instants for the microemulsion system. Note
that the final instants show the formation of a satellite drop in the neck region. The
third system is shown in figure 1(c). The left panel shows a drop falling from a
capillary while the right panel shows the rupture of a jet in a microchannel. Both
systems show the formation of a satellite drop. Our different systems allow us to
explore the rupture in the inertial and viscous regimes. In one of the systems, the
inertial and viscous regimes are obtained in a single experiment. We here focus on the
pinching dynamics for the three cases considered; the formation of satellite drops and
their properties will not be discussed.

4. Inertial case
This case is represented by the rupture of a low-viscosity fluid (pure water and

water plus surfactant). Three different surfactants at a concentration of 0.5 % by weight
were used (SDS, Silwet and Heliosol). This concentration corresponds to roughly
2 c.m.c. (critical micellar concentration) so the surface is fully covered by the surface-
active agents while the rest of the surfactant resides in the bulk in the form of
micelles and monomers. The evolution of the minimum radius of the neck is shown
in figure 2(a) along with fits to the 2/3 law using the equilibrium surface tension. The
evolution is clearly nonlinear: it follows the 2/3 law for water but shows deviations for
the surfactant solutions near breakup. Variation of the breakup time tc can make the
fit work better for the small radii in the surfactant case but at the expense of using
a higher surface tension. In order to resolve this discrepancy it is useful to represent
the data so that the sensitivity to the value of tc is removed. This is illustrated by the
following analysis. Since the neck thinning dynamics should obey the inertial-range
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prediction, R3/2(t) should be a linear function of (tc−t) with a slope (0.35)3/2 (γ /ρ)1/2 .
Note that in this representation the value of tc is the intercept at R = 0. Indeed, when
R3/2(t) is plotted versus t (figure 2b), the pure water case shows a straight line
in this representation. From the slope of the straight line in figure 2(b), we find
γ = 78 mN m−1 which is close to the expected value of 72 mN m−1 for pure water.
The case of surfactant-laden water is different. Here, the variation of R3/2(t) is linear at
first but the slope of this linear variation increases as the rupture point is approached.
If we analyse the initial dynamics (the first slope), we find interfacial tensions of
20, 34 and 35 mN m−1 for Silwet, SDS, and Heliosol surfactants respectively. These
values are roughly consistent with the equilibrium tensions measured using the drop
weight method: 25, 40 and 35 mN m−1 for these surfactants.

The final slope of the R3/2(t) curves near the rupture point is higher than the
initial slope, giving interfacial tension values of 29, 49 and 56 mN m−1 for the same
series of surfactants. Thus, near the rupture, the interfacial tension is larger than its
equilibrium value (as already shown in figure 2a where the fits work well far from
the rupture point but not close to it). The variation of the interfacial tension versus
time can be estimated from the local slope of R3/2(t) by assuming that the inertial
breakup law holds locally. In accordance with the increase in slope of figure 2(b),
the interfacial tension, inset of figure 2(b), starts near its measured equilibrium value
before increasing by roughly a factor of two as tc is approached. This holds for
the three surfactants used. The fact that the initial surface tension is close to its
equilibrium value initially and that it increases as rupture is approached is consistent
with surfactant depletion at the pinch-off location as found in numerics.

The relative increase in tension is roughly similar for the three different surfactants
despite the fact that the dynamics of these surfactants is supposed to be different from
case to case. A priori, the Silwet surfactant is supposed to have slower adsorption
dynamics than say SDS, while the Heliosol surfactant is supposed to have the fastest
dynamics (Aytouna et al. 2010). We believe that such differences may not be relevant
to the present case since in the rupture case, the surface starts covered, or at least
partially covered, then through the stretching, the surface area increases leading to a
decrease of the coverage by the surfactants. In classical dynamic interfacial tension
measurements (Christov et al. 2006) from which surfactant adsorption dynamics can
be obtained, the contrary occurs, i.e. the surface starts without surfactant and in time,
the coverage increases.

It is worthwhile noting that, in disagreement with recent theoretical predictions
(Timmermans & Lister 2002), albeit for insoluble surfactants, the final interfacial
tension is not that of pure water. In principle, it remains possible that there is an
ultimate state of breakup in which the surface is completely devoid of surfactants. Our
results show that if this happens it would occur when the radius is below our spatial
resolution, which is one micrometre. We believe that such a situation may occur
for low surfactant concentrations below the c.m.c. To test this possibility, additional
experiments at a concentration of 0.05 % were carried out. The result, displayed in
figure 2(c), shows that the interfacial tensions extracted from a similar analysis as in
figure 2(b), are roughly constant over most of the time span of the rupture. In addition,
the interfacial tension, near pinch-off (see inset of figure 2c), is roughly that of water
as indicated by the black line. The results for pure water are also included in this
figure. Within experimental error, the slopes near the rupture point indicate that the
interface is practically devoid of surfactant. The low concentrations therefore show an
important depletion of surfactant at the rupture point and that for the three surfactants
used.
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FIGURE 2. (Colour online) (a) Thinning dynamics for water and the different surfactant
solutions. The solid lines are fits using the 2/3 power law and known interfacial tension
at equilibrium. (b) Expected linear dependence of R3/2(t). Note that in the presence of
surfactants, the linear behaviour is valid at the begining and near the end with a crossover
at intermediate times. The SDS and Heliosol case were shifted by −0.175 and −0.3 ms
for visibility. Inset: extracted interfacial tension versus time. The horizontal lines represent
the measured value at equilibrium. (c) Thinning dynamics for the case of a low surfactant
concentration. The final instants before rupture (see inset) show a behaviour similar to that
of the bare interface, i.e. water. The solid lines indicate the expected thinning dynamics for
water.

5. Two-fluid pinch-off and viscous pinch-off
System (ii) is a microemulsion obtained from a water–heptane–AOT mixture at

40 mM AOT (bis-ethyl-hexyl-sulphosuccinate surfactant) and 0.055M salt in water
(Binks et al. 2000). The interface between the oil phase (which is rich in AOT) and
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FIGURE 3. Thinning dynamics in the microemulsion system where water drops are formed
in oil. The thinning dynamics is expected to be linear and in the two-fluid Stokes regime
below 30 µm. Above this scale the dynamics should be in the viscous regime. The grey line
in the main figure is the expected variation using the equilibrium surface tension. The upper
inset shows the final instants of the thinning where a linear regime is observed. Lower inset:
surface tension versus time. The horizontal lines indicate the initial and the final surface
tension.

the water has an ultralow tension of the order of 10 µN m−1. Our own measurements
of the surface deformation by a laser beam (Mitani & Sakai 2002) and a spinning drop
technique give values of 13 and 15 µN m−1, respectively, which is consistent with
previous measurements (Binks et al. 2000). This system has a viscous length scale of
the order of 70± 5 µm. Because of the presence of the external fluid of non-negligible
viscosity, the thinning dynamics should be in the two-fluid Stokes regime. This regime
occurs for length scales below η1/η2lν (η1 = 0.37cP for the outer fluid and η2 = 1cP
for the inner fluid) which is near 26± 2 µm. The thinning of the minimum neck radius
should therefore be linear in time with H = 0.02 for this combination of fluids. The
thinning curve for this case is shown in figure 3, with a close-up view of the last
instants before neck breakup in the upper inset.

Two different regimes are present: a slow thinning regime at early times and an
accelerated thinning regime near pinch off. The expected thinning dynamics (using
the equilibrium surface tension and the visco-capillary scaling) seems to be valid
at early times as indicated by the grey line in figure 3. As rupture is approached,
the thinning dynamics deviates from the expected result and shows an important
acceleration. If we now focus on the final instances before pinch-off, the dynamics
should be approximated correctly using the linear thinning law for two-fluid pinch-off
(see upper inset of figure 3). The value of the surface tension obtained from this
analysis is near 120 µN m. This surface tension is much higher than its equilibrium
value. Because of the high value of the tension, there may be an ambiguity as to
whether this regime is described by the two-fluid Stokes law or by the visco-capillary
law; however, the use of the visco-capillary scaling with C = 0.07 also yields a high
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value, close to the previous one, of about 100 µN m. This indicates that in the last
instants before breakup, and even though the linear asymptotic solution seems to hold,
the surface is not at equilibrium suggesting again that surfactant is depleted from the
pinch-off location. If we consider that the slope of the variation of R versus time is
given by a local interfacial tension, this quantity can be estimated and plotted versus
time as in the previous example. This tension, see the lower inset of figure 3, starts
out close to its equilibrium value (indicated by the lower horizontal line) at early times
before pinch-off and increases as the pinch-off time is approached towards a value
close to that determined using the final linear regime (upper horizontal line). That the
early time dynamics gives a surface tension close to the equilibrium value justifies a
posteriori our use of the visco-capillary regime dynamics even though the scales are
near or slightly higher than the expected viscous length scale. This system therefore
shows a complex behaviour but one which is similar to other surfactant systems: an
increase of the surface tension as pinch-off is approached. This is so despite the fact
that the mixture is a microemulsion and therefore the rules of surfactant exchange
between the bulk of the fluid and the interface are different from usual micellar
solutions.

6. Two-fluid pinch-off and inertial pinch-off

The third case under study uses water and hexadecane and two surfactants: SDS
is added at 2.5 % in weight (10 c.m.c.) in water and Span 80 at 0.3 % in weight
('5 c.m.c.) in oil. First we measured the thinning rate of the neck of a detaching
water drop, falling from a capillary under the action of gravity, in oil. The equilibrium
surface tension for this system being near 0.1 mN m−1, the viscous length scale is near
10 µm and the scale for which the two-fluid Stokes regime should be observed is near
30 µm. The thinning dynamics is shown in figure 4(a). We note that the final instants
before rupture at neck radii below ∼20 µm can be described quite well by a linear
law. This is shown for two different runs in the inset of figure 4(a). By using the
linear law quoted above for two-fluid pinch-off, and the appropriate H value of 0.06
(Cohen & Nagel 2001), we deduce an interfacial tension for the final instants of 1.1
and 1.7 mN m−1 for the two runs presented. The slight difference between these two
values is probably due to the initial conditions and further interfacial rearrangements
when two surfactants – one ionic, SDS, and one non-ionic, Span 80 – are suddenly put
in contact at the tip of the capillary. Again and while the asymptotic solution seems
to hold, the surface appears to be far from equilibrium since the estimated surface
tension is much higher than its equilibrium value. Since the viscous length scale for
this system is quite low, the dynamics for larger radii should be in the inertial regime
as neither the visco-capillary nor the inertial visco-capillary regimes are possible.

By analysing the data for early times in a similar way as above in the inertial
regime we can estimate the variation of the interfacial tension versus time using the
local slope of R3/2(t), which is shown in the inset of figure 4(b). The black line
in the inset at early times shows the expected dynamics using a surface tension
of 0.1 mN m−1. The variation of the interfacial tension versus time is shown in
figure 4(b). This tension starts near 0.1 mN m−1 which is close to the equilibrium
value with the two runs giving roughly similar initial tensions. Both runs also show
an increase of the tension versus time which goes through a mild maximum before
reaching a value close to that deduced from the linear regime near pinch-off. Here
again and despite the presence of the inertial regime followed by a two-fluid Stokes
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FIGURE 4. (Colour online) (a) Thinning dynamics of water in oil in the presence of two
surfactants. The thinning shows two regimes with a linear regime near pinch-off (inset). (b)
The inset shows R3/2(t) versus time for the early time regime. The variation while close to
linear initially (indicated by the black line), is not linear throughout as expected, signalling
possible changes in interfacial tension. The main figure shows the interfacial tension extracted
from the slope of the R3/2(t) curve. Two different runs are shown. The interfacial tension
shows an increase as the rupture is approached.

regime, the time variation of the interfacial tension may be sufficient to explain the
complex thinning dynamics.

This same system was also used in a microfluidic channel to study the breakup of
drops of water in oil (Delville et al. 2009). Here the breakup is driven by a co-flow
in a cross-shaped junction as shown in figure 1(c). This channel is made of PDMS,
cast on a glass slide, and has a rectangular 50 µm × 100 µm cross-section. Water
and oil are injected at constant flow rates using syringe pumps. The two liquids are
injected without prior equilibration. The cross-shaped junction allows for the formation
of small water drops. The dynamics of neck thinning during drop formation is shown
in the inset of figure 5. The neck thins slowly at first with a dynamics that is well
approximated by a linear law before accelerating at the final instants before rupture.
By analysing the data using the two-fluid pinch-off solution for neck radii smaller
than 30 µm, we deduce an interfacial tension which starts low (near 0.1 mN m−1 as
obtained from the initial variation of the radius versus time approximated as linear (see
inset)) and increases up to 2 mN m−1 as shown in figure 5, a value in agreement with
the ones deduced at the end of the breakup of water drops falling in oil (figure 4b).
Here also, the early dynamics is given by the equilibrium surface tension while the
later stages show a significantly higher tension.

In a different experiment, we produced a jet of water in such a co-flow cell by using
a higher water injection rate. This jet is destabilized by focusing, for a brief moment, a
laser beam near the jet. A dye (commercial E122 food dye) was added to the water to
favour light absorption and locally heat up the water jet. This produces thermocapillary
stresses and forces pinching when the beam power exceeds a threshold (Delville et al.
2009). By studying the rupture of the jet, after the laser has been turned off, we obtain
its thinning dynamics under such conditions. Here again, an analysis of the variation
of R versus time (see inset of figure 5) using the two-fluid pinch-off dynamics allows
us to deduce an interfacial tension during pinch-off. The temporal variation of the
effective tension from the two experiments (i.e. with and without the use of a laser
beam) is compared in figure 5. Note that this tension increases by over an order of
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FIGURE 5. (Colour online) Pinch-off in microfluidic channels: drop formation and jet
breakup under the action of a laser beam. The thinning dynamics is shown in the inset
(the full lines indicate the initial linear regime) and the dynamic interfacial tension is
shown in the main figure. When a laser beam is used to break the jet, the final tensions
seem to increase with the increase of laser power before saturating. Imposed flow rates are:
Qo = 1 µl min−1 (oil) and Qw = 0.2 µl min−1 (water) for breakup in a cross-shaped junction,
and Qo = 1.2 µl min−1 and Qw = 4 µl min−1 for laser-induced breakup.

magnitude and that different experiments give a roughly similar increase versus time
despite the differences in producing pinch-off (with or without a laser beam and with
and without local heating). The initial values of the tension vary from run to run in
this system. As noted above, this system may be very sensitive to the history of the
interface, a fact which we attribute to the presence of two surfactants, one in each
phase. The equilibrium in this system therefore depends on how the two surfactants
cover the surface. Nonetheless different experiments – pendant drops, dripping in a
cross-channel, and laser-induced jet breakup – give interfacial tension values near
0.1 mN m−1 at the initial instants and which increase by an order of magnitude as the
rupture point is approached. It should be noted here that the laser-initiated pinch-off
seems to produce higher final interfacial tensions than the simple pinch-off case in
a cross-shaped junction or in the dripping experiment, which is likely to be due to
additional thermocapillary stresses due to heating.

7. Conclusion
In conclusion, different systems have been used to study the rupture of fluid necks

resulting from the detachment of small drops of fluid in the presence of surfactants.
The use of such systems has allowed us to probe the effect of the surfactant on the
different regimes of the rupture process, namely the inertial and viscous regimes. In
all cases, the effect of the surfactant on the thinning dynamics can be described as
an increase of the local interfacial tension at the location of the minimum neck radius
when pinch-off is approached. The thinning dynamics can therefore be recast using a
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time-varying surface tension. This surface tension starts at values near its equilibrium
value and increases as the rupture is approached. This increase is a measure of
the depletion of surfactant from the pinch-off location as found in numerical and
theoretical studies of pinch-off in the presence of surfactants. In the final instants
before breakup the surface tensions remain below those of the bare interfaces except
for the very low concentrations of surfactant. Our procedure allows us to estimate
dynamic interfacial tensions in a new configuration: that of a stretching neck starting
from a fully, or partially, covered interface. The usual way is to start from a bare
surface and measure the dynamic tension as adsorption takes place.
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