

Pressure-induced isostructural phase transformation in gamma-B(28)

Evgeniya Zarechnaya, Natalia Dubrovinskaia, Razvan Caracas, Marco Merlini, Michael Hanfland, Yaroslav Filinchuk, Dmitry Chernyshov, Vladimir Dmitriev, Leonid Dubrovinsky

▶ To cite this version:

Evgeniya Zarechnaya, Natalia Dubrovinskaia, Razvan Caracas, Marco Merlini, Michael Hanfland, et al.. Pressure-induced isostructural phase transformation in gamma-B(28). Physical Review B: Condensed Matter and Materials Physics (1998-2015), 2010, 82 (18), pp.184111. 10.1103/Phys-RevB.82.184111. hal-00676894

HAL Id: hal-00676894 https://hal.science/hal-00676894

Submitted on 6 Mar 2012

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Pressure-induced isostructural phase transformation in γ -B₂₈

Evgeniya Zarechnaya,¹ Natalia Dubrovinskaia,^{2,3,*} Razvan Caracas,⁴ Marco Merlini,⁵ Michael Hanfland,⁶

Yaroslav Filinchuk,⁶ Dmitry Chernyshov,⁶ Vladimir Dmitriev,⁶ and Leonid Dubrovinsky¹

¹Bayerisches Geoinstitut, Universität Bayreuth, 95440 Bayreuth, Germany

²Mineralphysik, Institut für Geowissenschaften, Universität Heidelberg, 69120 Heidelberg, Germany

³Lehrstuhl für Kristallographie, Physikalisches Institut, Universität Bayreuth, 95440 Bayreuth, Germany

⁴Ecole Normale Supérieure de Lyon, Laboratoire de Sciences de la Terre, Centre National de la Recherche Scientifique, 46, allée d'Italie,

69364 Lyon Cedex 07, France

⁵Dipartimento di Scienze della Terra, Universita degli Studi di Milano, Via Botticelli 23, 20133 Milano, Italy

⁶ESRF, Boîte Postale 220, 38043 Grenoble, France

(Received 15 October 2010; revised manuscript received 24 October 2010; published 18 November 2010)

Isostructural phase transformations (ISPhTs) so far were reported only for heavy elements and their compounds with complex electronic and/or magnetic structures. Studies of one of the lightest elemental material, high-pressure boron γ -B₂₈, by means of *in situ* single-crystal x-ray diffraction and Raman spectroscopy reveal abrupt changes in the compressional behavior and Raman spectra at 40 GPa. Combined experimental and *ab initio* theoretical analysis of the structural and vibrational properties of γ -B₂₈ suggests that the ISPhT under compression is due to the changes in the polarity of the covalent bonds between the boron atoms in the complex quasimolecular structure of γ -B₂₈.

DOI: 10.1103/PhysRevB.82.184111

PACS number(s): 61.50.Ks

I. INTRODUCTION

Isostructural phase transformations are particular cases of isosymmetric transformations and include discontinuous isostructural transitions and crossovers. They are rare, intriguing phenomena in solids often associated with a significant volume collapse, giant magnetoelastic coupling, or negative thermal expansion.¹⁻⁵ Elemental boron and boron-rich compounds have been given a particular scientific and technological attention because of their specific physical properties: high melting temperatures, a wide energy band gap, high hardness, strong absorbance of neutrons, etc. The structures of these materials are based on icosahedral units as a common feature. Even high pressure does not destroy the rigid units so that the very recently described high-pressure boron phase⁶⁻⁸ γ -B₂₈ consists of B₁₂ icosahedra typical for rhombohedral α - and β -boron. Consisting of only B₁₂ units, α -boron does not show any phase transitions on compression to at least 80 GPa at ambient temperature. The arrangement of B_{12} icosahedra in β -boron is complex and its structure contains partially occupied sites.^{9,10} The β -boron is more compressible (the bulk modulus K_{300} =185-210 GPa) in comparison with α -boron ($K_{300}=213-224$ GPa).^{11,12} The resistivity measurements¹³ indicate a transformation from β -boron into yet unknown superconducting phase at about 160 GPa. At pressures above 8.5 GPa and temperatures higher than 1500 °C pure boron crystallizes as a γ -B₂₈ phase with a *Pnnm* space group.^{6–8} It contains 28 atoms in the unit cell. The structure consists of B₁₂ icosahedra and B₂ dumbbells linked covalently^{6,7} (Fig. 1). The γ -B₂₈ phase was demonstrated⁷ to be stable at least to 30 GPa and 2000 K. However, experimental information about the high-pressure behavior of the γ -B₂₈ phase is so far limited. Here we present the results of the high-pressure Raman spectroscopy study of γ -B₂₈ up to 105 GPa and its single-crystal x-ray diffraction over 65 GPa.

II. METHODS

Single crystals and polycrystalline aggregates of γ -B₂₈ were grown as described in our previous publications (see Refs. 6 and 7).

A. Diamond-anvil cell experiments

In different runs the sample was clamped between diamond anvils with culets of 300, 250, or 120 μ m in diameter. Rhenium (in the Raman spectroscopy experiments) or steel (in single-crystal x-ray diffraction experiments) gaskets were indented to the thickness of about 50 μ m and holes with a diameter of 100 or 80 μ m were drilled in the center. Small isometric pieces of the high-pressure boron phase synthesized in a multianvil apparatus were loaded into the holes along with ruby balls served as pressure markers. As a pressure transmitting medium Ne or He were loaded at 1.4 kbar

FIG. 1. (Color online) Structure of $\gamma\text{-}B_{28}$ (atom labels are according to Ref. 6).

(all single-crystal x-ray diffraction experiments were performed in He pressure medium). One- and double-side laser annealing of samples compressed in Ne pressure medium at pressures above 20 GPa at temperatures up to 2000 K was conducted at BGI or at ESRF.

B. Raman spectroscopy

Raman spectroscopy studies were done on single crystals (with characteristic dimensions of $\sim 5 \times 5 \times 25 \ \mu m^3$) and polycrystalline aggregates of the B₂₈ phase. Measurements were performed with LabRam and Dilor XY (DILOR GmbH) systems with a resolution better than 2 cm⁻¹. The 632.8 nm line of a He-Ne laser and 514 nm of an Ar laser were used for an excitation with a power at the sample position of 15–50 mW. The positions of Raman peaks were determined by processing experimental data using PEAKFIT© v4.12 software.

C. Single-crystal diffraction

Crystals with a size of about 7 μ m×7 μ m×30 μ m were selected and measured at ID09a at the European Synchrotron Radiation Facility (ESRF). Diffraction data were collected at 293 K using the MAR555 image plate detector, radiation with a wavelength of 0.4143 Å and the crystal-to-detector distance of 399 mm. 120 frames in the omega scanning range of -30° to $+30^{\circ}$ were collected (0.5° scanning step size) with exposure time of 1 s. The data were processed using the CRYSALIS software [Oxford Diffraction (2006) CRYSALIS RED, version 1.171.31.8. Oxford Diffraction Ltd., Abingdon, Oxfordshire]. Crystal-structure refinements on integrated intensities were carried out with JANA2006 software.

D. Ab initio calculation

We performed first-principles calculations using the density-functional theory and density-functional perturbation theory formalisms as implemented in the ABINIT code.¹⁴ We employed a $6 \times 6 \times 6$ regular grid of high special k points¹⁵ and a kinetic-energy cutoff of 30 Ha (1 Ha=27.2116 eV). These ensured a precision on the order of 1 mHa in energy and better than 1 GPa in pressure. The calculations were performed on the JADE machine of CINES.

III. RESULTS

A. Raman spectroscopy at high pressure.

The γ -B₂₈ gives very distinct and strong Raman spectra at ambient conditions^{6,7,16} so that the Raman spectroscopy could be the most convenient and useful technique for investigation of the high-pressure behavior of this phase. Polarized Raman spectroscopy studies¹⁶ allowed assigning vibration modes of γ -B₂₈ thus creating a basis for the present study. Some examples of Raman spectra of polycrystalline γ -B₂₈ collected at high pressure are presented in Fig. 2(a). The pressure dependence of Raman modes [Fig. 2(b)] can be shown in terms of the mode-Grüneisen parameter, defined as $\gamma_{\omega i} = -\partial \ln \omega_i / \partial \ln V = -(B_0 / \omega_i) \partial \omega_i / \partial P$, where ω_i is the phonon frequency, B_0 is the bulk modulus (227 GPa at ambient

FIG. 2. (Color online) (a) Examples of Raman spectra of γ -B₂₈ compressed in a neon pressure transmitting medium in a diamondanvil cell. Arrows highlight some parts of the spectra which undergo rapid changes at pressure above 40 GPa. (b) Variation in the positions of Raman lines of γ -B₂₈ as a function of pressure. Mode assignment at ambient conditions is given according to Ref. 16 [for some modes we could not assign their type (B_{2g} or B_{3g}) so that they were labeled with the symbol "B" (Ref. 16)].

conditions⁷), *V* is the molar volume, and *P* is the pressure. According to the values of the mode-Grüneisen parameters, all observed Raman peaks could be divided into three groups (Table I). To the first group belongs the mode B_{2g} at 319(3) cm⁻¹ for which the Grüneisen parameter (2.8) is distinctly high. According to theoretical analysis (Table II) this mode is associated with tilts (rotations) around the *a* axis of the B_{12} icosahedra. The second group of mode consists of weakly varying (γ =0.03–0.2) narrow bands in the frequency

Experiment					Theory		
ω_{exp} (cm ⁻¹)	Assignment	γ_{exp} below 39 GPa	$\gamma_{\rm exp}$ above 39 GPa	$\omega_{\rm th} \ ({\rm cm}^{-1})$	Assignment		
217(2)	B_{2g}, B_{3g}						
222(2)	Ag						
319(3)	B_{2g}, B_{3g} ^a	2.76	1.04	303	B_{2g}		
380(1)	Ag	0.07	-0.03	387	Ag		
388(2)	B _{1g}	0.17		389	B _{3g}		
440(2)	B_{2g}, B_{3g}	0.20	-0.02	454	B _{3g}		
460(2)	B _{1g} ^a			464/475	B_{3g}/B_{1g}		
470(2)	B_{2g}, B_{3g}	0.03	-0.03	464/475	B_{3g}/B_{1g}		
507(2)	Ag	0.65	0.34	536	Ag		
531(2)	B_{2g}, B_{3g}	0.68		537	B _{2g}		
593(3)	Ag	0.67	0.41	611	Ag		
632(2)	B_{2g}, B_{3g}	0.53	0.42	585/575	B_{2g}/B_{3g}		
654(2)	Ag	0.84	0.47	687	Ag		
686(3)	B _{1g} , B _{2g} , B _{3g} ^a			658	B_{1g}		
702(3)	A _g ^a	0.85	0.50	732	Ag		
712(3)	B_{2g}, B_{3g}			714/719	B_{3g}/B_{2g}		
729(2)	B _{1g}	0.78	0.40	726	B_{1g}		
735(2)	B _{1g} , B _{2g} , B _{3g} ^a	0.79	0.42	735	B _{2g}		
758(2)	B _{3g}	0.82	0.45	765	B _{3g}		
786(2)	B _{1g}	0.87	0.54	781, 784	B_{1g}, B_{1g}		
857(3)	B _{1g}	0.81	0.52	862	B_{1g}		
878(2)	B _{1g} , B _{3g} ^a			884	B _{3g}		
895(2)	Ag	1.05	0.55	887	Ag		
912(2)	Ag	1.26	0.66	920	A_{g}		
929(2)	A_{g}			970? ^b	A_{g}		
952(2)	B_{2g}, B_{3g}^{a}			959	B_{2g}		
1095(2)	B_{1g}, B_{2g}, B_{3g} ^a				C		
1118(2)	B _{1g}	0.98	0.40	1118	B_{1g}		
1138(2)	B _{1g}			1138	B_{1g}		
1161(2)	Ag	0.42		1189	Ag		
1189(2)	Åg			1194	Ag		
1218(2)	Ag				Ũ		

TABLE I. Assignment of experimental (Ref. 16) and theoretical phonon frequencies at ambient conditions with experimentally determined mode-Grüneisen parameters (γ_{exp}).

^aPeaks which are visible also in forbidden scattering geometries (Ref. 16).

^bThe "?" marks the line whose assignment is ambiguous.

range 380–470 cm⁻¹. All these modes are assigned to vibrations of B_{12} icosahedra (380, 388, and 460 cm⁻¹) or both B_{12} icosahedra and B_2 dumbbells (444 and 470 cm⁻¹) along the unit-cell axes (Table II). Note that similar behavior of icosahedron and icosahedron-dumbbell vibrations were observed in α -boron,¹⁷ in highly ordered pnictides ($B_{12}As_2$ and $B_{12}P_2$),¹⁸ and boron carbide (B_4C).¹⁹ The Grüneisen parameters of modes observed between 507 and 1200 cm⁻¹ (the third group) are in the range of 0.42–1.05. These bands arise mainly from intraicosahedral vibrations, such as breathing or rocking-stretching modes. Note that apparent changes in the shape of spectra in the 800–1000 cm⁻¹ region on compression to about 39 GPa

(Fig. 2) are entirely due to differences in mode-Grüneisen parameters of the bands.

The observed high-pressure behavior of Raman modes can be qualitatively related to the response of the γ -B₂₈ structure on compression. Indeed, rotations of B₁₂ icosahedra, or of the B₁₂ icosahedra and B₂ dumbbells around *b* and *c* axes (Fig. 1, Table II) require changes in the length of the shortest (i.e., strongest) B-B contacts between icosahedra and/or between an icosahedron and a dumbbell⁷; they correspond to the modes with the smallest mode-Grüneisen parameters. The mode which is most sensitive to the volume changes is associated with the rotation of B₁₂ icosahedra

Assignment	$\omega_{\text{calc}}(\text{cm}^{-1})$	Description				
$\mathbf{A}_{\mathbf{g}}$	387	The B_6 half-caps move up and down and the whole B_{12} icosahedron tilts around the <i>c</i> axis				
Ag	536	B_2 dumbells tilt around the <i>c</i> axis; slight participation of the B_{12} icosahedra that tilt much less				
Ag	611	Breathing mode of the B ₁₂ icosahedra				
Ag	687	Breathing mode of the B ₁₂ icosahedra				
Ag	732	Tilt of B_2 associated with a movement of the B atoms from the sides of the B_{12} icosahedra, looking like a dangling bond; the B atoms from the B_{12} that move are the furthest apart from B_2				
Ag	770	Breathing mode of the B ₁₂ icosahedra				
Ag	811	Breathing mode of the B_{12} icosahedra; here the B atoms from the side, the ones that form a bond perpendicular to the B_2 - B_{12} plane participate in the motion				
Ag	887	Breathing mode of the B ₁₂ icosahedra				
$\mathbf{A}_{\mathbf{g}}$	920	Breathing mode of the B_{12} icosahedra				
Ag	970	Breathing mode of the B ₁₂ icosahedra				
Ag	1119	Tilt of the B_2 dumbell associated with a displacement of the two B atoms from the B_{12} icosahedra situated closest to the B_2 dumbells along the <i>b</i> axis				
$\mathbf{A}_{\mathbf{g}}$	1194	Breathing-like mode of the B ₁₂ icosahedra dominated by the movement of				

TABLE II. Calculated Raman-active modes of $\gamma\text{-}B_{28}$ at 0 GPa.

		the apex atoms (these are the only ones that really move)					
B _{1g}	475	Tilts of the B_{12} icosahedra around the <i>c</i> axis					
B _{1g}	554	Tilts of the B ₂ dumbells					
B _{1g}	658	Vibration corresponding to half the B_{12} icosahedra vibrating against the other half along the <i>b</i> axis					
B _{1g}	726	Breathing mode of the B ₁₂ icosahedra					
B _{1g}	781	Breathing mode of the B ₁₂ icosahedra; each half-cap breathes independently					
B _{1g}	784	Breathing mode of the B_{12} icosahedra; each half-cap breathes indepedently; the movement has an important <i>a</i> component, the sizes of the half-caps rotating around the z axis					
B _{1g}	793	Breathing mode of the B_{12} icosahedra; dominated by a tilt of the B-B bond between the B_{12} icosahedra, in the (010) plane					
B _{1g}	862	Breathing mode of the B ₁₂ icosahedra; B ₂ do not participate					
B _{1g}	906	Dominated by B_2 extension mode with some smaller participation from the breathing of B_{12} icosahedra from the B_2 side bonds parallel to the <i>c</i> axis					
B _{1g}	979	Breathing mode of the B_{12} icosahedra, with lateral extension in the (100) planes					
B _{1g}	1118	Tilt of the B_2 dumbell associated with a displacement of the two B atoms from the B_{12} icosahedra situated closest to the B_2 dumbbells along the <i>b</i> axis					
B _{1g}	1189	the apex atoms (these are the only ones that really move)					
B _{2g}	303	Tilts (=rotations) of the B ₁₂ icosahedra along the x axis					
B _{2g}	454	Tilts (rotations) of the B_{12} icosahedra and of the B_2 dumbells. The B_{12} icosahedra around the <i>a</i> axis, while the B_2 dumbbells have a component along the <i>b</i> axis					

TABLE II. (Continued.)

TABLE II. (Continued.)

B _{2g}	537	Tilts of the B_{12} icosahedra around the <i>b</i> axis
B _{2g}	585	Tilts of the B_{12} icosahedra around the <i>a</i> axis
B _{2g}	719	Shear-like mode of the B_{12} icosahedra; such that each half of the cage tilts around the <i>b</i> axis producing a sheared final B_{12} cage
B _{2g}	735	Shear-like mode of the B_{12} icosahedra; the tilt system is slightly different than from the previous mode; there are two subunits within each half that tilt in anti-phase
B _{2g}	771	The apex of the B_{12} atoms along the X axis and the B_2 dumbbells vibrate around the <i>b</i> axis
B _{2g}	880	Dominated by a tilt system of the B_{12} apex against the B_2 dumbbells
B _{2g}	959	Shear mode of the B_{12} icosahedra, associated with a tilt of the half-caps along the <i>b</i> axis
B _{3g}	389	Tilt mode of the B_{12} icosahedra around the <i>b</i> axis
B _{3g}	403	Tilt of the B_2 dumbbells with a sight participation from the B_{12} unit that tilt as well
B _{3g}	464	Another tilt of both B_{12} and B_2 around the <i>a</i> axis
B _{3g}	575	Shear mode of the B_{12} icosahedra; half-caps vibrate against the other half with a tilt around the <i>b</i> axis
B _{3g}	714	Double shear of the B_{12} icosahedra; the mode is dominated by the B_2 bond parallel to the <i>c</i> axis
B _{3g}	765	Breathing mode of the B_{12} icosahedra
B _{3g}	810	Breathing mode of the B_{12} icosahedra, associated with a shear due to differential displacement in the (100) plane soft the different B of B_{12} icosahedra
B _{3g}	884	Breathing mode of the B_{12} icosahedra, associated with a shear due to differential displacement along the <i>a</i> axis of the different B of B_{12} icosahedra; dominated by lateral displacement of the apex atoms
B _{3g}	929	Complex breathing mode of the B ₁₂ icosahedra

FIG. 3. (Color online) Example of the measured (dotted curve) and calculated (solid curve) Ag Raman mode as a function of pressure.

around the *a* axis and does not involve tension of the shortest interatomic contacts.

Most the Raman modes monotonically shift to higher wave numbers with increasing pressure up to about 35 GPa. At pressures higher than 40 GPa in all three independent experiments we observed an inflection in the modes behavior [Fig. 2(b), Table I]. Under further compression to pressures about 40–45 GPa several broaden peaks split (Fig. 2(a)). Although above ~40 GPa we detect up to 32 Raman modes in the spectra, the total number of modes was always less than 42 allowed in orthorhombic γ -B₂₈.¹⁶ At the same pressure two modes (A_g at 380 cm⁻¹ and B_{3g} at 470 cm⁻¹) drastically change their behavior and become soft with Grüneisen parameters of about –0.03 (Fig. 2; Table I, Fig. 3).

Phonon determination based on first-principles calculations show that the lowest six Raman modes (one A_g , one B_{1g} , two B_{2g} , and two B_{3g}) present pressure softening in perfect agreement with the experimental observations. They are lattice modes corresponding mainly to tilts of the B_{12} icosahedra. In particular, the behavior of the lowest B_{2g} mode is relevant as it hardens up to about 50 GPa and it softens beyond that pressure.

Laser annealing at 1500–1800 K at pressures above 40 GPa does not affect the Raman spectra and the changes are fully reversible on decompression suggesting that the orthorhombic γ -B₂₈ may undergo a phase transition at high pressures. In order to test this hypothesis we have undertaken an intensive x-ray diffraction investigation of γ -B₂₈ under compression.

B. Single-crystal x-ray diffraction at high pressure

Being the fifth element in the Periodic Table, boron is a very weak x-ray scatterer. X-ray powder-diffraction experiments on boron phases above 30 GPa are difficult^{7,19} and could hardly provide even accurate lattice parameters. At the same time, single-crystal studies allowed investigating the behavior of lattice parameters of β -boron at pressure up to 100 GPa.¹² In three independent diamond-anvil cell (DAC) experiments we compressed single crystals of γ -B₂₈ (grown in a multianvil apparatus in metallic fluxes²⁰) to pressures

over 65 GPa using He as a quasihydrostatic pressure transmitting medium. The collected x-ray diffraction data were sufficient in quality to refine both lattice parameters and atomic coordinates (Table III). Remarkably, the quality of the structural refinement based on the data collected in DACs was not worse than that based on the data obtained at ambient conditions (Table III), and it also proves that the crystals were in a good quasihydrostatic environment to highest pressures reached.

Up to the highest pressure reached in this study (65 GPa) all observed reflections perfectly match the γ -B₂₈ (space group *Pnnm*) structure (Table III). However, the compressional behavior of the material at pressures below and above about 40 GPa is considerably different (Fig. 4). It manifests in an abrupt increase in the stiffness of the structure (more than 20% increase in the bulk modulus) and in the relative softening along the *a* axis in comparison with the *c* and especially the *b* axes. There is a clear change in the behavior of the *b/a* ratio (it decreases monotonously to about 35 GPa and increases above 40 GPa), and there is a discontinuity in "*F*-*f*" plot (normalized stress vs Eulerian strain, see insets in Fig. 4). An extrapolation of molar volumes of low-pressure and high-pressure materials to ambient conditions gives a difference of about 3% (Fig. 4).

On compression up to 40 GPa the shortest bond lengths as well as the average distances between any atom and its neighbors ("atom's sphere radius" as defined in IVTON software²²) homogeneously decrease; their compressibilities are linear with values in the 0.019-0.024 GPa⁻¹ range (Fig. 5). The volume of the B_{12} icosahedra also decreases smoothly to 40 GPa (Fig. 6). However the bulk modulus of this polyhedron (285 GPa) is significantly higher than the bulk modulus of the bulk material (227 GPa) confirming a molecular-solidlike behavior with intericosahedral bonding weaker than intraicosahedral ones. At pressures above 40 GPa the compressibility of the spheres around the B1 and B4 atoms (Fig. 1 for designation of atoms) does not change (these two atoms are not involved into the shortest intericosahedral contacts or into the contacts of the B₂ dumbbells and the B_{12} icosahedra). Contrary, the atoms involved in intraicosahedral bonding (labeled B3) or in bonding between the B_{12} icosahedra and the B_2 dumbbells (labeled B2 and B5) show pronounced changes in the compressional behavior. In parallel the B₁₂ icosahedra become much more incompressible, exhibiting a 1/3 increase in the bulk modulus (Fig. 6).

IV. DISCUSSIONS

Both the Raman spectroscopy and the single-crystal x-ray diffraction studies reveal the existence of *two states* of γ -B₂₈ with a pronounced difference in their vibrational and compressional properties. The abrupt change in the properties occurs at pressures ~40 GPa. However, neither the symmetry nor the structure change was detected in this pressure range. We conclude, therefore, that B₂₈ undergoes an *isostructural* phase transformation.

Isostructural phase transformations are relatively exotic phenomena. They were reported for a few elements, in particular, in Ce (a well-known example of the isostructural TABLE III. Structural parameters of the γ -B₂₈ phase (*Pnnm*, Z=28) as revealed by single-crystal diffraction experiments in diamondanvil cells at high pressures.

Run	Pressure	Lattice parameters (Å)			Atomic coordinates					$R_1(\%)$
	(GPa)	a	b	С	B1 8h	B2 4g	B3 4g	B4 8h	B5 4g	wR ₂ (%)
B4_1	16.1(2)	4.9554(3)	5.5097(8)	6.8011(6)	0.1540(5) 0.5927(7) 0.7902(5)	0.6498(7) 0.7264(11) 0.5	0.3358(7) 0.5082(9) 0.0	0.8395(5) 0.7188(7) 0.8731(5)	0.6698(7) 0.9803(10) 0.0	7.57 8.07
B4_2	22.6(2)	4.9231(4)	5.4720(14)	6.7388(10)	0.1545(5) 0.5920(7) 0.7898(5)	0.6513(8) 0.7242(11) 0.5	0.3355(7) 0.5071(10) 0.0	0.8406(6) 0.7181(6) 0.8731(7)	0.6698(7) 0.9793(10) 0.0	6.39 7.12
B4_3	30.2(3)	4.8767(3)	5.4260(12)	6.6606(9)	0.1538(6) 0.5914(8) 0.7895(6)	0.6518(9) 0.7234(13) 0.5	0.3359(9) 0.5066(11) 0.0	0.8411(7) 0.7178(9) 0.8733(6)	0.6698(8) 0.9769(12) 0.0	6.92 8.18
B4_4	35.5(3)	4.8535(4)	5.4025(13)	6.6187(10)	0.1534(6) 0.5902(7) 0.7885(5)	0.6514(7) 0.7231(10) 0.5	0.3371(7) 0.5082(9) 0.0	0.8404(6) 0.7184(7) 0.8723(5)	0.6691(7) 0.9776(9) 0.0	4.68 5.21
B4_5	37.8(3)	4.8346(3)	5.3831(9)	6.5920(6)	0.1541(6) 0.5910(8) 0.7884(5)	0.6519(8) 0.7229(12) 0.5	0.3358(8) 0.5072(10) 0.0	0.8410(6) 0.7188(8) 0.8724(5)	0.6703(8) 0.9766(11) 0.0	6.02 6.92
B4_6	45.1(3)	4.8078(5)	5.3532(17)	6.5465(13)	0.1537(6) 0.5902(8) 0.7878(5)	0.6513(8) 0.7230(11) 0.5	0.3367(7) 0.5072(9) 0.0	0.8406(6) 0.7187(7) 0.8719(5)	0.6701(7) 0.9765(10) 0.0	5.46 5.62
B5_1	0.001	5.0508(2)	5.6181(4)	6.9793(5)	0.1543(4) 0.5928(5) 0.7930(4)	0.6481(6) 0.7279(7) 0.5	0.3357(5) 0.5072(6) 0.0	0.8386(4) 0.7195(5) 0.8737(4)	0.6695(5) 0.9834(7) 0.0	6.61 7.43
B5_2	5.8(1)	5.0115(5)	5.5731(10)	6.9041(12)	0.1542(4) 0.5921(5) 0.7917(3)	0.6485(6) 0.7267(7) 0.5	0.3355(5) 0.5059(6) 0.0	0.8390(4) 0.7195(4) 0.8733(4)	0.6701(5) 0.9820(7) 0.0	5.58 6.74
B5_3	9.6(2)	4.9810(2)	5.5392(3)	6.8535(4)	0.1542(5) 0.5924(6) 0.7914(4)	0.6483(6) 0.7277(8) 0.5	0.3364(6) 0.5079(7) 0.0	0.8392(4) 0.7198(5) 0.8731(4)	0.6699(6) 0.9813(7) 0.0	6.28 7.59
B5_4	14.7(2)	4.9636(2)	5.5192(4)	6.8160(5)	0.1542(6) 0.5921(7) 0.7907(5)	0.6487(8) 0.7264(9) 0.5	0.3357(7) 0.5082(8) 0.0	0.8392(5) 0.7193(6) 0.8728(5)	0.6710(7) 0.9798(8) 0.0	7.86 8.58
B5_5	15.1(2)	4.9267(2)	5.4751(4)	6.7439(6)	0.1538(6) 0.5907(6) 0.7893(4)	0.6499(9) 0.7253(8) 0.5	0.3353(8) 0.5064(7) 0.0	0.8403(6) 0.7184(5) 0.8722(5)	0.6718(8) 0.9779(7) 0.0	5.42 5.95
B5_6	21.5(2)	4.8986(4)	5.4462(9)	6.6990(11)	0.1544(4) 0.5910(4) 0.7887(3)	0.6494(7) 0.7244(7) 0.5	0.3357(6) 0.5076(6) 0.0	0.8401(4) 0.7188(4) 0.8717(4)	0.6712(6) 0.9779(6) 0.0	5.65 6.26
B5_7	26.5(2)	4.8715(3)	5.4189(6)	6.6651(7)	0.1550(11) 0.5930(13) 0.7891(8)	0.6481(18) 0.7187(16) 0.5	0.3352(14) 0.5092(13) 0.0	0.8389(10) 0.7146(10) 0.8732(9)	0.6707(16) 0.9818(16) 0.0	10.17 15.55
B5_8	31.7(3)	4.8492(5)	5.3910(10)	6.6116(13)	0.1542(5) 0.5912(7) 0.7873(5)	0.6494(7) 0.7239(9) 0.5	0.3356(7) 0.5098(9) 0.0	0.8402(5) 0.7194(7) 0.8714(5)	0.6712(7) 0.9756(9) 0.0	6.79 7.56
B5_9	36.2(3)	4.8246(6)	5.3679(12)	6.5713(11)	0.1539(4) 0.5906(5) 0.7871(3)	0.6495(6) 0.7240(7) 0.5	0.3358(6) 0.5093(7) 0.0	0.8409(4) 0.7189(5) 0.8713(4)	0.6710(6) 0.9758(7) 0.0	4.63 5.72
B5_10	41.2(3)	4.8100(2)	5.3531(5)	6.5486(5)	0.1542(5) 0.5905(6) 0.7867(3)	0.6494(7) 0.7235(8) 0.5	0.3357(7) 0.5089(7) 0.0	0.8408(5) 0.7182(6) 0.8711(4)	0.6716(7) 0.9754(7) 0.0	5.13 6.08
B5_11	45.0(3)	4.7857(3)	5.3291(7)	6.5091(7)	0.1544(6) 0.5909(6) 0.7862(4)	0.6498(8) 0.7227(8) 0.5	0.3366(7) 0.5086(7) 0.0	0.8407(5) 0.7180(6) 0.8709(5)	0.6710(7) 0.9749(7) 0.0	5.02 5.98

PRESSURE-INDUCED ISOSTRUCTURAL PHASE ...

Run	Pressure (GPa)	Lattice parameters (Å)			Atomic coordinates					R ₁ (%)
		a	b	С	B1 8h	B2 4g	B3 4g	B4 8h	B5 4g	wR ₂ (%)
B5_12	51.2(4)	4.7208(5)	5.2508(12)	6.4015(14)	0.1543(11) 0.5912(12) 0.7858(9)	0.6529(17) 0.7214(14) 0.5	0.3340(13) 0.5076(13) 0.0	0.8401(10) 0.7168(11) 0.8703(8)	0.6731(14) 0.9729(12) 0.0	7.54 8.70
B5_p1	65.3(5)	4.731(3)	5.280(5)	6.4285(39)	0.1533(12) 0.5891(9) 0.7844(6)	0.6521(16) 0.7204(10) 0.5	0.3341(15) 0.5082(9) 0.0	0.8425(9) 0.7190(7) 0.8729(8)	$\begin{array}{c} 0.6705(15) \\ 0.9763(10) \\ 0.0 \end{array}$	6.94 6.91
B5_p2	55.6(5)	4.772(3)	5.318(5)	6.486(7)	0.1541(2) 0.5901(6) 0.7859(4)	0.6506(9) 0.7221(7) 0.5	0.3369(7) 0.5079(8) 0.0	0.8415(6) 0.7190(1) 0.8712(4)	0.6723(8) 0.9760(7) 0.0	5.55 5.60
B28[7]	0.001	5.0576(4)	5.6245(8)	6.9884(10)	0.1539(3) 0.5938(2) 0.7924(2)	0.6469(4) 0.7284(4) 0.5	0.3362(4) 0.5076(4) 0.0	0.8391(3) 0.7189(3) 0.8737(2)	0.6690(4), 0.9823(4) 0.0	3.73% 11.5%

TABLE III. (Continued.)

transition,¹ see Ref. 23 for review) at high pressures, Zr and²⁴ Os.²⁵ However, established cases of the ISPhTs are related to the elements or compounds containing elements with the variable chemical valence due to fully or partially free *d*- or/and *f*-electronic shells (for example, SmS,²⁶ EuCo₂P₂,²⁷ rare-earth chalcogenides²⁸ and pnictides, see Ref. 29 for review), or/and materials which undergo magnetic or spin transitions, for example, MnO (Ref. 30) or YCo₅.² Boron is an element of the second row of the Periodic Table and the conventional mechanisms of the ISPhT in its crystal structure are highly unlikely (indeed, theoretical calculations^{7,8} do not indicate any significant changes in

FIG. 4. (Color online) The relative unit-cell volume of γ -B₂₈ as a function of pressure (red diamonds—single-crystal data from this study; blue circles—powder-diffraction data (Ref. 7); lines are fits with the third-order Birch-Murnaghan (BM3) equation of state: dark red for single-crystal data below 40 GPa, dark purple for single-crystal data above 45 GPa, and dashed line as reported by Le Godec *et al.* (Ref. 21) based on powder x-ray diffraction data to 70 GPa. Insets show the variation in the ratio of the lattice parameters b/a as a function of pressure and the *F*-*f* plot (normalized stress vs Eulerian strain).

band structure of γ -B₂₈ at least to 100 GPa). At the same time γ -B₂₈ is a quasimolecular material. The detailed singlecrystal x-ray diffraction study conducted at ambient pressure7 revealed the strong polar-covalent bonding with an electron density excess at B2 and B4 atoms (they belong to the B₁₂ icosahedra) and an electron density deficit at B5 atoms (which form B₂ dumbbells). This suggests that the ISPhT in γ -B₂₈ can be a result of changes in the electron density distribution between boron atoms and/or bonds or, in other words, changes in the character of chemical bonding. For compounds with the polar-covalent bonding, the splitting of the IR longitudinal- and transversal-optical (LO-TO) phonon modes can be used as a measure of the degree of the charge transfer, 8,9,31 which can be characterized by the generalized Lyddane-Sachs-Teller (LST) parameter $\xi = \prod_{i}^{n} (\omega_{i}^{\text{LO}} / \omega_{i}^{\text{TO}})^{2}$. Using calculated values of frequencies for all IR-active modes at different pressures (Fig. 7) we found that above 50 GPa, in strict similarity with experimental data

FIG. 5. (Color online) The average distance of the atom from its neighbors ["sphere radius," as defined in IVTON software (Ref. 22)] as a function of pressure. Continuous lines for B3 and B4 atoms are guide for eyes.

FIG. 6. (Color online) Volume of the B_{12} icosahedra as a function of pressure (blue dots). The polyhedron volumes were calculated in IVTON program (Ref. 22). Lines are fits with the BM3 equation of state: dark green for single-crystal data below 40 GPa, dark red for single-crystal data above 45 GPa.

on changes in Raman spectra and compressional behavior, the LST parameter changes its pressure dependence. This result strengthens our assignment of the isostructural phase transformation in γ -B₂₈ as due to alteration the polarity of the covalent bonding between the boron atoms in the complex quasimolecular structure.

Boron-rich carbides, nitrides, oxides, and borides of light elements with polar covalent and/or partially ionic bonding represent a large group of materials with prospective applications due to a number of unusual and potentially useful properties.^{9,17} Our finding of the ISPhT in γ -B₂₈ suggests that the same or similar mechanism, involving rapid pressure- or chemically induced changes in chemical bond-

FIG. 7. The generalized Lyddane-Sachs-Teller parameter $\xi = \prod_{i=1}^{n} (\omega_{i}^{\text{LO}} / \omega_{i}^{\text{TO}})^{2}$ of γ -B₂₈ (ω_{i}^{LO} and ω_{i}^{TO} are calculated frequencies of longitudinal- and transversal-optical IR-active modes) as a function of pressure. The decrease in ξ with pressure indicates that the covalent bonding in γ -B₂₈ becomes less polar under compression.

ing, could drive isostructural transformations in other boronrich phases as well.

ACKNOWLEDGMENTS

We thank S. van Smaalen, S. Mondal, A. S. Mikhaylushkin, S. I. Simak, and I. A. Abrikosov for very useful discussions. E.Z., N.D., and L.D. acknowledge financial support of German Science Foundation (DFG) and Elite Network Bayern (ENB). R.C. acknowledges support from CINES under Grant No. stl2816.

- *Author to whom correspondence should be addressed; natalia.dubrovinskaia@geow.uni-heidelberg.de
- ¹P. W. Bridgman, Proc. Am. Acad. Arts Sci. **62**, 207 (1927).
- ²H. Rosner, D. Koudela, U. Schwarz, A. Handstein, M. Hanfland, I. Opahle, K. Koepernik, M. D. Kuz'min, K.-H. Müller, J. A. Mydosh, and M. Richter, Nat. Phys. 2, 469 (2006).
- ³S. Lee, A. Pirogov, M. Kang, K.-H. Jang, M. Yonemura, T. Kamiyama, S.-W. Cheong, F. Gozzo, N. Shin, H. Kimura, Y. Noda, and J.-G. Park, Nature (London) **451**, 805 (2008).
- ⁴Y. W. Long, N. Hayashi, T. Saito, M. Azuma, S. Muranaka, and Y. Shimakawa, Nature (London) **458**, 60 (2009).
- ⁵A. Y. Kuznetsov, V. P. Dmitriev, O. I. Bandilet, and H.-P. Weber, Phys. Rev. B **68**, 064109 (2003).
- ⁶E. Yu. Zarechnaya, L. Dubrovinsky, N. Dubrovinskaia, N. Miyajima, Y. Filinchuk, D. Chernyshov, and V. Dmitriev, Sci. Technol. Adv. Mater. 9, 044209 (2008).
- ⁷E. Yu. Zarechnaya, L. Dubrovinsky, N. Dubrovinskaia, Y. Filinchuk, D. Chernyshov, V. Dmitriev, N. Miyajima, A. El Goresy, H. F. Braun, S. Van Smaalen, I. Kantor, A. Kantor, V. Prakapenka, M. Hanfland, A. S. Mikhaylushkin, I. A. Abrikosov, and S. I. Simak, Phys. Rev. Lett. **102**, 185501 (2009).
- ⁸A. R. Oganov, J. Chen, C. Gatti, Y. Ma, Y. Ma, C. W. Glass, Z. Liu, T. Yu, O. O. Kurakevych, and V. L. Solozhenko, Nature

- (London) 457, 863 (2009); 460, 292 (2009).
- ⁹B. Albert and H. Hillebrecht, Angew. Chem., Int. Ed. **48**, 8640 (2009).
- ¹⁰T. Ogitsu, F. Gygi, J. Reed, Y. Motome, E. Schwegler, and G. Galli, J. Am. Chem. Soc. **131**, 1903 (2009).
- ¹¹R. J. Nelmes, J. S. Loveday, D. R. Allan, J. M. Besson, G. Hamel, P. Grima, and S. Hull, Phys. Rev. B 47, 7668 (1993).
- ¹²D. N. Sanz, P. Loubeyre, and M. Mezouar, Phys. Rev. Lett. 89, 245501 (2002).
- ¹³M. I. Eremets, V. V. Struzhkin, H.-k. Mao, and R. J. Hemley, Science **293**, 272 (2001).
- ¹⁴X. Gonze, G.-M. Rignanese, and R. Caracas, Z. Kristallogr. **220**, 458 (2005).
- ¹⁵H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).
- ¹⁶E. Yu. Zarechnaya, N. Dubrovinskaia, and L. Dubrovinsky, High Press. Res. **29**, 530 (2009).
- ¹⁷N. Vast, S. Baroni, G. Zerah, J. M. Besson, A. Polian, M. Grimsditch, and J. C. Chervin, Phys. Rev. Lett. **78**, 693 (1997).
- ¹⁸A. Polian, S. Ovsyannikov, M. Gauthier, P. Munsch, J.-C. Chervin, and G. Lemarchand, in *High Pressure Crystallography: From Fundamental Phenomena to Technological Applications*, edited by E. Boldyreva and P. Dera, NATO Science for Peace and Security Series B: Physics and Biophysics XIV

(Springer, Dordrecht, Netherlands, 2010), pp. 241-250.

- ¹⁹R. J. Nelmes, J. S. Loveday, R. M. Wilson, W. G. Marshall, J. M. Besson, S. Klotz, G. Hamel, T. L. Aselage, and S. Hull, Phys. Rev. Lett. **74**, 2268 (1995).
- ²⁰E. Yu. Zarechnaya, N. Dubrovinskaia, L. Dubrovinsky, Y. Filinchuk, D. Chernyshov, and V. Dmitriev, J. Cryst. Growth **312**, 3388 (2010).
- ²¹Y. Le Godec, O. O. Kurakevych, P. Munsch, G. Garbarino, and V. L. Solozhenko, Solid State Commun. **149**, 1356 (2009).
- ²²T. Balic-Žunić and I. Vicković, J. Appl. Crystallogr. **29**, 305 (1996).
- ²³B. Johansson and S. Li, Philos. Mag. **89**, 1793 (2009).
- ²⁴Y. Akahama, M. Kobayashi, and H. Kawamura, J. Phys. Soc. Jpn. **60**, 3211 (1991).
- ²⁵F. Occelli, D. L. Farber, J. Badro, C. M. Aracne, D. M. Teter, M. Hanfland, B. Canny, and B. Couzinet, Phys. Rev. Lett. 93, 100 (2010).

095502 (2004).

- ²⁶A. Chatterjee, A. K. Singh, and A. Jayaraman, Phys. Rev. B 6, 2285 (1972).
- ²⁷M. Chefki, M. M. Abd-Elmeguid, H. Micklitz, C. Huhnt, W. Schlabitz, M. Reehuis, and W. Jeitschko, Phys. Rev. Lett. 80, 802 (1998).
- ²⁸R. Caracas and X. Gonze, Phys. Rev. B 69, 144114 (2004).
- ²⁹A. Svane, P. Strange, W. M. Temmerman, Z. Szotek, H. Winter, and L. Petit, Phys. Status Solidi B **223**, 105 (2001).
- ³⁰C. S. Yoo, B. Maddox, J.-H. P. Klepeis, V. Iota, W. Evans, A. McMahan, M. Y. Hu, P. Chow, M. Somayazulu, D. Häusermann, R. T. Scalettar, and W. E. Pickett, Phys. Rev. Lett. **94**, 115502 (2005).
- ³¹C. Kittel, *Einführung in die Festkörperphysik*, 9th ed. (R. Oldenbourg, München, 1991).