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ABSTRACT

Context. The presence of celestial companions means that any planet may be subject to three kinds of harmonic mechanical forcing:
tides, precession/nutation, and libration. These forcings can generate flows in internal fluid layers, such as fluid cores and subsurface
oceans, whose dynamics then significantly differ from solid body rotation. In particular, tides in non-synchronized bodies and libration
in synchronized ones are known to be capable of exciting the so-called elliptical instability, i.e. a generic instability corresponding to
the destabilization of two-dimensional flows with elliptical streamlines, leading to three-dimensional turbulence.

Aims. We aim here at confirming the relevance of such an elliptical instability in terrestrial bodies by determining its growth rate, as
well as its consequences on energy dissipation, on magnetic field induction, and on heat flux fluctuations on planetary scales.
Methods. Previous studies and theoretical results for the elliptical instability are re-evaluated and extended to cope with an astro-
physical context. In particular, generic analytical expressions of the elliptical instability growth rate are obtained using a local WKB
approach, simultaneously considering for the first time (i) a local temperature gradient due to an imposed temperature contrast across
the considered layer or to the presence of a volumic heat source and (ii) an imposed magnetic field along the rotation axis, coming
from an external source.

Results. The theoretical results are applied to the telluric planets and moons of the solar system as well as to three Super-Earths: 55
CnC e, CoRoT-7b, and GJ 1214b. For the tide-driven elliptical instability in non-synchronized bodies, only the Early Earth core is
shown to be clearly unstable. For the libration-driven elliptical instability in synchronized bodies, the core of o is shown to be stable,
contrary to previously thoughts, whereas Europa, 55 CnC e, CoRoT-7b and GJ 1214b cores can be unstable. The subsurface ocean of
Europa is slightly unstable. However, these present states do not preclude more unstable situations in the past.

Key words. Hydrodynamics - Instabilities - Planets and satellites: interiors - Planets and satellites: dynamical evolution and stability
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1. Introduction

The flows in fluid layers of planets and moons are of major inter-
est because they imply first order consequences for their internal
dynamics and orbital evolutions. Indeed, internal flows create
torques on solid layers and induce energy dissipation. Moreover,
internal flows are directly responsible for the generation of mag-
netic fields, either by induction of an existing background mag-
netic field or by excitation of a self-sustained dynamo. Finally,
planetary heat fluxes are also directly linked to flows in fluid lay-
ers, which can act as thermal blankets for stably stratified con-
figurations, or as efficient heat flux conveyers in the case of con-
vective flows.

Planetary fluid layers are subject to body rotation, which
implies that inertial waves can propagate through them (e.g.
Greenspan 1968). Usually damped by viscosity, these waves can,
however, be excited by longitudinal libration, precession, and
tides, which are harmonic mechanical forcings of azimuthal pe-
riodicity m = 0, 1, and 2, respectively. The fluid response to
such forcings in ellipsoids is a long-standing issue: see e.g. for
longitudinal libration Aldridge & Toomre (1969), Noir et al.
(2009), Calkins et al. (2010), Sauret et al. (2010), Chan et al.
(2011a) and Zhang et al. (2011), for latitudinal libration, Chan
et al. (2011b), for precession, Poincaré (1910), Busse (1968),
Cébron et al. (2010b), Kida & Nakazawa (2010); Kida (2011)

* corresponding author: cebron@irphe.univ-mrs.fr

and Zhang et al. (2010), and for tides, Ogilvie & Lin (2004),
Ogilvie & Lin (2007), Tilgner (2007), Rieutord & Valdettaro
(2010) and Morize et al. (2010). In these studies, it has been
shown that the dynamics of a fluid layer is completely modi-
fied when the forcing resonates with an inertial wave. In addi-
tion to these direct forcings, inertial waves can also form tri-
adic resonances, leading to parametric inertial instabilities. For
instance, the so-called shear instability can be excited by preces-
sion (Kerswell 1993b; Lorenzani & Tilgner 2001, 2003), and the
elliptical instability can be excited by tides in non-synchronized
bodies (Malkus 1989; Rieutord 2000) and by librations in syn-
chronized ones (Kerswell & Malkus 1998).

The elliptical instability is a generic instability that affects
any rotating fluid whose streamlines are elliptically deformed
(see the review by Kerswell 2002). A fully three-dimensional
turbulent flow is excited in the bulk as soon as (i) the ratio be-
tween the ellipticity of the streamlines 8 and the square root of
the Ekman number E (which represents the ratio between the
viscous over the Coriolis forces) is more than a critical value
on the order of one and (ii) as soon as a difference in angular
velocity exists between the mean rotation rate of the fluid and
the elliptical distortion. In a planetary context, the ellipticity of
streamlines is related to the gravitational deformation of all lay-
ers of the considered body, coming from the static and periodic
terms of the tidal potential, as well as from a potential frozen
bulge. The differential rotation between the fluid and the ellipti-
cal distortion can be oscillatory when caused by libration in syn-
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Fig. 1. Sketch of the problem studied in this work. With the mean ro-
tation rate of the fluid Q, we define the dimensionless orbital rotation
rate ¥, and the dimensionless spin rotation rate 1 + wy,. The phase lag
between the tide and the gravitational potential of the host body is not
relevant to our purpose.

chronized systems, or stationary in non-synchronized ones. The
elliptical instability is then respectively refered to as libration-
driven elliptical instability (LDEI) and tide-driven elliptical in-
stability (TDEI). TDEI and LDEI have already been suggested
as taking place respectively on Earth (e.g. Aldridge et al. 1997)
and on Io (e.g. Kerswell & Malkus 1998). However, these previ-
ous works do not consider some planetary particularities, so they
need to be revisited. For instance, Aldridge et al. (1997) did not
take the orbital rate of the Moon into account or the magnetic
field of the Earth, thus neglecting the effects of tide rotation and
Joule dissipation on the growth of TDEI. Kerswell & Malkus
(1998) implicitly assumed that the tidal response of Io is com-
pletely fluid, neglecting the rigidity of its mantle and overesti-
mating the amplitude of librations and tidal deformations. Our
purpose here is to extend previous results of the literature on
TDEI and LDEI and to determine general formulas for quantify-
ing the presence of the elliptical instability in terrestrial bodies,
taking the relevant complexities present in natural systems into
account.

This paper is organized as follows. Section 2 presents the dif-
ferent celestial forcings that could excite an elliptical instability,
first focusing on tides in non-synchronized systems, and then on
forced and free libration in synchronized ones. In section 3, we
introduce our physical model and develop a local WKB analysis
in all configurations, including the effects of viscosity, as well
as the effects of an imposed magnetic field and a local temper-
ature gradient. These theoretical results are used in section 4 to
investigate the possible presence of any of TDEI and LDEI in
telluric planets and moons of the solar system, as well as in two
Super-Earths of extrasolar systems. The possible consequences
of those instabilities are finally considered.

2. From celestial mechanics to the excitation of an
elliptical instability

Figure 1 presents a sketch of the problem considered in this
work. We consider a telluric body of rotation rate ;;,, orbiting
around an attractor (orbit in black dashed line) at the orbital rate
Q,,». This body has a radius R, a mass M, and a fluid layer in its

Table 1. List of the different astrophysical configurations that could lead
to an elliptical instability (E.I) in a planetary fluid layer (liquid core,
subsurface ocean) of a non synchronized or a synchronized celestial
body.

State Origin Origin AQ E.I
of AQ of 8

Non-sync. | spin rotation D.T.¢ Qspin = Qo TDEI
Non-sync. impact S.B.4 spin-up process TDEI
Sync. forced O.L? D.T. 2eQ cos(2at/T,,) | LDEI
Sync. forced P.LY S.B. eQcos(2nt/T,,) | LDEI
Sync. free P.L S.B. €Q cos(Wjreet) LDEI
Sync. any P.L S.B.,D.T. zonal flow* TDEI

B is the ellipticity of the boundaries distortion, AQ is the differential

rotation rate between the fluid and the elliptical deformation, Q is the
mean spin rate of the planet, € is the physical libration amplitude,
T, and e are the orbital period and eccentricity, and wy.. is the free
libration frequency.

¢ D.T. stands for dynamic tides and S.B stands for static bulge.
> O.L. and P.L stand respectively for optical and physical libration.
¢ Case equivalent to a non-synchronized case (cf. section 2.2.2).

interior between an external radius R, and an internal radius R;,
typically a liquid outer core. We suppose that this internal fluid
layer is enclosed between an external elliptically deformed solid
layer and a possible inner core, such as the outer liquid core of
the Earth or the subsurface ocean of Europa. The elliptical de-
formation can admit different origins. First, in the presence of an
orbiting companion, the elliptical deformation can come from
the static and periodic terms of the tidal potential as seen from
the mantle frame of reference. In this case, periodic terms lead
to tides, and the static term leads to the so-called static (tidal)
bulge (the solid layer behaves as a fluid layer on the long term).
Second, a so-called frozen bulge, resulting from previous states,
may exist, as for instance in the Moon (Garrick-Bethell et al.
2006). In this case, the body is not in hydrostatic equilibrium.
For our purpose, it is sufficient to distinguish between the re-
sponse to tidal potential periodic terms, which we call the dy-
namic tides, and a permanent (or very slowly changing) bulge,
either owing to the tidal potential static terms or due to a frozen
bulge, which we call a static bulge. The usual phase lag between
the tide and the gravitational potential of the host body, which is
due to internal dissipation, is not relevant for our purpose so is
forgotten. Three dimensionless numbers are needed to describe
the system: (i) the ellipticity S of the elliptical deformation, (ii)
the Ekman number £ = v/(Q R%), where v is the fluid kine-
matic viscosity, R, the outer radius of the rotating fluid, and Q
its typical angular velocity before any instability, equal to the
mean value of the (possibly varying) mantle spin rate €,;,(),
(iii) the differential rotation AQ between the fluid and the ellip-
tical distortion, non-dimensionalized by the fluid rotation rate,
AQ/Q. We distinguish two cases: a non-synchronized body, and
a synchronized body. In the former, over one spin period, a mean
differential rotation exists between the elliptical deformation and
the fluid, whereas in the latter the mean rotation rates of the de-
formation and of the fluid are equal. The different cases are de-
scribed in the following and summarized in Table 1.

2.1. Non-synchronized bodies

For a non-synchronized body, we consider two cases depending
on the origin of the elliptical shape. First, if the spin rate of the
mantle Q;, is constant, a TDEI can be excited by the tidal ellip-
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tical distortion due to dynamic tides, which rotate at the orbital
velocity Q,,,. This is the standard configuration considered for
instance by Craik (1989), who showed that TDEI is indeed pos-
sible except in a forbidden zone Qi /Q0 € [—1;1/3], where
no triadic resonance is possible.

Second, if the elliptical shape comes from a static bulge, a
non-zero mean differential rotation over one spin period implies
that the fluid does not rotate at the same rate as the mantle, which
corresponds to a spin-up or a spin-down process. This can occur,
for instance, transiently after a large meteoritic impact, which
is capable of fully desynchronizing the body (see for instance
the considered scenario for explaining the Moon’s magnetic field
by Bars et al. 2011). In this case, a differential rotation exists
between the fluid and the mantle with its static bulge, up to the
typical spin-up/spin-down time necessary for the fluid to recover
the mantle velocity (Greenspan 1968), i.e. up to
tspin—up = Q_] E_l/z-

spin ( 1 )
Then, if the growth time of the TDEI is short enough compared
to the spin-up time, one can expect a quasi-static evolution of
the system, where the modification of the spin rate of the fluid
is neglected during the growth of the instability: the former con-
figuration is then transiently recovered.

2.2. Synchronized bodies

In the synchronized case, even if there is no mean differential
rotation between the elliptical deformation and the fluid, oscilla-
tions can nevertheless occur for different reasons. For the study
of the elliptical instability, it is necessary to know the amplitude
of these oscillations, which depends on their origins. We distin-
guish below the forced librations caused by gravitational inter-
actions with other celestial bodies, and free librations induced
for instance by a meteoritic impact.

2.2.1. Forced librations

In forced librations, static bulge and dynamic tides have
to be considered simultaneously. To illustrate this, following
Goldreich & Mitchell (2010), we consider a simple toy model
without any internal dissipation: a synchronously spinning satel-
lite, with an elastic outer shell and a homogeneous fluid interior,
moving on an elliptic orbit. The orbital velocity changes along
the orbit, and writes at first order in the orbital eccentricity e as

@)

where Q is the mean value of the mantle spin rate €,;,(?).
Considering the influence of the orbital velocity variations on
the satellite dynamics, we expect two limit cases: (i) if the rigid-
ity of the elastic shell is zero or if the planet spin rate is low
enough for the shape of the planet to have time to adapt to the
gravitational constraints, the shell slides over the fluid and main-
tains its equilibrium shape, with the long axis of the ellipsoidal
figure pointing toward the companion body; (ii) if the rigidity
of the elastic shell is strong enough or if the planet spin rate is
rather high, the entire satellite rotates rigidly with a fixed shape.

In the first case, only the elastic energy E,,s varies: the
meridians of the shell are stretched and compressed due to the
rotation, whereas the spin velocity of the satellite remains con-
stant. This is the so-called optical libration. In the second case,
only the gravitational energy E,,, varies and the spin velocity of
the satellite changes, which corresponds to the so-called physi-
cal libration.

Qorp = Q (1 +2ecosQr),

In both cases, the libration period remains small compared
to the typical spin-up/spin-down time (1), which means that the
fluid does not follows the solid boundaries because it never has
enough time to adapt to the periodic velocity fluctuations and
continues to rotate at the constant synchronous rotation rate €2.
This is the so-called no spin-up condition. In the first case, there-
fore, a differential rotation exists between the fluid rotating at
the constant rate Q and the dynamic tides rotating at the oscil-
lating orbital velocity, AQ/Q = 2ecosQt. An LDEI can thus
be excited by this optical libration, as shown theoretically by
Kerswell & Malkus (1998) and Herreman et al. (2009). In the
second, a differential rotation ACQ/Q = ecos Qf exists between
the fluid rotating at the constant rate  and the static bulge sub-
ject to physical librations of amplitude €, which depends on the
internal structure of the satellite. The amplitude of the physi-
cal librations € is always less than the 2e extreme value given
by optical libration, because of different internal torques such as
the gravitational torque and elastic strain torque (see for instance
Van Hoolst et al. 2008, 2009).

With the more general case of an arbitrary torque applied to
the shell, Goldreich & Mitchell (2010) estimated the ratio R =
Eelas/Egrav by

%_327r1+\7(1+kf)2ﬂdR3
5 5+v  kf  GM?

3)

where ¥ is the Poisson ratio, k; the fluid Love number, fi the shell
rigidity, R and d the mean radius and the thickness of the shell,
M the mass of the satellite. According to Goldreich & Mitchell
(2010), typical values give R ~ 1072 for the subsurface ocean of
Europa, and R ~ 0.1 for the subsurface ocean of Titan, whereas
the silicate mantle of Io is expected to behave in the limit R > 1.
Because of the visco-elastic rheology of real bodies, the effec-
tive response should be between these two extrem cases given
by this model. Goldreich & Mitchell (2010) argue that the total
increase in energy would be minimal, which leads us to consider
that Europa and Titan, for instance, behave like entirely fluid
satellites. In contrast, Karatekin et al. (2008), Van Hoolst et al.
(2008, 2009), and Baland & Van Hoolst (2010) consider that the
arguments proposed by Goldreich & Mitchell (2010) are unreal-
istic on short timescales, hence that the rheology does not allow
the bodies to reach their minimal energetic state. They assume
that they behave rigidly, however, large libration may still be due
to resonances with free libration modes, which may be reached
for thin ice shells (Baland & Van Hoolst 2010). In addition to
the displacements of the ice shell and mantle induced by gravi-
tational interactions, relatively large longitudinal displacements
may also be induced directly in the fluid layers by the periodical
part of the tidal potential (Tobie et al. 2005). This would consti-
tute a supplementary origin for a non-zero differential rotation
between the fluid and the deformation. Either way, all these is-
sues are still being debated and are clearly beyond the scope of
the present paper. All that is needed here is to know the ampli-
tude of the relative motion between the elliptical distortion and
the fluid. In the following, we consider the full range of con-
figurations up to a maximum distortion amplitude given by the
extreme value of optical libration.

2.2.2. Free librations

After a meteoritic impact, for instance, so-called free librations
can occur on the typical resynchronization time (e.g. Williams
et al. 2001). Following the no spin-up condition explained in
section 2.2.1, the fluid keeps rotating at the orbital velocity (syn-
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chronized state), while the mantle librates around this mean
value. The amplitude € of the free librations depends initially on
the impact strength and decreases through time, and the libration
frequency remains equal to a proper frequency of the body, given
by wree = QV3(B - A)/C at first order in the orbital eccentric-
ity, where (A, B, C) are the three principal moments of inertia of
the body (see for instance Lissauer 1985). Considering a static
bulge, free librations can thus drive an LDEI from the differen-
tial rotation AQ/Q = €cos(wyret), providing that the growth
time of the instability is shorter than the resynchronization time,
as shown in section 3.5.

2.2.3. Zonal wind induced by physical librations

Finally, in all scenarios involving physical librations, it has re-
cently been determined analytically by Busse (2010), and con-
firmed experimentally and numerically by Sauret et al. (2010),
that non-linearities in the Ekman layer driven by the librating
rigid boundaries induce a differential rotation in the fluid of am-
plitude AQ/Q = —0.154 (6w,/Q)?, where @ is the amplitude
angle of the libration and w, its frequency. TDEI can thus be ex-
cited by this differential rotation with both static bulge and dy-
namic tides. Nevertheless, the differential rotation generated by
this process is always very small. We do not expect this mecha-
nism to play an important role in a planetary context, since it is
always dominated by LDEI, but it is worth here mentioning its
existence since it may be relevant in certain astrophysical cases.

2.3. Typical amplitudes of gravitational distortions

The amplitude S of gravitational distortions, defined here as 8 =
|a% - a§| / (a% + a%), where a; and a, are respectively the long and
short axes of the outer boundary of the considered fluid layer,
is generally unknown for celestial bodies. To study the elliptical
instability for real cases, we need to estimate it, for instance by
assuming an hydrostatic equilibrium shape.

The equilibrium shape of a body of mass M and radius R,
is an old problem that begins with the static bulge theory of
Newton (1686). This classical theory considers an incompress-
ible no-spinning body at rest, deformed by a tidal field at leading
order in R/ D, which leads to a spheroidal shape and

3M, R®

F=3wpr @
where M, is the mass of the body responsible for the gravita-
tional field and D the distance between the two bodies. This tide
is sometimes referred to as the marine tide, where the gravita-
tional potential of the tidal bulge is neglected. This approxima-
tion always leads to a relevant but underestimated tidal deforma-
tion. When possible, we use in the following a better estimate of
[ that takes the density distribution in the body and the gravita-
tional potential of the tidal bulge into account:

3 MR
,3=§h2ﬁ2§ ()

with the radial displacement Love number /,, directly linked to
the potential Love number k, by hy = 1 + k. A typical value is
ko, = 3/2, obtained for an incompressible homogeneous body in
hydrostatic equilibrium (e.g. Greff-Lefftz et al. 2005). The tidal
Love numbers can be calculated with the Clairaut-Radau theory
(see e.g. Van Hoolst et al. 2008).

As shown by equation (5), gravitational distortions vary with
the interbody distance D. They can thus be divided into a compo-
nent of constant amplitude, corresponding to the mean value of

Iso-V
Velocity field

gravity oriented by g = _ﬁy

0.9
N (1)

0.7

0.5

0.3
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Temperature 0, PV, 9V,
o, U

Tidally deformed layer
ellipticity B

(a)

Fig. 2. Description of an internal liquid layer. The tidal forces deform
the core-mantle boundary (CMB) in an ellipse of axes a; and a,, which
leads to an ellipticity B of the streamlines. In this layer, the fluid is ro-
tating at the rate Q.

the gravitational distortion along the elliptic orbit, plus a smaller
component with an amplitude oscillating between +3e times the
constant one (e.g. Greenberg et al. 2003). In real cases that we
consider in the following, this oscillating component can be ne-
glected since it will always have a second-order influence on the
elliptical instability compared to the constant (static or dynamic)
component of B (but see appendix C). Nevertheless, in synchro-
nized satellites, these so-called diurnal tides have important con-
sequences for the internal state and the orbital evolution, since
the changing shape of the bulge generates time-varying stresses,
which generate heat by viscosity or friction. Besides, as shown
by Tobie et al. (2005), these diurnal tides should also induce
longitudinal motions in the fluid layers, which constitute a sup-
plementary origin of a non-zero differential rotation between the
fluid and the deformation. As already mentioned above, in the
context of the present study, this additional component is fully
included in the amplitude of the considered physical libration
available to drive the elliptical instability.

3. Generic formulas for the growth rate of the
elliptical instability in a planetary context

3.1. Model, equations, and dimensionless parameters

We consider a telluric celestial body in the general framework
sketched in figure 1, and we focus on a liquid layer described in
figure 2. All dimensional parameters are listed in Table 2. The
instantaneous spin rotation rate Q,;, = Q (1 + w()) may de-
pend on time because of either free or forced physical librations.
We focus on an internal fluid layer enclosed in an ellipsoidal
shell, with an outer boundary of mean radius R, at temperature
6,, and an inner boundary at temperature 6;, with a mean radius
Ry = nR,. As already seen above, because of the no spin-up
condition, this fluid layer is initially rotating at the constant rate
Q, equal to the mean value of €,;,. This layer is considered to
be homogeneous, with density pg, kinematic viscosity v, ther-
mal expansion ¥, thermal diffusivity vy, electrical conductivity
o, and magnetic permeability 4. We focus here on the stability
of the elliptical flow in the equatorial plane, but note that our
local analysis remains valid in any plane orthogonal to the rota-
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Table 2. List of the dimensional variables used in this work.

Orbital rotation rate Q.5 (1)
Spin rotation rate Q,pin(1)
Fluid rotation rate* Q
Mass of the deformed body M
Mass of the attractor M,
Inter-body distance D

Free libration angular frequency Wfree
Fluid layer mean external radius R,
Long/short axis in the equatorial plane  a;/a;
Fluid layer mean internal radius R; = 1R,
Imposed external temperature 6,
Imposed internal temperature 0,
Gravity at the external radius g0
Imposed magnetic field By ey,
Fluid density 00
Fluid kinematic viscosity v

Fluid thermal expansion 9
Fluid thermal diffusivity Vin
Fluid electrical conductivity T,
Fluid magnetic permeability u

“mean value of the spin rate.

tion axis. We choose R; as the length scale and Q! as the time
scale so that the mean basic spin of the body has an unit angular
velocity along the rotation axis (O, ey,). The elliptical deforma-
tion has a dimensionless angular velocity y(, ex,, with v, equal
to Q,5(1)/Q when looking at dynamic tides and to €, ()/Q
when looking at static bulges (see Table 1).

We consider the frame where the elliptical distortion is fixed,
which is rotating at the angular velocity 7y, ex,, with e, in the
direction of the long axis a; and ey, in the direction of the short
axis ap. The dimensionless equations of fluid motions are

v-u=0, (6)
0 d
a—ltl+27ex3><u+%ex3xr+u-Vu+Vp=EV2u+f, @)

where u is the fluid velocity; p the pressure (including the cen-
trifugal term) non-dimensionalized by py R:2 Q% E = v/(QR?)
the Ekman number based on the external radius; and f = fg + fj,
the volumic force, including the buoyancy force fg and the
magnetic Lorentz force fy,. The flow is rotating within an el-
lipse x?/a? + x3/a3 = 1, and we define the ellipticity as 8 =
|a% - a%l/(a% + a%).

Using the dimensionless temperature 6 = B —6,)/(6; — 6),
the temperature equation is
00 E _,
Ve = — (V20 - k), 8)
where Pr = v/vy, is the thermal Prandtl number and K stands
for a possible volumic heat source. Considering a gravity g =
&(r»)80€g, Where €, is a unit vector, (r,¢) the cylindrical co-
ordinates in the equatorial plane, and gy the gravity at the ra-
dius R;, the dimensionless buoyancy force to add in the Navier-
Stokes equations using the Boussinesq approximation is fg =
Ra 6 g(.4) €, with the modified Rayleigh number Ra = ¢ [6; -
6,1g0/Q?R;. In a planetary context, the temperature contrast to
take into account only corresponds to the non-adiabatic compo-
nent, which is the deviation from the thermodynamical equilib-
rium state.

We also take the possible presence of an uniform imposed
magnetic field By along the rotation axis ey, into account, which

Table 3. List of relevant dimensionless parameters.

Aspect ratio of the shell n

Ellipticity of the distortion B = (a? —a3)/(a} + a3
Distortion rotation rate Yo

Orbital eccentricity e

Physical libration rate W)

Physical libration amplitude €

Volumic heat source K

Ekman number E =v/(QR)?)

Thermal Prandtl number Pr=v/vy

Magnetic Prandtl number Pm=oc,uv

Modified Rayleigh number Ra = 9 [0, — 6,180/ VR,
Magnetic Reynolds number ~ Rm = o, u QR,>
Elsasser number A =0, B/(po Q)

is used as the magnetic field scale. The magnetohydrodynamic

(MHD) equations then have to be solved simultaneously
V-B=0 ©)

(10)

0B
—+@u-V)B
ot @-V)
with the magnetic Reynolds number Rm = o, u QR,>. The
magnetic Lorentz force acting on the flow is given by fi, =
(A/Rm) (VxB)xB, with the Elsasser number A = o, BS/(po Q).
All dimensionless parameters are listed in Table 3.

1
B-V)u+ — V’B
Rm

3.2. Base fields

In the reference frame where the elliptical deformation is sta-
tionary, the differential rotation of the fluid has an amplitude
1 - y¢. Besides this, the ellipticity induces an elongational flow
—(1=v@) B (x2 ey, +x1 €y,), leading to the general elliptical base
flow

U=(~0-yp) [ +Bxex, + (1 -p)x1ey,] (1)

This flow represents the laminar response of the fluid to the tidal
distortion as an exact, non-linear solution of Navier-Stokes equa-
tions for any finite viscosity, provided that (V x f) - e3 = 2 d,y(?).
This means that a body volumic force noted f is necessary to
have spin period fluctuations (i.e. free or forced physical libra-
tions), as is obvious in a planetary context. Equation (11) leads to
elliptical streamlines of instantaneous ellipticity 8. We note that
B is not the mathematical eccentricity of the streamlines, given
by +/28/(1 + ). Also the velocity magnitude changes along a
streamline, where the isovalues of the velocity are elliptical but
with an ellipticity 2 8.

We further assume that a stationary temperature profile
B(r, ¢) is imposed, which is, at order 1 in B, the solution of
the energy conservation equation (8) with the base field U. We
suppose that the modified Rayleigh number Ra is such that
Ra = O(B). We also consider the presence of an imposed uniform
magnetic field along the rotation axis, produced for instance by
a companion body. We assume that the Lorentz force does not
modify the base flow but only plays a role on the elliptical insta-
bility. This implies that this force is O(B). In this context, we see
below that, regarding the elliptical instability, equations for fluid
motions on the order of 0 in S are similar to those in the purely
hydrodynamical case, where the elliptical instability is described
as a resonance between two inertial waves. The magnetic and
thermal fields only induce a correction in the fluid equations on
the order of 1 in 3, hence a correction of the growth rate of the
instability, because of the stabilizing effect of the Lorentz and
buoyancy forces.
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3.3. The WKB method: stability along a streamline

Our local approach is based on the short—wavelength Lagrangian
theory developed in Bayly (1986), Craik & Criminale (1986),
then generalized in Friedlander & Vishik (1991) and Lifschitz
& Hameiri (1991). This method has been successfully applied
to the elliptical instability by Le Dizes (2000), then extended to
take the energy equation and the buoyancy force into account
(Le Bars & Le Dizes 2006), or the induction equation and the
Lorentz force Herreman et al. (2009). To summarize, the WKB
(Wentzel-Kramers-Brillouin) method consists of looking for a
perturbed solution of the equations of motion under the form of
localized plane waves along the streamlines of the base flow. We
thus look for a solution of the linearized non-dimensional system
of equations (6, 7, 8, 9, 10) in the form

Uy = U+u'(r) 0%, (12)
P = P+p'(0) X, (13)
O = O + 0 (1) O, (14)

B, = By +b(1) O, (15)

along the streamlines of the base flow described by

dx

— -, 16
7 (16)

where K(;) is the time-dependent wave vector, x the position vec-
tor, and where U (with its corresponding pressure field P), ® and
By = (0,0, 1) are the dimensionless base fields defined in section
3.2. Dropping the primes for simplicity, the linearized system of
equations writes as

k-u=0 (17)
du +iudk-x)+i(U-Ku+@-V)U+2y, e Xu
A .
= —ipk—szu+R—(ikxb)xB0+Ra0geg (18)
m
E
d,o + ie(d,k-x)+i(U-k)9+(u-V)G)=—k2P—9 (19)
r
k-b=0 (20)
db +ibdk-x)+i(U-K)b
k2
= b-VYU+iBy-k)u- — b. (1)
Rm

Those equations can be decoupled in space and time to give
an equation for the wave vector only:

dk-x+U-k=0. (22)
The solution of the remaining equations for u, 6, b is then sought
under the form of a Taylor expansion in g8 of all variables, as
illustrated in appendices A and B.

This approach is used in the following sections to calculate
the growth rate of the instability in the two generic cases: the
TDEI, which appears in the case of non-synchronized bodies,
and the LDEI, which appears in the case of synchronized bodies.

3.4. Non-synchronized bodies: inviscid growth rate of the
TDEI

In this section, we consider the effects of dynamic tides of am-
plitude S on the liquid core of a Mercury-like planet orbiting
close to its star with (i) constant but different orbital and side-
real rotation periods, (ii) an imposed thermal stratification (see

e.g. Manglik et al. 2010), and (iii) an externally imposed mag-
netic field (e.g. the Sun magnetic field). The same analysis ap-
plies to the stratified zone of a star (the so-called radiative zone)
tidally deformed by a companion body, taking the magnetic field
generated by dynamo in its convective zone into account. The
present configuration corresponds to the standard case of the el-
liptical instability as already known, but completed by the com-
plexities present in real astrophysical cases. These additive ef-
fects have already been studied separately, even if they are si-
multaneously present in real systems. The effect of the angu-
lar velocity of the tidal bulge has been studied in Miyazaki &
Fukumoto (1992), Le Dizes (2000), Le Bars et al. (2007) and
Le Bars et al. (2010) and the presence of a thermal field has
been studied in Le Bars & Le Dizes (2006), who study the lin-
ear competition between the growths of the TDEI and the con-
vection, as well as in Cébron et al. (2010c) and Lavorel & Le
Bars (2010), who study the growth of the TDEI over established
convective flows. The presence of an inner solid core has been
studied in Lacaze et al. (2005) and of an external magnetic field
in Kerswell (1994), Kerswell (2002), Lacaze et al. (2006) and
Herreman et al. (2009). We extend these works by including all
of these features in a single formula.

In the non-synchronized case, which is considered in this
section, the base flow (11) reduces to

U= (] - Qorb/Qspin) [_(1 +ﬂ)x2ex1 + (] _ﬁ)xlexz]' (23)

The WKB analysis is then tractable (see appendix A), taking
thermal and magnetic effects into account in the limit where
buoyancy and Lorentz forces are on the order of 8. The insta-
bility does not exist in the range .,/ € [—1;1/3], which
is called the forbidden band. It corresponds to the absence of
resonance between the elliptical forcing and the inertial waves
of the rotating flow (see Le Bars et al. 2007, for a complete dis-
cussion). In the present limit, the presence of the thermal and
magnetic fields does not affect the forbidden band. Neglecting
the thermal diffusion, the inviscid growth rate of the TDEI with
the presence of thermal and magnetic fields is

~ 2
(200 +3 g2 = 4 (Ra 1 6,0) A
iny = 1611 + QP T4+ Qop

with Q% = Q.5 /(Qspin — Qorp), 7 the radius and 8,6 the dimen-
sionless temperature base-field radial gradient on the considered
streamline. This expression allows to recover the different cases
already obtained in the literature. For instance, the purely hydro-
dynamic growth rate given by Miyazaki & Fukumoto (1992),
Le Dizes (2000), and Le Bars et al. (2010) is recovered for
(Ra = 0, A = 0). For a fixed elliptical deformation, we recover
the classical inviscid value o7, /8 = 9/16. Finally, in the absence
of a thermal field and with a stationary bulge (Q,,, = 0, Ra =0),
the magnetic case given in Herreman et al. (2009) is also recov-
ered. Formula (24) is fully generic and clearly illustrates the sta-
bilizing influence of Joule dissipation and of a local stratification
in the range of validity of this stability analysis (see section 3.7
and appendix D).

(24)

3.5. Synchronized bodies: inviscid growth rate of the LDE]

In this section, we consider the liquid ellipsoidal core of a syn-
chronized moon like Io or of an extrasolar telluric planet orbiting
close to its massive attractor with (i) an orbital period equal to
the sidereal rotation period, but with small instantaneous fluc-
tuations of the differential rotation between the elliptical defor-
mation and the fluid, whatever their origin (optical or physical,
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forced or free libration, longitudinal flows induced by tides); (ii)
an imposed magnetic field (e.g. Jupiter’s magnetic field for Io);
and (iii) a local thermal gradient. The dimensionless instanta-
neous differential rotation between the fluid and the elliptic de-
formation oscillates with a libration amplitude € (equal to 2e
for optical librations) and a libration frequency w, (equal to 1
for forced librations). Considering the particular case of a fluc-
tuation due to the orbital ellipticity (i.e. w, = 1), Kerswell &
Malkus (1998) and Herreman et al. (2009) have shown that these
oscillations can lead to LDEI. We extend these previous studies
to the more general case of small fluctuations of arbitrary peri-
ods, taking buoyancy into account. Neglecting the thermal diffu-
sion, the inviscid growth rate of the LDEI is then (see appendix
B)

16 + w?
64

Oiny = (25)

4 2 wtz,
\/(GB)Z—E (Raro,0) ~TeA

o

at first order in €, taking the effects of thermal and magnetic
fields into account in the limit where buoyancy and Lorentz
forces are O(B). The forbidden band is given by |w,| > 4. As
before, the generic formula (25) clearly illustrates the stabilizing
influence of Joule dissipation and of a local stratification.

The case w, — 0 corresponds to the limit toward the fully
synchronized state. In the case of the TDEI, this limit case is
obtained with Q¢ — oo, which gives the inviscid growth rate
Tinv = B/(4QC) for large wavenumbers. Both expressions for the
growth rate are thus consistent in the limit of synchronized state:
Qorp/Qupin = 1 — € ice. |1 + QY ~ |QF] = 1/e. The expression
given in Herreman et al. (2009) is also exactly recovered when
w, = 1 and A = 0. There is a slight error on the numerator of
the magnetic damping term in Herreman et al. (2009): in their
considered case, w, = 1, the magnetic damping is erroneously
—A/16, instead of —3A/16.

3.6. Viscous dissipation

The previous sections present the calculation of the growth rate
of the elliptic instability in an inviscid fluid with Joule dissipa-
tion and buoyancy stabilization. Calculation of the threshold of
the instability requires correctly estimating all dissipative terms.
In the case of no-slip boundaries, dissipation occurs mainly in
the viscous boundary layers of thickness E'/2. This implies a
damping term that should alter the growth rate:
o= —a E'? f(), (26)
where « is a constant between 1 and 10, equal to @ = 2.62 and
fa =00+ 774)/(1 - 775) for the spinover mode of the TDEI (see
e.g. Kudlick 1966; Hollerbach & Kerswell 1995; Lacaze et al.
2005).

In addition to decreasing the growth rate, viscous dissipation
is also primordial for quantifying the orbital evolution and rota-
tional history of a binary system during its synchronization. A
model has been proposed in Le Bars et al. (2010) for Q,,, = 0,
which allows the authors to estimate the viscous power dissi-
pated by TDEI. Our purpose here is to generalize this model to
all cases studied above. Far from threshold, the model proposed
by Le Bars et al. (2010) considers that the TDEI simply corre-
sponds to a differential rotation between the boundary and the
bulk. According to this model, the power dissipated by the sys-
tem 18

P =-2M R} nQ* QE'?, 27)

assuming that in the small Ekman numbers limit reached in as-
trophysical cases, the amplitude of the instability is commensu-
rate with the differential rotation AQ (Cébron et al. 2010a).

The tidal quality factor Q is widely used in systems evolution
calculations. By analogy with the theory of harmonic oscillators,
Q is defined by (e.g. Greenberg 2009, for a recent discussion
on Q) the ratio between the maximum potential gravitational
energy stored in the tidal distortion over the energy dissipated
in one work cycle. The dissipated power associated to the flow
driven by the elliptical instability does not have the periodicity
of the forcing, so a quality factor cannot be rigorously defined
in the same way. However, we can define a closely related ratio
Q*, comparing the power typically dissipated in the fluid layer
over one revolution with the potential energy stored in the bulge,
which is on the order of Ey ~ 4mpg go s2 R2, with s the dimen-
sional height of the tides (e.g. Benest 1990). Since 8 ~ s/R,, we
obtain from equation (27)

g0 B2

¢ raE %)
The ratio Q* gives a dimensionless measure of the strength of

the dissipation in the fluid.

3.7. Validity of the approach

The previous analysis is valid when the elliptic instability
comes from a resonance of pure hydrodynamic inertial waves.
Therefore, any previously derived expressions are limited to the
case where buoyancy and Lorentz forces are O(f3). According to
(17), this means that

A -
—k~p and Ra~p, (29)
Rm
where k is the dimensionless norm of the wavevector of the ex-

cited mode. For a typical planetary core, these conditions can be
rewritten

VBIk
B() ~ Ole—E

Fnon—udiu -3 ﬂ
2p4,2°
E°R3g;

inuT and (30)

adia

where Fon-adia and F,i, are the non-adiabatic and adiabatic
components of the core heat flux, respectively. The condition
on the magnetic field is easily verified for planetary cores over a
wide range of wave vector k. The condition on the non-adiabatic
heat flux is more problematic to quantify: in most planets, the
adiabatic profile is supposed to be sufficient to transport core
heat flux, and the non-adiabatic component is estimated to be
very small, but it is not known precisely. One should notice that
the condition (30) is very restrictive, and special attention should
be paid in each given configuration. For instance, in the case of
Europa, Eq. (30) implies Fon—adia/ Fadia ~ 0.1%, which seems
reasonable; but in the case of lo, it implies Fon—adia/ Fadia ~
1%, which is only marginally verified since the estimated non-
adiabatic heat flux is about one fifth of the adiabatic component
(e.g. Kerswell & Malkus 1998).

Now supposing that the buoyancy or the Lorentz force is
on the order of 0 in 8, we can wonder if the elliptic instability
still exists. In this case, inertial waves are replaced by gravito-
inertial or magneto-inertial waves, and the elliptical instability
arises as a resonance between those modified waves. Resonances
of magneto-inertial waves has been studied, for instance, in
Kerswell (1994), Lebovitz & Zweibel (2004) and Mizerski &
Bajer (2009) in the case of an imposed uniform magnetic field
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Table 4. Physical and orbital characteristics used for the stability calcu-
lations and results.

Mercury ~ Venus  Earth  Early Earth?

M (x1072* kg) 0.330 4.87 5.98 5.98
R (km) 2440 6051 6378 6378
Typin (d) 58.6 —243 0.997 0.418
Ty (d) 87.97 224.7 27.32 9.67°
Tidal amplitude (m) 0.925¢ 1.8 0.6 34
R/R 0.8 0.17 0.55 0.55
n 0 0 0.35 0
E (x10'%) 21 316 0.11 0.047
B (measured) (x107) 7.6 ? 1.9 11
B (hydrostatic) (x107) 6.8 1.1 0.8 6.7
B¢ (nT) 2504 30 3-10% 0
By (nT) 488 6100 1.8-10° 0
A 6.4-107° 0.004 0.015 0
o (years™) -1.5-10° -543 -7.7 0.003

Following Herreman et al. (2009), we take as typical values
o, = 4-10° Sm™', py = 12 000 kgm™ and v = 10 m?s™,
consistent with a Fe/Fe-S composition.

“ Van Hoolst et al. (2007)

b Considering an Early Moon two times closer than today.

¢ Equatorial surface field

4 Anderson et al. (2010)

¢ Considering a variation in 7~ from the core to the planetary surface
(r being the spherical radius).

along the spin axis. This is the so-called magneto-elliptic insta-
bility. Resonance of gravito-inertial waves has been studied in Le
Bars & Le Dizes (2006) and Guimbard et al. (2010), who con-
cluded that a stratified field can either be stabilizing or destabi-
lizing depending on the shape of gravitational iso-potentials and
isotherms: the so-called gravito-elliptic instability. This point is
further clarified in appendix D, which shows the high sensitivity
of the elliptical instability to the specificities of the thermal and
gravity fields. Planets with buoyancy or Lorentz force on the or-
der of 0 in S8 should be the subject of specific studies, which is
beyond the scope of the generic results presented here.

4. Application to solar/extrasolar systems

Using previous results, we are now in a position to calculate the
threshold of the elliptical instability for telluric bodies of differ-
ent systems. We consider that a body is stable or unstable when
the mean value of the growth rate over an orbit is either positive
or negative.

4.1. Non-synchronized system: tide-driven elliptical instability
(TDEI)

We consider first the TDEI in liquid cores of telluric bodies in
the solar system. A rough criteria given by the equations (24)
and (26) leads to a threshold 3/ VE ~ 0(1), as already men-
tioned. In the solar system, this leads to focus only on Mercury,
Venus, and on the Earth-Moon system during its evolution. Most
tidal evolution models predict that the Moon rapidly retreats to
25 — 35 Earth radii in less than about 100 Ma (Webb 1982; Ross
& Schubert 1989; Williams 2000, 2004), and we thus consider
two limit cases: the actual Earth-Moon system and an early Earth
with an early Moon at 30 Earth radii, i.e. two times closer than
today. The tabulated values found in the literature for these plan-

5
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Fig. 3. TDEI stability diagram for celestial bodies of the solar system.
Considering a surfacic viscous damping term of the growth rate o, =
—a f(n) E'/? (see section 3.6), the zone above the black line, defined by
(33), is the unstable zone, whereas Y, defined by (31), is calculated with
a = 1 and @ = 10 for each planet (for the actual Earth and Venus, the
difference is very small). The yellow zone is the so-called forbidden
zone’, given by Qi /Q,m € [—151/3].

ets are given in Table 4. The Ekman number E is calculated with
a molecular kinematic viscosity v = 107° m%.s~!, consistent with
Fe/Fe-S composition of a liquid outer core.

We first neglect thermal effects. To represent all bodies of
Table 4 on the same stability diagram, we define the quantity

-1

Y=plafaVE+ 4 (31)

A
1+Q63
The quantity Y includes the specific dependence of the growth
rate on the spin/orbit angular velocity ratio, aspect ratio n of the
inner core and the magnetic field. The stability criterium

(2Q° +3)? A
o= ——"= - 2
16 |1 + Q%3 411+ Q63
derived from (24) and (26) is then equivalent to

16 |1 + QP
= (3+2Q06)2"

Figure 3 represents the stability results for the TDEI in the liquid
cores of the non-synchronized planets of the solar system con-
sidered in Table 4. The case of each planet is discussed in the
following.

An important result, already noticed in Cébron et al. (2010a),
is that the Early Earth, with a Moon two times closer than to-
day and in the absence of an external magnetic field, is unsta-
ble with a good level of confidence. The dissipated power due
to the instability was around 5 - 10'® W, which corresponds to
Q" ~ 0.003. This estimation seems huge in comparison to the
present dissipation by tidal friction (~ 3.75 - 10'> W accord-
ing to Munk & Wunsch 1998). However, one must notice that
the estimations given here are based on a model where the rota-
tion rate is implicitly expected to be constant, corresponding to a
quasi-static approximation of the orbital evolution of the system.
This approximation obviously breaks down for a high dissipa-
tion rate, and the above result should be interpreted as proof of
a rapid orbital evolution of the Earth-Moon system. The Moon
orbit inclination is not taken into account in the stability analy-
sis considered in this work. A similar analysis would be difficult

B—a fi) VE 0 (32)

(33)
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Fig. 4. Evolution of the typical growth time Ty, = 1/0 of the insta-
bility in the Early Earth core as a function of the Earth-Moon separation
and of the length of day on the Early Earth T, (@ = 2.62). This dia-
gram assumes no external magnetic field (By = 0) and no thermal field
(Ra = 0).

because the forced base flow in such a configuration is not ana-
lytically known. However, it has been demonstrated numerically
in Cébron et al. (2010a) that this inclination only has minor con-
sequences on the process of elliptical instability, which may be
easily taken into account in considering an effective elliptical
distortion in the equatorial plane. In the present case, this orbital
inclination would slightly decrease our growth rates but does not
change the orders of magnitude our conclusions either.

Figure 4 shows the stability of the Early Earth in more de-
tail, for different values for the length of day and Earth-Moon
distances. In the absence of meteoroid impacts, the angular mo-
mentum conservation links these two quantities, which can-
not vary independently. However, at this epoch, violent mete-
oroid impacts have probably modified the angular momentum
of the early Earth-Moon system (Melosh 1975; Wieczorek &
Le Feuvre 2009), so we keep these two parameters independent,
which allows us to cope with uncertainties.

The case of the actual Earth is more subtle because if we
consider that the actual magnetic field is provided by thermo-
solutal convective motions in the core, it has to be considered as
an imposed field for the dynamics of the elliptical instability. In
this case, the destabilizing term in the growth rate (32) is about
1077, whereas the magnetic damping term is around 0.004. Then
the TDEI cannot grow, regardeless of the Ekman number. On the
contrary, if we consider that the actual magnetic field is provided
by the flow driven by the TDEI, the threshold has to be calcu-
lated with A = 0, and the actual Earth is slightly unstable, with
a growth time of around 14,000 years. The same result was sug-
gested by Aldridge et al. (1997), but neglecting the influence of
magnetic field and global rotation.

We now consider the influence of thermal effects.
Considering the actual heat flux of Earth, Christensen & Aubert
(2006) estimate the corresponding super-adiabatic temperature
contrast to be about 1 mK, leading to a vigorous convection
in the liquid core. Such a vigorous convection does not prevent
the elliptical instability from growing, as shown in Cébron et al.
(2010c); Lavorel & Le Bars (2010). Since this temperature con-
trast is uncertain, we can consider as an extreme case for stabi-
lization of the TDEI, a subadiabatic gradient on the same order
of magnitude. For the actual Earth, such a stratification leads

Table 5. Physical and orbital characteristics used for the four Galilean
moons and Titan.

Io Europa Ganymede Callisto Titan
M (x10°2 kg)  8.93 4.8 14.8 10.8 13.45
R (km) 1822 1561 2631 2410 2576
Torp (d) 1.77 3.55 7.16 16.69 15.95
e (x10%) 4.1 9.4 1.3 7.4 28.8
€ (x10%) 1.3¢ 2¢ 0.056¢ 0.042¢ 1.3¢
By (nT) 1850  410° 120 10° 0

¢ Physical libration amplitude from Noir et al. (2009)

b Order of magnitude from Zimmer et al. (2000) of the magnetic field
component along the rotation axis of the moon (see also Kabin et al.
1999).

to Ra ~ —1.4 - 107, and the dependence Ra o D* E? gives
the value Ra ~ -2 - 1077 for the Early Earth (see Sumita &
Yoshida 2003, for a discussion of this possible stable density
stratification in the whole early Earth outer core and its disrup-
tion). Considering Ra ~ —1 - 107 as an upper bound, formula
(24) is valid (Ra ~ O(B)) and shows that the thermal stratifica-
tion reduces the growth rate by 2%. This confirms that the role
of the temperature can be neglected in the limits considered in
this work.

For the last two bodies, Venus is in the forbidden band, which
means that no matter what the tidal deformation or the Ekman
number is, the TDEI cannot grow. Mercury is slightly below
the threshold of the instability and is thus probably stable today.
Mars is clearly stable nowadays (8 < VE), but Arkani-Hamed
et al. (2008) and Arkani-Hamed (2009) suggest that past gravi-
tational interactions with asteroids could have excited a TDEI in
the martian core during their fall towards the planet.

4.2. Synchronized body: libration-driven elliptical instability
(LDEI)

4.2.1. Galilean moons and Titan

The presence of LDEI in Io has been first suggested by Kerswell
& Malkus (1998). In Herreman et al. (2009), this suggestion
is reexamined and the magnetic field induced by this possible
instability quantified. In the following, this calculation is re-
evaluated and extended to the four Galilean moons (Io, Europa,
Ganymede, and Callisto), considering the presence of the exter-
nal magnetic field of Jupiter. Titan is also considered. All neces-
sary data are given in Tables 5 and 6.

As described in section 3.5, we consider an instantaneous
differential rotation ecos(w,t) for these synchronized bodies.
Focusing on the forced librations due to the orbital eccentricity,
the libration frequency is w, = 1. The amplitude of the libration
€ is given by € = 2e for optical librations. For physical libra-
tions, obtained for R > 1, € has to be measured or estimated,
but are less than the extreme value 2e (see the data in Noir et al.
2009). The theoretical analysis is the same, and the use of for-
mula (25) with Ra = 0 (thermal field negligible) and w, = 1
gives the LDEI threshold. To obtain a unique stability diagram
for all bodies in Table 5, we define the quantity

4 _
Yzz[eﬁ—ﬁA}[a(l—n)f(n)]l, (34)
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Table 6. Stability results in the extreme case of optical librations (e = 2e
and S from this Table and Table 5).

Io Europa Ganymede  Callisto  Titan
core core core core core
R>/R 0.52¢4 0.38" 0.27¢ - -
n 0 0 0 - -
E (x10') 2.7 14 20 - -
B (x10% 60° 9.7 3.7° - -
A (x107) 42 4.1 0.7 - -
o rh) 0.016  0.0025 -3-107* - -
ocean  ocean ocean ocean ocean
Crust (km) - 108 100" 150° 70/
Depth (km) - 1008 150" 150° 200/
R,/R - 0.99 0.96 0.94 0.97
n - 0.94 0.94 0.93 0.92
E (x10') - 2.0 L5 4.5 3.5
B (x10%) - 9.7¢ 3.7¢ 0.72¢ 1.2/
A (X101) - 21 3.5 0.9 0
o r) - 0.0016 -6-10* -4-100* -107*

For the liquid cores, we take o, = 4 - 10° S.m™', py = 8 000 kg.m™>

and v = 107 m?.s™' as typical values, consistent with a Fe/Fe-S
composition. For the subsurface oceans, we take o, = 0.25 S.m™!
(Hand & Chyba 2007), po = 1000 kg.m™, and v = 107® m?s™' as
typical values.

¢ Kerswell & Malkus (1998), considering the static tidal bulge
> Hussmann & Spohn (2004)

¢ Bland et al. (2008)

4 with k, ~ 0.3 (Wahr et al. 2006; Baland & Van Hoolst 2010)
¢ Eq. (5) with k, = 0.3

Ik, ~ 1 (Goldreich & Mitchell 2010)

8 Wahr et al. (2006)

" Bland et al. (2009)

 Kuskov & Kronrod (2005)

/' Sohl et al. (2003)

and use the Ekman number based on the thickness E;, = E/(1 —
1)%. The threshold for LDEI given by formulas (25) and (26)

17 1
=—eB-a(l- VEi—-— A2
is then equivalent to
64
Y, > — VEi. (36)

17

This allows us to plot the stability diagram shown in figure 5
in the extreme case of optical libration (¢ = 2¢) for a quasi-
equilibrium hydrostatic bulge calculated with formula (5), cor-
responding to the optimal case for LDEI (i.e. the maximum pos-
sible libration amplitude and the maximum possible elliptical
deformation). In the following, we discuss the stability versus
the LDEI of the Galilean moons, Titan, and three Super-Earths.
Because the tidal bulge and the libration amplitudes of these
bodies are not yet known (see the discussion of Goldreich &
Mitchell 2010), we present the results in figures (6)-(8) on dia-
grams in the (5, €) plane, taking the full range of variability of 8
and € into account. Therefore, the upper right hand corner will
correspond to the optimal case for the LDEI: the libration of a
purely deformable body i.e optical libration with € = 2e¢ and an
hydrostatic bulge. The lower left hand corner corresponds to the
libration of a rigid body (physical librations), associated with the
weak diurnal tides. In the same way, the lower right hand corner
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Fig. 5. LDEI stability diagram for synchronized celestial bodies in the
optimal case for the instability, i.e. an optical libration (e = 2¢) for a
quasi-equilibrium tide. All values are given in Table 5, and the horizon-
tal axis represents the Ekman number E; based on the thickness of the
fluid layer. The label KM98 for Io calls that the point is placed with the
values used by Kerswell & Malkus (1998). The zone below the black
line, defined by the viscous surfacic damping coefficient @ = 2.62, is
the stable zone, whereas the black dashed lines represent the extremum
values @ = 1 and @ = 10.

corresponds also to physical librations, but with a hydrostatic
bulge. Finally, the upper left hand corner corresponds to the li-
bration of a purely deformable body (optical libration) associ-
ated to the small diurnal tides amplitude. The relevant physical
configurations for each body depend on their compositions so is
specifically discussed in the following for each of them.

First, we consider Io with the values used in the studies of
Kerswell & Malkus (1998) and Herreman et al. (2009), i.e. a
static bulge of ellipticity § = 0.006 and a libration amplitude
assumed to be € = 2e (see Table 5). As already found by these
authors, Io is unstable with a good level of confidence (typical
growth time of 63 years). However, this is an optimal unrealistic
case, because the ellipticity used is due to a static bulge (R > 1),
and the libration amplitude is taken as equal to 2e, as in the de-
formable case (R < 1). Due to its silicate mantle, the core of
Io is expected to be in the limit R > 1, and consequently the
ellipticity to consider is indeed § = 0.006 but the libration am-
plitude is instead € = 1.3 - 107* (see Table 5), which is 63 times
smaller than 2e. With these more realistic values and condidering
the presence of Jupiter magnetic field, Io is expected to be sta-
ble, unlike what was expected. However, to obtain a better view
of the stability in Io, figure 6 gives the typical growth time of
the instability for different ellipticities and libration amplitudes,
ranging between the limit cases R > 1 and R < 1, with € = 2¢
and the diurnal tidal ellipticity 3e8 ~ 7- 107, corresponding to a
diurnal tide amplitude of 130 m. Future accurate measurements
of the tidal amplitude at the core-mantle boundary and of the
libration amplitude should confirm our prediction.

In the optimal case for instability, figure 5 shows that the lig-
uid core of Europa is unstable, as already suggested by Kerswell
& Malkus (1998), even when taking the Joule dissipation due to
the presence of Jupiter magnetic field into account. The typical
growth time of the instability to be around 400 years, and the
associated dissipation to be on the order of P ~ 10'© W. This
corresponds to Q* ~ 107, and is two orders of magnitude below
the conservative estimation of 3-10'> W for the tidal heating rate
on Europa (O’Brien et al. 2002). In reality, the silicate mantle of
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Fig. 6. Evolution of the typical growth time T, = 1/0 of the insta-
bility in Io with the tidal bulge ellipticity 8 and the libration amplitude
€ (@ = 2.62). The upper right corner corresponds to the optimal case
considered in Kerswell & Malkus (1998) and Herreman et al. (2009),
the upper left corner corresponds to optical librations with a small tidal
amplitude corresponding to diurnal tides (8 = 7-107%, € = 2e = 0.0082)
and the lower right corner corresponds to the region of physical libra-
tions of the static bulge (8 = 0.006, € = 1.3-107*). The white zone cor-
responds to the stable zone where the instability cannot grow because
of dissipative effects (at the boundary with the colored zone, the growth
time is infinite). The colorbar range is chosen so that color variations
are visible.

Europa should behave more rigidly. Since the libration ampli-
tude of the mantle and the amplitude of the tidal distortion at the
core-mantle boundary are not known yet, all intermediate behav-
iors are explored in figure 7a. We conclude that high libration
amplitude and/or rather large elliptical distortion are needed for
Europa’s core to be unstable; nevertheless, the parameter range
for instability is rather wide in figure 7a and seems to be reach-
able: we thus expect the core of Europa to be unstable. Results
for Europa subsurface ocean are shown in figure 7b. The elastic
behavior of the icy crust above the subsurface ocean is expected
to behave in the deformable limit (R < 1), which correspond to
parameters close to the upper right hand corner. As also shown
in figure 5, Europa’s ocean is therefore unstable.

Concerning the two last Galilean moons, the core of
Ganymede and the subsurface oceans of Callisto and Ganymede
are found to be stable in the optimal case (fig. 5). An LDEI is
improbable today. Figure 5 also shows that the subsurface ocean
of Titan is probably stable, because even in the optimal case for
the LDEI, it remains in the vicinity of the threshold.

4.2.2. Super-Earths

The recent discovery of extrasolar telluric planets gives typical
examples of synchronized planets in close orbit around their host
stars. This particular astrophysical configuration should lead to a
vigorous LDEI in their possible liquid cores. In this section, we
consider three Super-Earths, expected to be telluric: 55 CnC e,
CoRoT-7b, and GJ 1214b, at D = 0.0156 A.U, D = 0.0172 A.U,
and D = 0.0143 A.U from their host star respectively. The data
used here are from Winn et al. (2011) for 55 CnC e, Valencia
et al. (2010) for CoroT-7b, and Charbonneau et al. (2009) for
GJ 1214b. They are given in Table 7. For CoRoT-7b, the work
of Léger et al. (2011) predicts a core composed of liquid metal,
representing 11% of the total planetary volume, as for the actual
Earth. The presence of a liquid core in Super-Earths is still not
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Fig. 7. Same as figure 6 but for Europa, considering (a) its possible lig-
uid core and (b) a 100 km depth subsurface ocean. Both the core and the
subsurface ocean of Europa are expected to behave in the deformable
limit, locating their states in the upper right corner of the diagram, so
both are found to be unstable.

clear (e.g. Wagner et al. 2011, for CoroT-7b), but we can rea-
sonably assume that a planetary liquid core could occupy about
one third of the planet radius, which corresponds to 4 % of the
total planetary volume. Because of the proximity of the parent
star, these extrasolar planets are expected to be synchronized.
The actual orbital eccentricities of CoRoT-7b and GJ 1214b are
not known. If they are fully circularized and synchronized, no
elliptical instability can grow. In contrast, if a small libration
exists, previous stability formula can be used. We assume here
an orbital eccentricity of e = 0.001, well beyond the detection
limit. Figure 5 shows that in the optimal case these three Super-
Earths cores are clearly unstable with a good level of confidence,
which means that the LDEI is probably present in their liquid
layers. One can see that this result is not very sensitive to the hy-
pothesis on the size of the considered liquid core: for instance,
with the values of Table 7, CoroT-7b becomes stable for a liquid
core aspect ratio R, /R below 1 % (for the optimal case i.e. opti-
cal librations and equilibrium tides). In these estimates, we use
the hydrostatic tidal deformation, which underestimates the real
tidal deformation. Also, higher orbital eccentricity would lead
to more unstable configurations. Figure 8 shows the influence
of these uncertainties, as well as the effect of smaller libration
amplitudes and tidal deformations. The proximity of the known
Super-Earths with their host stars leads to strong tidal deforma-
tions, and the LDEI is then able to grow from very small libra-
tion amplitudes, as shown in figure 8 (the true tidal deformation,
larger than the hydrostatic value, leads to an LDEI for a large
range of libration amplitudes). Same conclusions are obtained

11
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Table 7. Physical and orbital characteristics used for the stability calcu-
lations in exoplanets.

CoRoT-7b  GJ 1214b 55CnCe

M (in Earth’s mass) 4.8 6.55 8.57

R (in Earth’s radius) 1.68 2.678 1.63
Tors (d) 0.854 1.58 0.7365
R,/R 1/3¢ 1/3% 1/3¢

e 0.001¢ 0.001¢ 0.057¢
n 0 0 0

E (x10'%) 9.4 6.8 8.6

B (x10%) 7 6 5

o Grh 0.01 0.005 0.45

We take as typical value v = 107% m? 57!, consistent with a Fe/Fe-S

composition. We use the formula (4) to estimate the tidal bulge
ellipticity.

¢ Coherent with Léger et al. (2011).

b Coherent with the values from Nettelmann et al. (2011).
¢ Assumed hypothesis.

4 Winn et al. (2011).

for Kepler-10b (Batalha et al. 2011), assuming the same hypoth-
esis. To conclude, the presence of the LDEI in their liquid cores
is very probable, whatever the uncertainty ranges.

5. Conclusion and discussion

In conclusion, we have investigated theoretically the elliptical in-
stability in telluric celestial bodies. New analytical results were
determined to fill the gap between previous studies and astro-
physical applications. In particular, we have derived generic for-
mulas for the growth rate of the elliptical instability driven re-
spectively by tides in non-synchronized bodies (TDEI) and li-
bration in synchronized ones (LDEI), in the presence of imposed
magnetic and thermal base fields. It was shown that an elliptical
instability is strongly expected in the core of Europa, 55 CnC e,
CoRoT-7b, and GJ 1214b, as well as in the subsurface ocean of
Europa. Those results are valid for the present state of the con-
sidered bodies and do not preclude any elliptical instability in
the past. For instance, the Early Earth core was clearly unstable,
because of the larger gravitational distortions when the Moon
was closer.

One can wonder about the signatures and consequences
of such an instability on the planetary dynamics. A first con-
sequence would be on the orbital evolution and synchroniza-
tion process: indeed, the elliptical instability generates three-
dimensional turbulent flows with cycles of growth, saturation,
fluctuations, and relaminarization (e.g. Le Bars et al. 2010).
Timescales involved range typically between the spin period and
the growth time of the instability. Dissipation rates on the plane-
tary scale, and consequently the orbital evolution, may then fol-
low the same variations, with periods of rapid evolution when
an elliptical instability is present, followed by more quiescent
periods, for instance when the forbidden zone is reached. This
increased dissipation should accelerate the synchronization pro-
cess, as described in Le Bars et al. (2010), and this range of
timescales should appear in the evolution of the spin rotation
rate.

The second consequence would be on heat flux variations at
the planetary surface. Indeed, as shown in Cébron et al. (2010c);
Lavorel & Le Bars (2010), flows driven by elliptical instability
are very efficient in transporting heat by advection. As a result,
subadiabatic cores should not be regarded as thermal blankets
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Fig. 8. Same as figure 6 but for CoroT-7b in figure (a), GJ 1214b in
figure (b), and 55 CnC e in figure (c).

in the presence of the elliptical instability. The usual Nusselt
number Nu = Qy,/Quisy, the ratio between the total outward
heat flux Qy,; and the purely diffusive outward heat flux Qgy/,
which is associated to this heat advection, is given by the follow-
ing scaling law, verified both experimentally (Lavorel & Le Bars
2010) and numerically (Cébron et al. 2010c):

001
]

This leads to a total outward heat flux advected by the ellipti-
cal instability about Nu ~ 3 - 10* times greater than a purely
diffusive outward heat flux. Besides, in the presence of natural
thermal convection, the superimposition of chaotic elliptically
driven flows would induce large-scale variations in the same am-
plitude.

Nu = (37)
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Finally, internal flows driven by elliptical instability are di-
rectly responsible for magnetic field generation. The question
of whether LDEI and TDEI are dynamos-capable is still open
and remains out of the reach of the currently available numeri-
cal capacity, but elliptically driven flows induce a magnetic field
from an existing background one. To estimate a typical ampli-
tude of such an induced field, we can use the results of our WKB
approach. This shows that the dimensionless induced magnetic
field inside the core and the instability velocity ug are systemat-
ically related by

. Rmk,,
B=i1 -
k2

ug, (38)

where k and k,, are the norm and the axial component, respec-
tively, of the wave vector of the excited mode of the ellipti-
cal instability. This generic expression shows that the induced
magnetic field due to the elliptical instability is systematically
proportional to and in quadrature with the velocity field due
to the instability. For the TDEI, k., = k/2, and for the LDEI,
kv, = w, k/4 (see respectively appendices A and B). Then, as-
suming that at saturation, the typical flow induced by instability
is commensurate with the differential rotation between the fluid
and the elliptical distortion (see Table 1), we estimate the surface
field by

(39)

Rmk,, AQ (Ry\?
bsurf =0 (_) s

K Q\R

where R is the planet radius. Starting from the Jovian magnetic
field component along the rotation axis, the LDEI in Europa sub-
surface ocean is capable of inducing surface variations of up
to ~ 0.1 % of the ambient field (reached for k = 2n/(1 — n)
and optical librations, i.e. € = 0.0188), and LDEI in its core
up to ~ 100 % of the ambient field at the surface (reached
for k = 2n/(1 — ) and physical librations, i.e. € = 2 - 107%).
Considering Galileo’s E4 flyby of Europa (see Zimmer et al.
2000; Kabin et al. 1999), the background z-component of the
magnetic field is modified from 410 nT to 380nT at a distance of
Europa about 1.5 Europa radius. This modification of 30 nT is
on the same order of magnitude as the possibly LDEI induced
magnetic field from the core. Internal sources should thus be
considered in addition to plasma currents (Kabin et al. 1999)
for interpretating Europa’s magnetic signal.

To finish with, one should notice that the TDEI and LDEI
studied here for telluric planets, can also affect the giant gaseous
planets of our solar system (Wicht & Tilgner 2010), as well as
extrasolar gaseous planets such as the hot-Jupiters, whose dra-
matic tidal deformations should excite vigorous elliptical insta-
bilities in the planetary atmospheres, but also in their host stars
(Rieutord 2003; Ou et al. 2007; Cébron et al. 2011).
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Appendix A: Stability analysis for
non-synchronized systems

Solving (16), we find the trajectories

1+ 8 cos(t+/1 —B?)
X=r| /1-8sin(t+/1-p2)
0

(A1)

where without loss of generality, the origin of time has been de-
fined such that the initial position along the trajectory is X=0) =
[x1,x2,x3] = [r 4/1 +8,0,0] (the results of the WKB analysis
do not depend on this chosen initial position).

The solution to equation (22) at order 1 in 8 along a stream-
line (A.1) writes as

ky, ky,, cost—ky,  sint+pfk,,, sint

k=|ky, |=|ky, sint+ky,, cost+pBk,, sint (A.2)
kx, kocosa

where k,, , k,,,, and ko are constant, and a is the angle be-

tween the wave vector and the rotation axis. We define the
phase ¢ of the wave vector by writing k,,, = kpsina cosg,
ky,, = ko sina sin ¢.

We are now in a position to solve the system of linearized
equations given in section 3.3. To do so, we use as unknowns the
vertical velocity of the perturbed field u3 and its vertical vorticity
W3 = 0y, up—0y,u1 = i(ky,up —ky,u1), as well as the vertical com-
ponent b3 of the perturbed magnetic field and the corresponding
magnetic vertical vorticity C3 = i(ky, by — ky,b1). The resolution
is then straightforward (see Herreman et al. 2009).

At order 0 in 8, the system reduces to an harmonic equa-
tion for u3, giving a dispersion relation with a pulsation f =
2 (1 + Q) cos a, with the quantity Q% = Q5 /(Qpin — Qo) al-
ready used by Kerswell (2002); Le Bars et al. (2010). Solvability
conditions imply non-trivial solutions only if f = 1, which gives
the resonance condition cosa = 1/(2 (1 + Q%)) € [-1, 1]. This
means that the instability cannot grow when Q/Q,,;, € [-1; 1/3],
which is the so-called forbidden zone. Outside this band, the
growth rate is determined by the nullity of the determinant of
the solvability condition system. It is then maximized over all
values of wave vector phase ¢. The maximum is obtained for
¢ = /4 and the inviscid growth rate writes as

X10

296 2 A

Tiny = ﬂ :82 -4 (2 -

1611 +Q6p V T 411+ Q6P (1 + Rm2k*)

k*> Rar d,60
_ ard , (A3)
8 (1+Kk* E2/Pr2) |1 + Q6P
with
K+ Rm*) Rar 0,0 -2k Rm A (1 +k* E*/Pr?)

r=t (A4)

(2Q6 +3)2 (1 + k* E2/Pr2) (k* + Rm?)

where r and 0,0 are the radius and the dimensionless radial
gradient of temperature base field on the considered streamline,
respectively. In the absence of viscous boundary damping (dis-
cussed in section 3.6), the inviscid growth rate is a correct ap-
proximation of the viscous growth rate when the viscous dif-
fusion term —k*E in equation (19) is negligible, i.e. for pertur-
bations of wavelength greater than the Ekman thickness VE.
Equation (A.3) takes the thermal and magnetic diffusions into
account. In a typical liquid core, the thermal Prandtl number is
about O(0.1-1). Neglecting the viscous diffusion term also leads
to neglecting the thermal diffusion term —k*>E/Pr of equation
(19). But since the magnetic Prandtl number is about Pm ~ 1076
(e.g. Christensen & Aubert 2006), the magnetic diffusion term
—k?/Rm = —k*E/Pm of equation (21) appears as the dominant
diffusion mechanism. It can nevertheless be neglected within the
limit of large wavenumbers, where equation (A.3) gives equation
(24).

13
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Appendix B: Stability analysis for synchronized
systems

We consider that the differential rotation between the fluid and
the elliptical distortion writes as 1 — v = ecos(w,t + q).
The phase q is introduced here because we define the origin of
time such that the initial position of the considered trajectory is
xp = 0. Equation (16) can be solved analytically to find the tra-
jectories. In the particular case g = 0, the solution can be written
in the following compact form:

V1+p cos(wi sin(w?) 4/1 —,32)

X=S5,7 B.1
ST J1-B sin(i sin(w,!) 1—[32) (B.1
Wo
0
with s, = sgn(cos(w,?)). In the general case, the wave vector

associated to this flow writes as
k

ke, ky, — M (sin(wet +q) —sing) (1 =B e
k=|ky|= ky, (B.2)
Ky, ky,, + MO (sin(wyt + g) —sing) (1 + B) €
kocosa
where ky, , kx,,, and ko are constant and a is the angle between

the wave vector and the rotation axis. We define again the phase
¢ by k,,, =k, sina cose, ky,, =k, sina sin ¢.

At leading order in €@, the dispersion relation gives f =
2 cosa, and the solvability conditions system admits non-trivial
solutions for f = w,/2. Consequently, the authorized band is
given by cosa = w,/4 € [-1,1] i.e. |w,| < 4. The growth rate
is determined at order 1 in €8 and must be maximized above the
phases g and ¢. The maximum is reached for g = 0, ¢ = /4 and
gives in the absence of thermal and magnetic fields
Tiny 16 + O)z
B 6 (B.3)

Kerswell & Malkus (1998) have performed a global ap-
proach to the same instability, explicitly considering inertial
waves coupling in a spheroidal geometry. In the absence of mag-
netic and thermal fields, they found a maximum inviscid growth
rate o, /(€ B) = 25/128, very close to our value o, /(€ B) =
17/64. The small difference between the two values is due to the
influence of the spheroidal geometry considered in Kerswell &
Malkus (1998), leading to more restrictive conditions for desta-
bilization than our local analysis. Similarly, for purely hydrody-
namic flow with a stationary deformation as studied in section
3.4, our analysis gives the inviscid growth rate o,, /8 = 9/16,
whereas a global analysis with inertial waves of a spheroid leads
to the slightly lower value o, /8 = 1/2 (see Lacaze et al. 2004).
Taking the uncertainties on the different parameters for plane-
tary application into account, these small differences can be dis-
regarded and the local approach can be used confidently, which
presents the strong advantage of providing an explicit formula
for the growth rate.

Taking a buoyancy of order € into account, as well as the
induction equation and a Lorentz force on the order of €8 in the
presence of an imposed vertical magnetic field By, we obtain the
growth rate

16 + w?
o @B -4l

w2 (16 + w?) k> Rar 9,0
16 (1 + k-*w2Rm2/3) 16 (@2 + 4 K* E2/PP2)

Oiny =

(B.4)

14

with
B F
T (16 + w?) (4 k* + w? Rm?) (w2 + 4 k* E2/Pr?)

16} (B.5)
where F = (64 + w?(dk* + Rm*(16 + w2)))Ra r 0,0 —
4> w2 RmA(w? + 4k*E?/Pr?), and where r and 0,6 are respec-
tively the radius and the dimensionless temperature radial gra-
dient of the considered streamline. As discussed in appendix A,
in astrophysical applications, the thermal diffusion can be ne-
glected (E/Pr = 0). In this case, equation (B.4) gives equation
(25) in the limit of large wavenumbers.

Appendix C: Is the diurnal tide stabilizing or
destabilizing for the elliptical instability?

In this work, the periodic forcing due to diurnal tides has been
neglected for synchronized bodies. It is thus legitimate to calcu-
late its influence on the LDEI growth. To answer this question,
we consider the simplest but severe case of a body with a non ro-
tating (i.e. y = 0) diurnal tide of amplitude 5(;) = 81 cos(Mt + q),
where 8 = 3¢ and there is no global rotation. Then, the base
flow (11) reduces to

U = [-(1 + B cos(Mt + q)) x2 e,

+(1 = By cos(Mt + q)) x1 eg,] (C.1)

Once again, the phase ¢ is introduced here because we fix the
phase of streamlines. The streamlines are not known analyti-
cally. The dispersion relation gives the pulsation f = 2cosa,
and the solvability conditions give resonances for f = (2+ M)/2
and f = (2 — M)/2. The authorized band is thus |[M| < 6. In
the limit of low M, the maximal growth rate is obtained with
f=Q-M)/2for¢ =-n/4and g = 0:

2
2 + ﬁ + l — 157 ][42 ﬂl
16 64 8 32

(C2)

Tiny =

at the order O(A?) + O(8; M?) + O(B,%). This expression agrees
with equation (24) for A = 0 and Ra = 0, in the limit M = 0. The
expression (C.2) shows that slow oscillations of the amplitude of
the tidal bulge are not inhibiting for the elliptical instability. On
the contrary, the growth rate is enhanced compared to the case
of constant amplitude for low M, which means that the diurnal
tide would be destabilizing in this case. In the case of planetary
interest with M = 1, the maximum growth rate writes as

25
128
which again shows that the diurnal tide can drive an elliptical
instability. This effect will thus be superimposed on the TDEI

and LDEI mechanisms already studied, but with a slower growth
rate, since 5] < (.

Tiny =

Bi, (C3)

Appendix D: Resonances of gravito-inertial waves

To clarify the influence of a thermal field with a buoyancy force
that is on the order of zero in 3, we consider the generic case with
the elliptical gravitational iso-potentials of ellipticity n 5 and el-
liptical base-field isotherms of ellipticity m 8, where n and m are
arbitrary constants. This generic notation is needed to deal with
all cases, as studied for instance in Le Bars & Le Dizes (2006),
Lavorel & Le Bars (2010) and Cébron et al. (2010c). In focus-
ing on dynamic tides in a non-synchronized system, one would
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expect the isotherms to follow the streamlines (because of the
small thermal diffusion coeflicient), as well as the iso-potentials.
Hence, n = m = 1. In contrast, looking at the elliptical instability
in a subsurface ocean underlain by a rigid mantle, one would ex-
pect the iso-potentials to remain quasi-circular (n = 0). Besides
this, in the presence of a static bulge, one would expect the sys-
tem to naturally return to a configuration with m = 0 by the gen-
eration of baroclinic motions. All situations with 0 < m,n < 1
are possible, and one can even imagine other azimuthal period-
icities, for instance those due to local variations of temperature.

In the case of the TDEI, the WKB approach including
zeroth-order buoyancy forces in S is tractable. Unlike the cases
studied in appendices A and B, the forbidden band where the
instability does not exist is now modified by the thermal field
and is given by fy < 1, where fy = V411 + Q6P + Rar d,0.
Outside this band, the inviscid growth rate is given, in the limit
of large wavenumbers, by:

T _ (2Q6+3)2 +[1+2(1+Q5)(m - n) - n] Ra 0,9 N
8 16 |1 + Q6P +4 Ra |l + QS| r 0,0 .
A 1

We can compare the role of the temperature field in (24) and
(D.1). In expression (24), the temperature field acts as a simple
supplementary stabilizing term that corrects the inviscid purely
hydrodynamic growth rate. But in the derivation of equation
(D.1), waves and resonances (as well as the forbidden band)
are modified by buoyancy forces, leading to a modification of
the prefactor of 8. Actually, the elliptical instability now results
from resonances of gravito-inertial waves and should be called
the gravito-elliptical instability (see Le Bars & Le Dizes 2006;
Guimbard et al. 2010). As shown below, the supplementary reso-
nances associated to gravito-inertial waves allow the temperature
to be destabilizing in certain cases. The same conclusions can be
obtained for the magnetic field when Lorentz forces are taken
into account at zeroth order in § in the limit of ideal magne-
tohydrodynamic: the elliptical instability then results from reso-
nances between magneto-inertial waves (Kerswell 1993a, 1994);
the forbidden band is modified by the magnetic field; and as
shown by Lebovitz & Zweibel (2004); and the magnetic field
can be either stabilizing or destabilizing depending on the case
being considered (see also Herreman 2009; Mizerski & Bajer
2009, 2011). Naturally, these conclusions are also valid for the
LDEI

In Le Bars & Le Dizeés (2006) and in the experiments of
Lavorel & Le Bars (2010), the TDEI is studied for a station-
ary bulge (Q¢ = 0) with circular iso-potentials and elliptical
isotherms (n = 0, m = 1), and the considered temperature pro-
file gives r 9,0 = —1. In this particular case, in the absence of
magnetic field, equation (D.1) recovers their result:

9-3Ra

16-4Ra’
As already noticed by Le Bars & Le Dizes (2006), a thermal sta-
ble stratification (Ra < 0) is then destabilizing for the elliptical
instability, but, in constrast, the temperature field stabilizes the
instability for n = m = 1. This high sensitivity of the growth
rate of the elliptical instability to the specific gravitational and
thermal fields is confirmed by numerical simulations. Using the
method described in Cébron et al. (2010c), we consider the sim-
ple case Q° = 0 and K = 0, the temperature field being es-
tablished by a temperature contrast between the two boundaries.

Tiny = (Dz)

0.65 ‘ ; : -
® Cyl.n=1, m=1 ,
A Cyl.n=0, m=1 S
® Ell.n=1, m=1 b
06/ ¢ EIl.n=0, m=1 0
[ca R
E
=
0.55f
0.5 : : : ;
a1 0.5 0 0.5 1
Ra

Fig. D.1. Growth rate of the TDEI for a cylindrical shell of aspect ratio
H/R = 2 with an elliptical cross section (n = 0.2, E = 0.0036, 8 =
0.47, Pr = 1) and an ellipsoidal shell (7 = 0.3, E = 0.0029, 8 =
0.317, Pr = 1) with a rotation axis of length ¢ = (a + b)/2. The figure
compares the numerical growth rate in the autogravitating case where
the gravity is given by the Poisson equation for the gravitational poten-
tial of a homogeneous fluid (see Cébron et al. 2010c, for details), and
the case where the gravity is played by a centrifugal force (n = 0), as
in the experiments of Lavorel & Le Bars (2010). The numerical growth
rate is translated vertically in the figure, to match the inviscid growth
rate 9/16 at Ra = 0, which corresponds to a surfacic damping term co-
efficient @ = 3.24 for the cylindrical shell (squares and triangles) and
a = 3.1 for the ellipsoidal shell (circles and diamonds). Theoretical
growth rates are shown by a continuous red line forn =0, m = 1 and a
dashed blue line forn =m = 1.

When n = m = 1, the growth rate (D.1) is enhanced when Ra
is increased. As shown in figure D.1, this is in perfect agree-
ment with the numerical simulations in a cylindrical shell. In the
experimental setup of Lavorel & Le Bars (2010), the gravity is
replaced by the centrifugal acceleration, as in Carrigan & Busse
(1983), and the associated equipotentials are circular, i.e. n = 0
and m = 0, as shown in figure D.1. In this case an increasing Ra
indeed leads to a lower growth rate and the numerical simula-
tions agree with the predicted growth rate.

The conclusions for an autogravitating ellipsoidal shell are
more complex. Cébron et al. (2010c) find that an increasing Ra
leads to a lower growth rate, which contradicts the prediction
of the theoretical growth rate. This difference comes from the
fact that the thermal stratification propagates the influence of the
boundary inside the bulk: the WKB analysis, based on local sta-
bility, cannot handle this feature. In the spherical geometry, we
can, however, notice that changes induced by Ra are small for
—1 < Ra < 1 and remain close to the estimates for an autogravi-
tating cylinder.

Those results clearly illustrate the high sensitivity of the
growth rate of the elliptical instability to the specific gravita-
tional and thermal fields, as well as to the considered geometry.
In planetary applications, stratification (i.e. Ra < 0) generally
leads to stabilization, as in the limit of small Ra presented in the
main text; however, in this case, stratification can only stabilize
elliptical instability when Ra = O(1 — 10), which is never the
case.
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