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Abstract  

It has been claimed that the productivity, systematicity and compositionality of 

human language and thought necessitate the existence of a physical symbol system 

(PSS) in the brain. Recent discoveries about temporal coding suggest a novel type of 

neuronal implementation of a physical symbol system. Furthermore, learning 

classifier systems provide a plausible algorithmic basis by which symbol re-write 

rules could be trained to undertake behaviours exhibiting systematicity and 

compositionality, using a kind of natural selection of re-write rules in the brain, We 

show how the core operation of a learning classifier system, namely, the replication 

with variation of symbol re-write rules, can be implemented using spike-time 

dependent plasticity based supervised learning. As a whole, the aim of this paper is to 

integrate an algorithmic and an implementation level description of a neuronal symbol 

system capable of sustaining systematic and compositional behaviours. Previously 

proposed neuronal implementations of symbolic representations are compared with 

this new proposal.   

 

Introduction 

 

In a highly influential and controversial paper, Fodor and Pylyshyn provided an 

argument for the existence of a physical symbol system (PSS) in the brain (Fodor & 
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Pylyshyn, 1988). A simple way to understand what is meant by a PSS is to map the 

cognitive concepts onto concepts from chemistry. This analogy should not be taken 

too far, and is best used as an intuition pump to broaden the way we think about 

symbol processing. We do not wish to claim that a neuronal physical symbol system 

is isomorphic to a chemical one, and so at each stage we discuss the differences as 

well as the similarities.  

 

Chemistry deals with molecules that are composed of atoms. Structural relations 

between atoms define a molecule. There is a combinatorial syntax, i.e. a set of 

chemical structural constraints such as valance, charge, etc… that determine how 

atoms can legally join together to make molecules.  

 

Furthermore, the structure of a molecule has information about its chemical function 

or reactivity, and this is systematically related to the function of its parts, e.g. the 

structure of the benzene ring means that it will react in a certain way in a given 

environment, and the fact that it has a methyl group means that this reactivity will be 

changed in a systematic way in that environment. This is a kind of internal semantics. 

Internal semantics deals with how a symbol contains information about the reactivity 

within the symbol system itself. It is also called compositionality, and we will discuss 

it shortly, but before this, we should highlight that there is another kind of semantics, 

which we call external semantics. External semantics deals with how a symbol 

contains information about the outside world (i.e. its semantic interpretability) and it 

is easiest to consider this for biochemical systems; here molecules can clearly be seen 

to also have semantic content, i.e. parts of the molecule may confer information about 

the environment external to the symbol system. For example, the conformation of 

haemoglobin can confer information about the oxygen saturation, or the concentration 

of a cell signaling molecule can confer information about glucose concentration.  

 

Fodor and Pylyshyn proposed that there is a PSS implemented in neuronal structures 

that has similar properties to a molecular symbol system. To understand why, it is 

useful to compare chemical experiments with human language and thought. The 

properties of atoms and molecules described above give chemistry a special set of 

macroscopic characteristics. For example, chemistry is productive. The capacity for 

chemical reactivity is unlimited. Indefinitely many molecules can be produced 
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allowing indefinitely many reactions. This is possible with only a finite set of distinct 

atomic types. Therefore, an unbounded set of chemical structures must be non-atomic.  

In the same way, an indefinite number of propositions can be entertained, or sentences 

spoken. This is known as the productivity of thought and language, therefore neuronal 

symbols must have the same capacity for being combined in unlimited ways.  

 

Secondly, chemistry is systematic, that is the capacity for atoms to be combined in 

certain ways to produce some molecules is intrinsically connected to their ability to 

produce others. Consider how a chemist might learn chemistry. There are rules of 

thumb that help a chemist to guess how atoms will form a molecule, and how that 

molecule will react based on its structure. A chemist does not learn just a list of valid 

molecules or reactions. In the same way, there is systematicity in language, e.g. the 

ability to produce or understand a sentence is intrinsically connected with the ability 

to produce and understand other sentences. This is because there is systematicity in 

the way that the physical symbols responsible for language can form symbol 

structures and there is systematicity in the way that this structure determines the 

reactivity of these structures. Because of this structure, languages need not learned by 

learning a phrasebook. Languages have syntax. No English speaker can say A loves 

B, but not be able to say B loves A.  

 

Thirdly, we have already discussed how the same atom makes approximately the 

same contribution to each molecule in which it occurs. This means that there is 

systematicity in reactivity (semantics) as well as in structure (syntax). This is known 

as compositionality. In the same way, lexical items in sentences have approximately 

the same contribution to each expression in which they occur. This is a property of 

internal meanings (semantics), i.e. what a structure means in terms of function. 

 

The phenomena of language and thought imply a neuronal physical symbol system, 

i.e. a system with all the properties described above, in the same way as the 

phenomena of chemistry imply the existence of atoms and molecules. However, there 

are extra properties required of the PSS in cognition compared to the PSS of 

chemistry. The most important is the fact that cognition includes the capacity to learn 

an appropriate PSS, not just to implement it. The fact that children can learn and 

manipulate explicit rules (Clark, 1991; Karmiloff-Smith, 1996) implies the existence 
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of a neuronal physical symbol system capable of forming structured representations 

(analogous to molecules) and learning rules for operating on these representations 

(analogous to reactions of molecules) (Marcus, 2001). A theory of a neuronal physical 

symbol system must also explain the capacity to infer grammar during the process of 

language acquisition (L. Steels & Szathmáry, 2008). Finally, symbol grounding (i.e. 

semantic interpretability) is also needed.  

` 

We believe that strong evidence for a neuronal PSS comes from the field of grammar 

learning. The following is an example of a behaviour that is proposed to require 

neuronal symbols. Gary Marcus has shown that 7 month old infants can distinguish 

between sound patterns of the form ABA verses ABB, where A and B can consist of 

different sounds e.g. “foo”, “baa” etc… Crucially, these children can generalize this 

discrimination capacity to new sounds that they have never heard before, as long as 

they are of the form ABA or ABB. Marcus claims that performance in this task 

requires that the child must extract “abstract algebra-like rules that represent 

relationships between placeholders (variables), such as “the first item X is the same as 

the third item Y”, or more generally that “item I is the same as item J”” (Marcus et al, 

1998). Several attempts have been made to explain the performance of these children 

without a PSS (e.g. using connectionist models) (Seidenberg & Elman, 1999) but 

Marcus has criticized these as smuggling in symbolic rules in one way or another by 

design (Marcus, 2001, p70). For Marcus it seems that the system itself must discover 

the general rule. In summary, the problem with a large set of connectionist learning 

devices is that a regularity learned in one component of the solution representation is 

not applied/generalized effectively to another part (Marcus, 2001). Marcus calls this 

the problem of training independence (Marcus, 1998). Marcus considers this one of 

the fundamental requirements for a learning system to be described as symbolic or 

rule based.   

 

It is important to realize that it would be nonsense to claim that the brain is nothing 

but a physical symbol system. Indeed, we believe that a PSS is needed to explain only 

some relatively advanced aspects of cognition, e.g. some aspects of language and 

abstract thought. There is a huge amount of non-symbolic functionality possessed by 

neuronal processes. Non-symbolic learning mechanisms are probably utilized in the 

search for symbolic rules during ontogeny. An excellent example of such non-
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symbolic (connectionist) functionality is how the visual system can learn shift-

invariance from a few training examples. The test for the trained system is to be able 

to determine whether two novel objects presented at different times or places are the 

same or different, e.g. for face recognition (Wiskott & Malsburg, 1995). Note that the 

same/different distinction is important in being able to solve Marcus’ ABA vs ABB 

task. Konen and von der Malsburg (1993) have shown how shift-invariant pattern 

recognition can be achieved by rapid reversible synaptic plasticity (dynamic link 

matching). Exactly this process can be applied to automatically learning to distinguish 

same and different in a symbol system if the symbol is represented on a grid in the 

same way as a visual image. Thus, non-symbolic mechanisms can be involved in the 

discovery of symbol systems. The framework presented in this paper emphasizes this 

interaction. Also, we certainly do not claim that physical-tokens are as simple as the 3 

x 3 spatiotemporal structures we discuss. Instead, we propose that such tokens will be 

grounded in non-arbitrary ways to sensory and motor systems. Due to space 

constraints, the symbol grounding problem (semantic interpretability) is not addressed 

in this paper, although it is dealt with thoroughly elsewhere in a manner which does 

not remove the need for a physical symbol system (Harnad, 1990). Some authors have 

claimed that the symbol grounding problem has actually been solved in robotics (L.  

Steels, 2007). However, in these cases, a physical symbol system is still required.   

 

To summerise, the following is a definition of a physical symbol system of the type 

proposed to be required to explain the kinds of rule learning exhibited in Marcus’s 

task above, adapted from Harnad (1990). A physical symbol system contains a set of 

arbitrary atoms (or physical tokens) that are manipulated on the basis of "explicit 

rules" that are likewise physical tokens or strings (or more complex structures 

consisting) of such physical tokens. The explicit rules of chemistry for example allow 

the calculation of reactions from the structure of atoms and molecules. The rule-

governed symbol-token manipulation is based purely on the shape of the symbol 

tokens (not their "meaning"), i.e., it is purely syntactic, and consists of "rulefully 

combining" and recombining symbol tokens. There are primitive atomic symbol 

tokens and composite symbol-token strings (molecules). The entire system and all 

its parts -- the atomic tokens, the composite tokens, the syntactic manipulations both 

actual and possible and the rules -- are all "semantically interpretable:" The syntax 

can be systematically assigned a meaning e.g., as standing for objects, as describing 
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states of affairs (Harnad, 1990). Semantic interpretability in molecular systems occurs 

in evolved biochemical systems, e.g. cell signaling molecules, transcription factors 

etc, all convey meaning to a gene regulatory system about the state of the 

environment. Analogously, a neuronal symbol system contains information about the 

environment.  

 

We will demonstrate how (1) arbitrary physical tokens (atoms), (2) arranged into 

molecules or symbol structures  (3) undergoing explicit rule-governed symbol-token 

manipulation (reactions), and (4) learning of explicit rule sets to produce functional 

symbol systems, are possible within a neuronal framework. The basic claims of this 

paper are as follows.  

1. Atoms (symbol-tokens) have a dynamic existence as spatiotemporal patterns of 

spikes existing on neuronal chains resembling synfire chains, or more complex 

topologies of synaptic connectivity (Abeles, 1991; Doursat & Bienenstock, 2006; 

Ikegaya & al, 2004). 

2. Formation of molecules is by ordering of spatiotemporal spike pattern symbol-

tokens on a chain or between chains.   

3. Explicit rules are implemented by context-sensitive re-write rules implemented by 

spiking neurons that read and write to neuronal chains.   

4. Learning of an appropriate symbol system is done by a neuronally implemented 

learning classifier system in which spiking neuron classifier function is replicated 

by using supervised learning by one spiking neuron of the input/output 

correlations of another spiking neuron.  

 

The next section presents the details of the neuronal dynamics and plasticity model 

used. The following section demonstrates each of the four claims made above. 

Finally, the Discussion critically compares this framework with existing proposals for 

how a PSS can be neuronally implemented.  

The Spiking Neural Network and Plasticity Model  

We use a neuronal and plasticity model, similar to that used in (Izhikevich, 2003, 

2007). This models cortical spiking neurons with plasticity governed by spike-time-
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dependent plasticity (STDP) modulated by dopamine (DA) reward. In Izhikevich’s 

work, the STDP function determines weight change indirectly, by producing a 

synaptic tag or eligibility trace molecule. It is the interaction between this eligibility 

trace at each synapse and the global reward signal (DA) that results in weight change. 

In our work, we typically set the decay of the eligibility trace to equal the decay of 

STDP, so that in effect there is no eligibility trace, but we do not exclude the 

possibility that a slower decaying eligibility trace could be useful in some learning 

situations. Furthermore, in some experiments the decay rate of STDP is assumed to be 

higher than in Izhikevich (2007), increasing the temporal-resolution of interspike-

interval detection operations. The details of neuronal model are now presented.   

 

Spiking Neuronal Model  

 

Neurons were either excitatory neurons of the regular spiking type or inhibitory 

neurons (Izhikevich, 2006). The spiking model is from (Izhikevich, 2003):  

 

dv
dt

� 0.04v 2 � 5v �140� u� I    (1) 

du
dt

� a(bv � u)     (2) 

 

with resetting after a spike as follows..  

 

   if v >= +30mV, then  
v � c

u� u � d
��
��
	�

   (3) 

 

v represents membrane potential, and u represents a membrane recovery variable. 

When v reaches +30mV (the apex of the spike, not to be confused with the firing 

threshold), v and u are reset. For excitatory neurons b = 0.2, c = -65, a = 0.02, d = 8, 

corresponding to cortical pyramidal neurons with regular spiking. For inhibitory 

neurons b = 0.25 +/- 0.05, c = -65, a = 0.02 +/- 0.08 , d = 2, I is the input from other 

neurons, and external sources. External inputs to the network are given as 1ms 

depolarizations of 30mV. The details of the plasticity model are now presented.  
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STDP based Plasticity Model 

As described in (Izhikevich, 2007) each synapse has two variables, a synaptic weight 

w and an eligibility trace e.  

 

de
dt

� �c /
 e � STDP(
)�(t � tpre / post )   (4) 

 

dw
dt

� eD    (5) 

 

where D is the extra-cellular concentration of DA in �M, and �(t) is the Dirac delta 

function that increases e by an amount specified by the STDP rule. The STDP rule 

works as follows: 
 is the time difference in milliseconds between pre- and post- 

synaptic spiking, and the eligibility of a synapse changes according to the standard 

implementation of additive STDP shown in equation 6 below (Song, Miller and 

Abbott, 2000; Izhikevich and Desai, 2003). The parameters A+ and A- effectively 

correspond to the maximum possible change in the synaptic weight per spike pair, 

while �+ and �- denote the time constants of exponential decay for potentiation and 

depression increments respectively. In our experiments 
+ and 
- = 20ms (and 

sometimes 5ms for high temporal resolution experiments), and A+ = 1.0 and A- = 1.5.  

 

      

STDP(
) � A�(1�
1


�
)
         for 
 
  0

STDP(
) � A�(1�
1


�
)�
       for 
 � 0

    (6) 

Figure 1 shows the STDP function. 

 

INSERT FIGURE 1 HERE 

 

One can see that if a pre-synaptic spike reaches the post-synaptic neuron (taking into 

account conduction delays) before the post-synaptic neuron fires, then STDP(
) is 

positive. If a pre-synaptic spike reaches a post-synaptic neuron after it fires, then 
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STDP(
) is negative. The eligibility trace e decays with time constant 
e = 20ms (or 

5ms where specified to achieve higher temporal resolution). The synaptic weight w 

changes as the product of e and D. Weights were limited to a range from 0 to 30mV. 

In the learning experiments, Dopamine reward (D = 1.8uM) is provided at the same 

time as sub-threshold postsynaptic depolarization and exponentially decays with time 

constant 0.2 seconds. The implementation of STDP is as in (Izhikevich, 2006) except 

that weight updates are carried out every 1ms according to equation 5.  

 

In addition to standard inhibition, a longer time scale neuromodulatory inhibition is 

implemented. A neuromodulatory inhibitory neuron may release a substance when it 

spikes, reducing the sensitivity in the afferent neuron by a multiplicative term. This 

term is normally 1, but is set to 0 when a spike from a neuromodulatory neuron is 

received. It linearly returns to 1 by an increment of 0.004 per millisecond. This is 

important in allowing gating that is not critical on exact inhibitory spike timing.  

 

Implementation of Atomic Symbols 

We propose that an atomic neuronal symbol-token has the form shown in Figure 2.  

 

INSERT FIGURE 2 HERE.  

 

The top of Figure 2 shows four examples of symbol-tokens consisting of 

spatiotemporal patterns of spikes. The y-axis indicates which neuron the spike will 

stimulate, and the x-axis indicates time. Thus, the depiction of the (purple) 

spatiotemporal pattern on the left indicates that the middle neuron is stimulated 10ms 

later than the top and bottom neurons. The remainder of the figure shows the 

consequences of stimulating a chain of neuronal connections with this spike pattern. 

Each chain consists of three synapses, e.g. these may be cortico-cortical or cortico-

thelamic connections with axonal delays of up to 50ms at each step. Assume that all 

the delays are equal in this system (although this is not a critical requirement for the 

model). After the first three neurons (on the left of the chain) are stimulated with the 

spatiotemporal spike pattern, they will be asynchronously activated. Spikes will pass 

down the chain, asynchronously activating the second and third layers. The input 
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spatiotemporal pattern can be reconstructed at many points along the chain. It is this 

spatiotemporal pattern of spikes that we define as an atomic neuronal symbol-token. 

The diagram shows that detector neurons at various locations along the chain can 

detect this spatiotemporal spike pattern if the axonal delays from the pre-synaptic 

neuron to the detector neuron are appropriately configured, e.g. if a spike from the top 

and bottom neurons take 11ms to reach the detector, but a spike from the middle 

neuron only takes 1ms to reach the detector. If a voltage contribution from each 

neuron is necessary to fire the detector, then the detector will fire only when the 

appropriate spike pattern is seen. This implementation of neuronal symbol-tokens 

(atoms) uses the concept of polychronous computing and a modification of the 

concept of wavefront computing (Izhikevich, Gally, & Edelman, 2004; Izhikevich & 

Hoppensteadt, 2009)  

 

Figure 3 shows a simulation of a simple inter-spike interval detector of the type 

described above. The circuit shown consists of two input neurons with axonal delays 

of 10ms and 1ms into a post-synaptic neuron. The voltages are set so that two 

simultaneously arriving spikes are needed to trigger the output neuron. The graph 

below shows the neuronal voltages measured in an experiment in which the two input 

neurons were stimulated by external current to produce spikes over the course of a 

two second experiment. The first neuron is triggered at 100ms intervals and the 

second neuron is triggered at 101ms intervals. The input pattern is shown in Figure 

2a. Red and Green lines show input voltages and the thick blue line shows the output 

voltage. Because of the different stimulation periods of the inputs, the inter-pulse 

interval progresses from +1ms to +20ms over the course of the 2 second experiment. 

 

INSERT FIGURE 3 HERE.  

 

 

It is observed that only for inter-spike intervals of 8ms and 9ms does the post-synaptic 

neuron (dark blue) fire. Note that if the weights are further decreased, the temporal 

specificity of the post-synaptic neuron increases. Also note that the refractory period 

of the neuron imposes a strong constraint with respect to the number of times a 

neuron can fire in one second and hence to the number of inter-spike interval 

calculations that can be made per second by a post-synaptic neuron. This limits the 
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temporal resolution and complexity of spatiotemporal spike patterns that can be 

detected. If there is a time limit on the temporal duration of a symbol, e.g. dictated by 

the wavelength of a brain rhythm, then this temporal resolution imposes a constraint 

on the alphabet size of symbol-tokens.    

Implementation of Molecular Symbol Structures 

The construction of molecular symbol structures from atomic symbol-tokens requires 

binding of atomic symbol-tokens together (Biederman, 1987) (Malsburg, 1999) such 

that they can be subsequently manipulated (reacted) as a function of the structure of 

the molecule. In our framework, compositional neuronal symbolic structures exist as 

temporally ordered sequences of symbols along chains of neurons, see Figure 4.  

 

 

INSERT FIGURE 4 HERE.  

 

Figure 4 shows a snapshot of the state of a neuronal chain that carries the four 

symbol-tokens shown in Figure 2. Imagine producing this pattern by stimulating the 

first three neurons on the left with the blue, purple, green and finally pink spike 

patterns in succession. Let us allocate each spatiotemporal pattern an arbitrary label, 

e.g. Pink = A, Green = B, Purple = C, and Blue = D for convenience. Then this 

symbol-structure can be described as a string or linear molecule of the form ABCD. 

Many such short chains can exist in the brain. Each chain can be considered to be a 

kind of register, blackboard or tape that can store any symbol-tokens of the 

appropriate size. Figure 2 and 3 showed how a single symbol-token ( C ) could be 

read by a detector neuron with the appropriate axonal delay pattern when interfacing 

with the chain. Similar detector neurons can exist for the symbol-tokens A, B and D 

and as many others as spatial width of the chain and temporal resolution allow.    

 

Thus, we envisage a potentially large parallel system in the brain consisting of a 

population of such chains (chains in the sense of topological and not necessarily 

spatial organization), each capable of storing a set of symbol-token strings and 

operating on these strings in parallel. Interaction between (and within) such chains 

constitutes the operations of symbol-manipulation. Returning to the chemical 
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metaphor such interactions can be thought of as chemical reactions between 

molecules contained on separate chains, and rearrangements within a molecule 

expressed on the same chain. Whilst in a sense a chain can be thought of as a tape in a 

Turing machine (due to the serial nature of the strings), it also can be thought of as a 

single molecule in a chemical system (due to the existence of multiple parallel 

chains). This constitutes the core representational substrate on which symbol 

manipulation will act. The reactivity of symbol structures on these chains is described 

in the next section.   

 

Implementation of Reactivity Rules 

 

Implementation of Implicit Rules

A fundamental operation that can be carried out upon a symbol token is to replace it 

with another symbol-token, see Figure 5. The network figure shows a chain again of 

three neurons width. Receiving input from the chain and writing activity back into the 

chain is a detector neuron with specific input and output delays in relation to the 

chain. A detector neuron (blue) only fires when the correct pattern of input is detected 

(as described above). In this case, the neuron’s input delays are set so that it 

recognizes (fires for) patterns only of type D.  

 

In the experiment the following pattern of stimulation was given. The spike raster plot 

and the voltage plot show two spatiotemporal patterns input to the input neurons that 

fail to make the classifier neuron fire. It can be seen that the same pattern enters the 

chain as leaves the chain. This is because the spatiotemporal organization of these 

patterns does not match the tuning curve of the detector neuron. Only when the third 

spatiotemporal spike pattern is input does the detector neuron fire. Once fired, the 

output of the detector neuron is sent back to the neurons of the chain. If the output of 

the detector neuron slightly precedes the normal passage of the untransformed pattern 

through the chain, then the refractory period of the output neurons of the chain 

prevents interference by the original untransformed pattern which is thereby replaced 

by the new pattern specified by the detector neuron. Such a detector neuron we will 

now call a classifier neuron because it is a simple context free re-write rule with a 

condition (detection) and an action pole of the type seen in Learning Classifier 
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Systems (LCS) (Holland & Reitman, 1977).   

 

INSERT FIGURE 5 HERE.  

 

It can be seen that such classifier neurons are selective filters, i.e. the classifier neuron 

is only activated if the spatiotemporal pattern is sufficiently matched with the axonel 

delays afferent upon the neuron, for the neuron to fire. The above classifier 

implements an implicit rule. An implicit rule is a rule that operates on atomic or 

molecular symbol structures without being specified (encoded/determined/controlled) 

by a symbol structure itself. There is no way that a change in the symbol system, i.e. 

the set of symbols in the population of chains, could modify this implicit rule. The 

implicit rule is specified external to the symbol system. Whenever the symbol D 

passes along this chain, it will be replaced by the new symbol, irrespective of the 

presence of other symbols in the system.  

 

Implementation of Explicit Rules

 

In a symbol system (as in chemistry), symbols are manipulated (partly) on the basis of 

"explicit rules"
1
. This means that the operations or reactivity of symbols depends 

on/is controlled by/is causally influenced by their syntactic and semantic relationship 

to other symbols within the symbol-structure and between symbol structures. Figure 5 

above showed a classifier neuron implementing an implicit rule. This rule was not 

controlled by any symbols in the system, it merely operated on symbols in the system. 

Figure 6 below shows that a classifier neuron and an inhibitory gating neuron can 

implement an explicit rule within our framework.   

 

INSERT FIGURE 6 HERE.  

                                                 
1
 Quoting Harnad (1990) p335. “Wittgenstein (1953) emphasized the difference between explicit and 

implicit rules: It is not the same thing to "follow" a rule (explicitly) and merely to behave "in 

accordance with" a rule (implicitly). The critical difference [between an implicit and explicit rule] is in 

the compositeness (7) and systematicity (8) criteria. The explicitly represented symbolic rule is part of 

a formal system, it is decomposable (unless primitive), its application and manipulation is purely 

formal (syntactic, shape-dependent), and the entire system must be semantically interpretable, not just 

the chunk in question. An isolated ("modular") chunk cannot be symbolic; being symbolic is a 

systematic property… For systematicity it must be possible to combine and recombine entities rulefully 

into propositions that can be semantically interpreted… It is possible to devise machines whose 

function is the transformation of symbols, and whose operation are sensitive to the syntactical structure 

of the symbols that they operate upon.” 
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The classifier and chain shown in Figure 5 is simply modified to include an inhibitory 

gating unit that must receive a particular pattern of spikes (T for trigger) in order for it 

to become active. The simplest relation is where T immediately precedes X. Only 

when this is the case will the classifier neuron be disinhibited. Only when the 

classifier neuron is disinhibited will X be converted to Y. Otherwise X will pass 

through an inactive classifier (as will all other symbols). This is formally a context-

sensitive re-write rule. The rule is called context sensitive because the conversion of 

X to Y depends on the relation of X to another symbol T. The semantic meaning of T 

in this syntactic relation to X is to cause the reaction of X to Y. A set of context-

sensitive re-write rules is capable of generating a grammar of spike-patterns. Consider 

starting the system off with a single symbol-token S. Probabalistic application of the 

rules to the initial symbol S would result in the systematic production of spike 

patterns consisting of grammatically correct context-sensitive spike pattern based 

sentences.  

 

However, the system so far described could not easily implement the kind of rule that 

Marcus wishes a symbol-manipulation system to learn, namely to extract “abstract 

algebra-like rules that represent relationships between placeholders (variables), such 

as “the first item X is the same as the third item Y”, or more generally that “item I is 

the same as item J”” (Marcus et al, 1998). This kind of rule requires hash symbols 

which implement the concept of same and different, namely, If #1 # #1 then S, Else If  

#2 # #1 then D. That is, if the first and last string are the same, write S = same, and if 

the first and last strings are different write D = different. In the absence of hash 

symbols of this type, a classifier system would have to learn all the explicit rules for 

each possible pair of symbols at the first and last position, instead of learning the 

general rule. Both systems would be systematic, however, the system with hashes 

would allow a more concise specification of the same level of systematicity. But how 

can such hashes be implemented within our framework? 

 

Figure 7 shows one possible method of detecting when two spatiotemporal spike 

patterns are the same or different.  

 

INSERT FIGURE 7 HERE.  
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On the left, the figure shows two pairs of sequentially presented symbols flowing 

down two reaction chains, in this case, AA on the top chain and AB on the bottom 

chain. On the right we see that the symbols AA from the top chain have been sent to a 

chain that is capable of recognizing same/different. This circuit is very simple and 

consits only of three XOR gates implemented by spiking neurons. The XOR function 

is at the heart of same/different classification because it fires 1 for the inputs 01 and 

10, but fires 0 for the inputs 00 and 11. In this case, if two spikes are separated by 

100ms along each channel then they will cancel each other out. However, if only one 

spike is present then it will be capable of activating the XOR gate. By setting the 

threshold of the output neuron it is possible to detect adjacent symbol tokens that 

differ by some specified number of spikes. The output neuron can write to the channel 

in the same way as described for the implicit rule action, e.g. implementing the rule, If 

#1 # #1 then S.  

 

Note that for the above detector to be generally applicable to any two symbols that are 

the same, it is necessary that the output neuron accumulate depolarization from the 

three detector neurons over at least 100ms. If this was not the case then the axons 

from the detectors to the output neuron would have to have very specific time delays 

that would only allow detection of a specific pair of same symbols, e.g. AA but not 

BB.  

 

It seems that the neuronal capacity for detection of same and different is a significant 

departure from what can easily be achieved in chemistry. A neuronal physical symbol 

system is capable of exploiting generalization mechanisms unavailable to chemistry. 

In chemistry there is no known molecular mechanism by which one molecule can 

determine whether two other molecules are the same or different.  

 

This concludes our presentation of the structures and reactions possible in a neuronal 

symbol system using spiking neuronal networks. We now address the more difficult 

question of how a symbol system can be learned. We first outline the symbol learning 

system at the algorithmic level, and then demonstrate how one of the fundamental 

operations of this system, namely “rule evolution” can be implemented by replication 

of classifiers using supervised learning.  
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Neuronal Evolutionary Algorithm for Learning a Symbol System  

There have been several demonstrations of the ability to discover a functional symbol 

system on the basis of reinforcement learning. A powerful architecture is XCS 

(accuracy based classifier system) shown in Figure 8.  

 

INSERT FIGURE 8 HERE.  

 

The XCS algorithm consists of a population of classifiers with condition-action poles, 

C�A. Each classifier has a fitness F that is related to its accuracy in predicting the 

reward obtained in the next time step. At each point in time a subset of the classifiers 

(called the Match Set) will match the state of the environment. Classifiers proposing 

several possible actions may exist in the Match Set. An action selection method is 

used to select the best classifier most of the time, although sometimes actions using 

sub-optimal classifiers are also executed for the sake of exploration. When the action 

is executed and the reward obtained, then the prediction accuracy of the classifiers in 

the action set can be updated. Selection then takes place between classifiers in the 

Match Set, while those with lower fitness are removed from the population. This is 

effectively a niche-based selection that preserves representational diversity in the 

population of classifiers. Learning classifier systems have been used to evolve 

classifiers for reinforcement learning tasks such as navigation, robotic control, but 

also for function approximation (Bull & Kovacs, 2005).  

 

We propose that a learning classifier system is implemented within the brain and is 

necessary for discovery of symbol systems capable of solving problems like ABA vs. 

ABB discrimination. The capacity to use a learning classifier system for such 

grammar learning tasks has been investigated elsewhere (Cyre, 2002; Unold, 2008). 

In other words, we propose that a kind of highly constrained natural selection takes 

place in the brain to evolve classifiers. This is a part of a larger hypothesis called the 

Neuronal Replicator Hypothesis which proposes that replicators exist in the brain and 

can undergo natural selection (C.  Fernando, Goldstein, & Szathmáry, 2010; C. 

Fernando, Karishma, & Szathmáry, 2008; C. Fernando & E.  Szathmáry, 2009; C.  

Fernando & E. Szathmáry, 2009; Szathmáry & Fernando, 2009).  
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In order for the argument that an LCS is implemented in the brain to be plausible, it is 

necessary to explain how it is possible to replicate classifiers of the type shown in 

Figure 5 (implicit) and Figure 6 (explicit). This question is answered in the following 

section.  

 

Replication of Neuronal Classifiers  

 

There are several steps to obtain replication of classifiers. The first is to understand 

how a single classifier can be trained.  

 

Using the STDP based synaptic plasticity rules described previously it is possible to 

train a classifier neuron to fire only when exposed to a particular spatio-temporal 

pattern of spikes, as shown in Figure 9.  

 

INSERT FIGURE 9 HERE.  

 

In this experiment we wished to train the output neuron to fire only for a particular 

interspike interval between the two input neurons. In other words, we wanted to train 

a classifier neuron to have the same functionality as Figure 2. The architecture of the 

circuit is as follows. We assume that each input neuron has many pathways for 

communicating with the output neuron. For example dendrites form the post-synaptic 

neuron may connect with the axon of the pre-synaptic neuron at many locations. 

Alternatively, it may be the case that several neurons are involved in the path from 

input to output neuron. In the model we assume that strong pathways of insignificant 

delay exist from the input neuron to a set of nearby neurons, and that from each of 

these nearby neurons there is a pathway to the output neuron with delays of 5ms, 

10ms, 15ms, and 20ms each, see Figure 9. Each weight from these intermediate 

neurons to the output neuron is initially sub-threshold (5mV). This means that 3 

intermediate neurons must fire for the output neuron to fire. Because only two pre-

synaptic neurons can contribute to a synchronous pulse, the output neuron should 

therefore never fire! Indeed, only if a sub-threshold depolarization is provided by an 

external teacher to the output neuron, will it fire, if at that same time it is sufficiently 

stimulated by pre-synaptic neurons.  
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In the experiments, sub-threshold (training) depolarization (10mV) of the post-

synaptic output neuron was given 20ms after the desired condition spike pattern was 

presented to the input neurons. Due to STDP the weights from the intermediate 

neurons to the output neuron increased. Training was with spike pairs every 100ms 

for 2 seconds. ISI is either 0, 5, 10, 15 or 20ms. Only when the ISI was 10ms was 

(Dopamine) reward given at 20ms after the first input spike. Figure 9B shows that 

even though reward and post-synaptic sub-threshold depolarization is given only 

20ms after a 10ms inter-spike interval, there is still the reinforcement of weights that 

result in sensitivity to inter-spike intervals of 0ms, 5ms and 10ms. In other words, the 

temporal sensitivity of training was too low. One reason was that the eligibility trace 

was too slow to decay in comparison with the spike pairs that were being presented 

every 100ms. Increased specificity is obtained by the following modifications. STDP 

and eligibility traces adjusted to decay by 40% every millisecond rather than 5% 

every millisecond. A reward bolus of 0.36 units is given at the same time as the 10mV 

post-synaptic depolarization at 15ms. The performance obtained is shown in the 

tuning curve of the output neuron in Figure 9C which shows the frequency of firing of 

the post-synaptic neuron (y-axis) against the interspike interval (x-axis) The 10ms 

connection from input 1 and the 20ms connection from input 2 have been reinforced 

to approximately 8.5mV, see Figure 9D for the weight matrix. Input neurons = 1,2. 

Intermediate neurons =  3-10, Output neuron = 11. Thus, we showed that it is possible 

to train a classifier neuron to recognize particular interspike intervals.  

 

The second step is to train a classifier capable of reading and writing a spatiotemporal 

spike pattern, see Figure 10.  

 

INSERT FIGURE 10 HERE.  

 

Figure 10 shows again the usual chain of three channels in width consisting of three 

input neurons  (grey) projecting to 3 output neurons (green). The training regime is as 

follows and is shown in its entirety in Figure 11.  

 

INSERT FIGURE 11 HERE.  
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During the training period the spike pattern to be recognized entered along the 3 input 

channels with spikes at 0, 50ms and 100ms latency. This pattern was presented 9 

times. A short fixed time period after each input pattern was presented to the input 

neurons, a pattern of supra-threshold depolarization was presented to the output 

neurons. This output pattern was the desired output pattern, which in this case is an 

inversion of the original pattern (although any pattern can be trained). Figure 10 

shows there is a set of alternative possible delay lines from the each input neuron to 

the blue classifier neuron, and another alternative possible set of delay lines from the 

classifier neuron to each output neuron. In addition, the classifier neuron is linked to a 

neuromodulatory inhibitory system that serves to block the passage of the original 

spike-pattern if it is recognized. If it is not recognized then the original pattern passes 

through to the outputs with a delay of 120ms, unchanged in form.  

 

To see the training regime in detail, Figure 11 shows that an input pattern activates 

the input neurons 9 times followed by the desired output pattern. Output stimulation is 

supra-threshold (20mV) and is provided at 218ms, 168ms and 118ms after the first 

input spike. In addition, the classifier neuron is given sub-threshold stimulation 

(10mV) 100ms after the first input spike. This training procedure is sufficient for the 

classifier neuron to learn both the input required to activate it, and the desired output.   

 

The test phase to prove that training has been successful is shown in two parts. In the 

part (true) the correct input pattern is given and the classifier is able to transform it 

into the desired output pattern. In the next phase (false) random inputs are given and 

pass directly through the chain unchanged because the classifier neuron is not 

activated by them.  

 

The final step for classifier replication is identical to the training regime used to train 

the classifier in Figure 11. This is because once a single classifier neuron has been 

trained, this classifier neuron can train other classifier neurons in the following 

manner. The plasticity of the first (trained) classifier neuron is held fixed. The input 

spike pattern passes now to both classifiers, and the output of the first classifier is 

used to produce supra-threshold output neuron depolarization in the second classifier. 
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Systems that are capable of being trained by supervised learning, are typically also 

capable of training other such systems.  

 

Discussion  

There are several alternative connectionist type theories for the implementation of 

‘mental representations’ or symbol-structures in the brain. For example the RAAM 

architectures of Pollack (Pollack, 1990) encoded syntactically structured 

representations of sentences, and uses back-propogation in the space of 

representations with no explicit concatenative structure. However, this system cannot 

generalize in the way required by Marcus to new inputs. Also back-propogation is an 

unlikely mechanism in neocortex. Our framework on the other hand uses realistic 

plasticity rules (STDP and gating) and implements a real physical symbol system.  

 

An alternative proposal for structured representations are semantic networks (Marcus, 

2001). They are graphs with labeled connections. A serious problem with these 

systems is the speed limitation in creating new bindings. Bindings in our system are 

dynamic, arising from the spatiotemporal arrangement of patterns of spikes. Thus, the 

problem of new rapid binding formation does not exist.  

 

An influential alternative theory of neuronal symbol systems is binding-by-

synchrony. This theory proposes relational (bidirectional) binding of symbol-tokens. 

A symbol-token in this case is not the same as proposed here. Typically the activation 

of a particular node (neuron or group of neurons) is a symbol. Relational binding of 

such symbol-tokens is achieved by synchronous (phase locked) firing of a relation 

representing neuron with an instance representing neuron (Bienenstock & Geman, 

1995; Shastri & Ajjanagadde, 1993), for example, the subject and object rules of a 

verb, and the subjects and object instances. However, there are several problems with 

binding by synchrony.  

 

Binding by synchrony is limited in the kinds of relation that can be made, e.g. the 

relation A � B is not trivial to distinguish from the relation B � A (Love, 1999) 

because binding by synchrony is symmetric. Therefore, directed graphs cannot 

naturally be represented using binding by synchron. A directed graph is an important 
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cognitive symbol structure (molecule) because it can represent cognitive and semantic 

graphs. Our framework allows the representation of directed graphs, e.g. a string can 

be a bracketed expression describing a graph, or it can be the output of a breadth first 

search of a directed graph.  

 

The inference (reaction) rules that transform a symbol-structure into another symbol-

structure are implicit not explicit, i.e. a particular rule linking predicates is not 

represented in the same way as the predicate itself. In terms of our chemical 

metaphor, the reactivity of a molecule is not dependent on the structure of that 

molecule, but on reactivity defined independently of the molecular structures. Our 

framework on the other hand implements explicit rules.  

 

There is no mechanism for recursive binding because representation of multiple 

instances of a predicate results in a superposition catastrophe. (Marcus, 2001, p101). 

Also it is difficult to represent multiple instances of an object. Recursive binding and 

multiple instances can be represented in our system because it is a spiking neuronal 

network implementation of a real physical symbol system.   

 

Novel predicates and rules can be learned rapidly in human communication, yet this 

would appear to require producing a new node in binding by synchrony models. How 

compositional representations are learned and modified, e.g. during language 

acquisition is not explained by Shastri et al (Bienenstock & Geman, 1995). Our 

framework on the other hand allows rapid new binding of symbols by novel ordered 

concatenation of symbols on the same chain.  

 

Finally, there is some neurophysiological evidence that may be in support of this 

framework for symbol processing. The discovery of “cortical songs” is highly 

suggestive that discrete unique tokens such as symbols can be encoded as 

spatiotemporal patterns of spikes. Cortical songs are higher-order sequences of spike 

patterns repeated in the same sequential order observed in neocortical brain slices, of 

the form [A,C,D,E,F][A,C,D,E,F] for example where each letter represents a 

stereotyped polychronous pattern of activity (Ikegaya & al, 2004). Furthermore, there 

is evidence for the training methods we used to train classifiers in Figures 9 and 10.  

For example, synaptic inputs at distal dendrites can act as supervisory signals in the 
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Hippocampus (Dudman, Tsay, & Siegelbaum, 2007). This maps to the sub-threshold 

and supra-threshold depolarization we used to train classifier and output neurons. 

Several other papers also propose methods for supervised training of classifiers, and 

so our classifier replication mechanism is by no means out of the blue. For example, 

the “Tempotron” is an example of learning to classify specific spatiotemporal patterns 

of spikes using a gradient-descent type rule to adjust weights on the basis of how 

rapidly a pattern results in firing of a classifier leaky-integrator neuron (Gutig & 

Sompolinsky, 2006). A spiking analogy of the Widrow-Hoff algorithm has been 

developed by Ponulak and Kasinski for the supervised training of spiking neural 

networks to undertake sequence learning, classification and spike-shifting. It works 

by potentiating the weight from input to output whenever a target spike is observed 

and depressing it whenever the trained neuron fires. The extent of the effect is a 

decaying time function from the time of the last input spike at this synapse. Inhibitory 

synapses are driven by the opposite rule. When the desired and actual spike times are 

identical, potentiation and depression cancel (Ponulak & Kasinski, 2009). Therefore, 

there is a growing body of work showing how replication of spatiotemporal spike 

pattern classifiers is possible.  

 

In conclusion we have attempted to show how in principle a physical symbol system 

capable of learning symbolic rules could be realized in the brain using spiking 

neuronal networks and replication of classifiers using STDP based supervised 

training/learning of functions, within a learning classifier framework. Our emphasis 

has been on the implementation aspects and not on the algorithmic aspects. Further 

work is needed to implement a full LCS in a neuronal network. Therefore, this paper 

should be seen as perhaps a qualitatively new way to think about symbol processing 

in the brain.  
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Figure 1: The asymmetric profile of the STDP learning window. The difference 

between the timing of pre- and post-synaptic firing (s=tpost-tpre) determines the degree 

and direction of the change in synaptic weight (�w). The profile of the exponential 

potentiation (s>0) and depression (s<0) windows respectively are defined by the 

maximum possible weight change per spike pair (A±) and the time constants of decay 

(�±). The ratio of integrals over these windows is defined as �=A- �- / A+ �+ and thus a 

value of �>1 indicates an overall dominance of depression while �<1 indicates an 

overall dominance of potentiation. (From Izhikevich, 2007 Figure 1).  

 

Figure 2. 4 possible spatiotemporal spike pattern based symbol-tokens are shown at 

the top. Below we see how the symbol passes down a delay line consisting of 3 

neurons from left to right. The detector neuron (purple) can detect the spike pattern in 

several locations along the chain.  

Figure 3 (top) A simple classifier neuron sensitive to a spike pattern occurring 10ms 

apart. Weights = 10mV. The experiment involves changing the inter-spike interval 

from 0 to 20ms.  

 

Figure 4. A chain carrying 3 different spike patterns as a concatenated string.  

 

Figure 5.  A re-write rule is implemented by the above circuit. There are three input 

channels in this case, although it is trivial to add more. The direct pathway is by a 

delay line via an intermediate layer. The indirect pathway to the outputs is via a 

classifier neuron (blue). Only if the delays match the ISIs of the input spike ensemble 

does the recognizer fire. Once fired, it sends signals down outputs with delays that are 

set so that the desired output pattern in produced. Part B. A spike raster showing the 

3 input patterns and 3 output patterns produced in an experiment. Patterns that do not 

match the re-write rule pass through the classifier, but those that do match the re-write 

rule are converted, and the passage through by the original pattern is inhibited due to 

the refractory period of the output neurons (see Part C which shows the voltages of 

input, output and classifier neuron). Also it is possible to explicitly inhibit the passage 

of the original input, but this is not needed here.  Black = 3 inputs, Green = outputs, 

Blue = classifier neuron.  
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Figure 6. An explicit rule implemented by a classifier neuron and an inhibitory gating 

neuron. The inhibitory connection from the inhibitory neuron to the classifier neuron 

is shown in orange.  

 

Figure 7. A method for detecting same/different successive symbol-tokens. (Left) 

Two pairs of sequentially presented symbols, AA and AB. (Right) A device that is 

capable of identifying symbol pairs that are different, using three XOR circuits in 

parallel. The circuit on the left has been stimulated with AA. Each of the 100ms inter-

spike interval (ISI) detectors will fire in this case. The summed depolarization of 

these three detector neurons will accumulate in the output neuron causing it to fire, 

and thus signal that two identical symbols separated by a 100ms was observed. If AB 

had been presented then only the middle 100ms ISI detector neuron would have fired, 

and this would not be sufficient to fire the output neuron.   

Figure 8. An example of an XCS classifier system. The symbol system has state AFD 

at time t. Of the population of classifier neurons only those with A as their condition 

can match. Of these the classifier with highest predicted reward is that which 

transforms A to Y. This is applied. Classifier fitness is on the basis of reward 

prediction accuracy. A GA is undertaken on the Match Set.   

Figure 9A. The architecture of the device to be trained to detect ISI = 10ms. Part B. 

Giving reward and sub-threshold depolarization (5mV) at 20ms after the first spike of 

the pair, and using plasticity rules described previously (Izhikevich, 2007), we found 

that training was non-specific for 10ms ISI. This is a histogram of the number of 

times the output neuron fires for various ISIs during the test phase (i.e. with no post-

synaptic depolarization given.) Part C,D. However, after increasing the rate of decay 

of STDP and eligibility trace, training was specific. The selected delay from input 1 to 

output 1 was 10ms and the selected delay from input 2 to output 2 was 20ms, 

providing a good response to a 10ms ISI at 20ms after the first spike, as we intended.  

 

Figure 10. The learning circuit capable of learning a grammatical re-write rule by 

supervision. Three input neurons (black and gray) receive the input symbol encoded 

as a 3x3 spatiotemporal matrix of spikes. That means it is distributed over 3 neurons, 
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and there are 3 temporal positions a spike can take, -1, 0, 1 for example. These send 

signals to three neurons along delay lines of 100ms, 50ms and 1ms. Weak weights 

then connect these to a classifier neuron. Sub-threshold activation of the classifier 

neuron at 100ms results in STDP causing potentiation of its afferent weights. 

Simultaneously, appropriately timed supra-threshold depolarization of the output 

neurons (green) causes potentiation of their afferent weights. The classifier neuron 

inhibits the direct pathway from input to output if the appropriate symbol is 

recognized.  

 

Figure 11. Training and test phases during the experiment to construct the classifier 

shown in Figure 10. See text for details.   
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