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Abstract

Supersaturated designs are a large class of factorial designs which can be used for screening
out the important factors from a large set of potentially active variables. The huge advan-
tage of these designs is that they reduce the experimental cost drastically, but their critical
disadvantage is the confounding involved in the statistical analysis. In this paper, we propose
a method for analyzing data using several types of supersaturated designs. Modifications of
widely used information criteria are given and applied to the variable selection procedure for
the identification of the active factors. The effectiveness of the proposed method is depicted

via simulated experiments and comparisons.

Keywords and phrases: Supersaturated designs, Variable selection, Best subset method, Infor-
mation criteria.
AMS Subject Classification: 62-07, 62K15.

1 Introduction

Supersaturated designs (SSDs) are used in the initial stage of an industrial or scientific experiment
for identifying the active effects, and they are very useful when there is a large number of factors
under testing while only a limited number of experimental runs is available. The analysis of
supersaturated designs relies on the assumption of effect sparsity (Box and Meyer ([4])), i.e. only
few of the experimental factors have significant influence on the response. SSDs can be generally
described as designs with p factors and n runs where n < p. The idea of SSDs was initiated by
Satterthwaite ([25]). Even though the construction methods for SSDs have been widely studied
(Lin ([14], [15]), Nguyen ([20]), Tang and Wu (]27]), Liu and Zhang ([17]), Liu and Dean ([16]),
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Ryan and Bulutoglu ([24]), Nguyen and Cheng ([21])), the analysis of SSDs is yet in an early
research stage.

Westfall et al. ([29]) proposed an error control skill in forward selection. Abraham et al. ([1])
pointed out that the analysis of SSDs can give uncertain results independently of the method used.
They applied stepwise and all-models methods to identify the active factors. A two-stage Bayesian
model selection strategy for SSDs, able to keep all possible models under consideration while
providing a level of robustness similar to Bayesian analysis incorporating noninformative priors,
was proposed by Beattie et al. ([3]). Li and Lin ([12]) introduced a variable selection approach to
identify the active effects in SSDs via nonconvex penalized least squares. To find the solution of
the penalized least squares an iterative ridge regression is employed. This method is empirically
compared to the Bayesian variable selection (Li and Lin ([13])). The forward selection method
has been suggested and performed by Lin ([14]), where the data were based on a half fraction
of Plackett-Burman design. Wang ([28]) applied the Lin’s analysis on the other half fraction of
Plackett-Burman design and observed that four of the five active factors found in one half fraction
were not found in the other. However, when effect sparsity holds, Type I errors can easily occur.
In a recent paper, Holcomb et al. ([8]) proposed the bootstrap method with contrasts and the
contrast variance method to analyze data using a broad range of supersaturated designs. The
objective of the contrast variance method they proposed is to reduce Type II error rates. Hamada
and Wu ([6])) recommended an iterative guided stepwise regression strategy for analyzing the data
from these designs that allows entertainment of interactions. However, their strategy provides a
restricted search in a rather large model space. Chipman et al. ([5]) proposed a Bayesian variable
selection approach for analyzing experiments with complex aliasing and Lu and Wu ([18]) proposed
an analysis method based on the idea of staged dimensionality reduction. Phoa et al. ([22]) studied
a variable selection method via the Dantzig selector for analyzing supersaturated designs.

The paper is organized as follows. In Section 2, we present the proposed method and implement
its steps using a best subset variable selection approach. Also, we introduce two modifications of
the widely used information criteria; Akaike Information Criterion (AIC, Akaike ([2])) and Bayesian
Information Criterion (BIC, Schwarz ([26])). Simulation results are listed and discussed in Section

3. Some conclusion comments are summarized in the last section.

2 Proposed Method

Let us consider the model for a screening experiment

y =XpB +e, (1)
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where y is the (n x 1) response vector, X is the n x p design matrix, 3 is the (p x 1) vector of
the unknown coefficients, and € is the (n x 1) random error vector with € = (e1,¢9,...,&,) and
gi ~ N(0,0%) for all i = 1,2,...,n. The aim of factor screening is to identify those factors which
have non-zero effects. The experimenter can assume that there are only up to m active factors
from the total set of p factors involved. Usually, the process is more robust when m is at most half
the number of runs (effect sparsity ([4])).

In the present framework we propose an analysis method for testing the factorial effects in a
supersaturated design with a block structure. Our method is based on the procedure of subset
selection used with certain criteria which combine statistical measures with penalties for increasing
the number of predictors in the model. Reviews on best subset variable selection method can be
found in Hocking ([7]), Miller ([4]) and Rao and Wu ([23]). Basically, the criteria used in the
best subset variable selection procedure are classified into four categories: (1) Prediction criteria;
(2) Information-based criteria; (3) Data-reuse and Data-driven procedures; (4) Bayesian variable
selection.

We use here only the information-based criteria which are related to likelihood or divergence
measures. Each of these criteria can be considered as an approximately unbiased estimator of
the expected overall discrepancy, a nonnegative quantity which measures the distance between the
underlying model and the fitted approximated (or candidate) model. These criteria usually consist
of two terms where the first represents a biased estimator of the expected overall discrepancy and
the second is the appropriate correction (or penalty) term that makes the estimator asymptotically
unbiased. The most popular criteria of this class include the Akaike Information Criterion (AIC)
and the Bayesian Information Criterion (BIC). AIC was proposed by Akaike ([2]), and it selects
the model that minimizes AIC = —2[ + 2p, where [ is the loglikelihood of the model and p is the
number of parameters in the model. BIC was proposed by Schwarz ([26]) and has a similar form
to AIC except that the log-likelihood is penalized by plog(n) instead of 2p, selecting the model
that minimizes BIC = —2[ + plog(n), where n is the number of observations.

Phoa et al. ([22]) suggested a modified AIC criterion for model comparison, which is equivalent
to mAIC = —21 + 2p%. They posed a quadratic penalty of model complexity p than the linear
penalty in AIC; thus, mAIC chooses more parsimonious model than AIC. Inspired from this work,
we propose two more modifications of the above criteria; the modified AIC and the modified BIC
which are given from the relationships modAIC = % + 2°?  and modBIC = % + M,

logn3/2 logp
respectively. In our criteria, the conventional AIC and BIC are standardized by dividing the

number of active factors and include it in the first term. Thus, the effect of the number of factors
is minimized. Also, a penalized multiplier including the model complexity and the number of

observations is added in both modified criteria. Several trials and simulated experiments showed
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that these multipliers give the best results compared to other multipliers and the original versions
of the criteria. The efficiency of these modifications is established via a comparative simulation
study which is presented in Section 3.

Our method is applicable to the s-block two-level E(s?)-optimal supersaturated designs with
n runs and p = s(n — 1) factors. Such designs can be provided by the construction methods of
Tang and Wu ([27]) and Koukouvinos et al. ([10],[11]).

According to the Tang and Wu method ([27]), one can construct a supersaturated design X
with n rows and s(n — 1) columns by juxtaposing s equivalent Hadamard matrices Hy, Ha, ..., Hg
of order n, with the requirement that none of the s(n — 1) columns be fully aliased with another
(two columns c; and c; are said to be fully aliased if ¢; = Fc;). Indeed, these designs can be
represented by the design matrix X = [Xy, X2, ..., X;], where Xj is a balanced n x (n — 1) matrix
with elements +1, ¢ = 1,2,...,s. The criterion of minimization of ry,q; = mawxi<;|s;j/n|, where
sij/n = r;j is the correlation of two columns cj, c;j, is taken into account in the construction of
these SSDs. Naturally, the matrix Xj, ¢ = 1,2,...,s has its columns pairwise orthogonal. An
important feature of these designs is that any two columns which have non zero correlation appear
in different blocks. So, the correlations of all pairs of columns within each block of the design
matrix is equal to zero. In this work, the proposed method takes advantage of this feature, having
as goal to overcome problems arising if a column of the design is correlated with another column
and both correspond to active factors.

Koukouvinos et al. ([10]) construct E(s?)-optimal and minimax-optimal, two level cyclic struc-
tured supersaturated designs through a metaheuristic approach guided via multi-objective simu-
lated annealing. Although the blocks constituting these designs have not necessarily an orthogonal
structure, these SSDs appear optimal with respect to the criterion of minimization of ryq;. In
this way the value of the appeared correlation between the columns is as small as possible. Also,
Koukouvinos et al. ([11]) propose a hybrid simulated annealing genetic algorithm for generating

E(s?)-optimal cyclic structured supersaturated designs.

The procedure we suggest is briefly described by the following steps.

1. Fori=1,2,...,s apply the best subset variable selection method, combined with one of the
information criteria described previously, using as design matrix the n x (n — 1) matrix Xj,

and the n x 1 response vector y.
2. Define S; be the set of all active variables derived when y regress with Xj, i =1,2,...,s.

3. Let S = [J;_,S; is the union of all factors derived in each block of the design and consider

the set of screened active variables to be S.

4
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This method is applied to both type of designs as well as to SSDs without a block structure

([20]) with very good results presented in the next section.

3 Simulation Study

In this section a comparative simulation study is provided in order to test the performance of the
proposed method. The SCAD method ([12],([9])) is also included in the simulation experiments,
so as the best subset variable selection method is compared to an existing analysis method of
supersaturated designs. Since the proposed method is run into blocks, SCAD is also run into
blocks as it is proposed in [9]. The necessary parameters for the SCAD method are selected
according to the suggestion in the original paper they appear. Specifically, we choose a = 3.7 and
a generalized cross-validation is used to estimate the thresholding parameter \.

1000 data sets are generated from the linear model (1) with randomly selected coefficients and
an g; ~ N(0,1) for all « = 1,2,...,n random error is added to each corresponding observation
y;, while only main effects models are considered. The true active variables are also selected
randomly from the set of 1,...,p potentially active factors, with respect to the already determined

number of active variables in each block of the design matrix. Following the principle of effect

n
DR

sparsity, all possible numbers of active factors are chosen. Thus, 0,1,2,3,... active factors are
tested for each of the six n x p design matrices we study. We run all the possible combinations
of 0,1,2,3,..., 5 active factors per s blocks in order to examine all the possible cases. We have
observed symmetry between the numbers of active factors in the several blocks; hence, we limited
the results listed only for the cases where t; < t;, % # j, 4,5 = 1,..., s and t; denote the number of
active factors in the i-th block. The coefficients of the non-active variables, in the true model, are
generated from N(0,0.05) and the absolute values of the active factors are randomly selected in
the range [0.7,2.0], considering both negative and positive signs assigned to the coefficients of the
active factors. In total, for obtaining Tables I-V the number of the used linear models is equal to
the number of the considered cases appeared in the corresponding tables.

In these simulation experiments our aim is to control two types of error rates; the cost of
declaring an inert effect to be active (Type I error), and the cost of declaring an active effect to
be inactive (Type II error).

Various types of supersaturated designs are used in the simulations as examples of the per-
formance of the method when it is applied in designs with different structure. In Tables I-V are
presented the results obtained by one supersaturated design constructed by the method presented
in Tang and Wu ([27]), two supersaturated designs constructed by Koukouvinos et al. ([10]), one

supersaturated design constructed by Koukouvinos et al. ([11]) and one supersaturated design
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1
2
3
4 constructed by Nguyen ([20]), respectively. In the first columns of each table we present the num-
5
6 ber of true active factors t;, 7 = 1,...,s, per each of the s blocks used in the simulated models.
7 In the next columns we present the Type I and Type II error rates occurred by the application
8
9 of the best subset variable selection and the block SCAD ([9]) method to the simulated models.
10 The procedure of best subset variable selection terminates using the five information-based criteria
11
12 described in Section 2.
13
14 e A two-block orthogonal SSD
15
16 The first idea was to apply the proposed method to a two-block orthogonal design in order
17
18 to take advantage of this special structure. We choose the E(s?)-optimal SSD for p = 22
19 factors in n = 12 runs with 7,4, = 0.67 constructed in Tang and Wu ([27]) for this purpose
20
21 and the results are presented in the following table.
22
23
24 t AIC BIC mAIC modAIC modBIC SCAD
t1 to Type I Type II Type I Type II Type I Type II Type I Type 11 Type I Type I1 Type I Type I1
25 0 0 0.1639 - 0.1652 - 0.0781 - 0.0792 - 0.0835 - 0.1324 -
26 0 1 0.2279 0.0980 0.2310 0.0960 0.0615 0.2270 0.1224 0.1800 0.1345 0.1740 0.1604 0.1290
27 0 2 0.3033 0.0630 0.3070 0.0615 0.0696 0.3535 0.1620 0.1215 0.1875 0.1060 0.1829 0.1175
28 1 1 0.3245 0.0660 0.3274 0.0635 0.0559 0.2850 0.1698 0.1350 0.1983 0.1190 0.1962 0.1540
0 3 0.3583 0.0950 0.3613 0.0933 0.0835 0.4940 0.1819 0.1907 0.2081 0.1590 0.2132 0.1867
29 1 2 0.3890 0.0307 0.3911 0.0293 0.0549 0.2150 0.1798 0.0773 0.2164 0.0637 0.2071 0.1093
30 0 4 0.3931 0.0602 0.3947 0.0587 0.1057 0.5383 0.1998 0.1838 0.2189 0.1358 0.2277 0.1417
31 1 3 0.3801 0.0305 0.3815 0.0302 0.0670 0.3342 0.1785 0.1038 0.2011 0.0800 0.2147 0.1525
2 2 0.4095 0.0073 0.4116 0.0073 0.0436 0.2190 0.1802 0.0382 0.2112 0.0267 0.2165 0.0685
32 0 5 0.4725 0.0564 0.4747 0.0562 0.1160 0.6096 0.2262 0.2222 0.2678 0.1668 0.2675 0.2182
33 1 4 0.4836 0.0874 0.4849 0.0870 0.0686 0.4396 0.2085 0.1976 0.2594 0.1682 0.2126 0.2412
34 2 3 0.4999 0.1044 0.5020 0.1036 0.1181 0.6462 0.2515 0.2648 0.3025 0.3142 0.3245 0.4296
35 0 6 0.4538 0.0467 0.4549 0.0450 0.1251 0.6695 0.2432 0.2922 0.2592 0.2087 0.2527 0.3732
1 5 0.5336 0.0712 0.5339 0.0712 0.0810 0.5508 0.2123 0.2392 0.2607 0.1950 0.1773 0.3293
36 2 4 0.5208 0.1060 0.5216 0.1053 0.0750 0.5372 0.2236 0.3017 0.2738 0.2517 0.2326 0.3812
37 3 3 0.4079 0.0437 0.4095 0.0433 0.0504 0.4680 0.1840 0.1603 0.2243 0.1232 0.2330 0.1527
38
39 Table I: Methods performance for random model coefficients using 1000 simulations in Tang-Wu design for p = 22 factors and n = 12
40 runs, considering up to 6 active factors per block (11 factors in total per block).
41
42 o . . .
43 From Table I, it is shown that the best subset variable selection methods using AIC and BIC
44 behave similarly overestimating the non-active variables (high Type I error rates), while the
45 . o
46 application of mAIC results to extreme values of Type II. The criteria modAIC and modBIC
47 improve the results of the corresponding original versions and compete the results obtained
48
49 from block SCAD.
50
51 e A two-block SSD
52
53 Next, we apply the proposed method in a two-block supersaturated design provided in [10].
2‘51 This design is the E(sz)—optimal SSD for p = 18 factors in n = 10 runs with 7,4, = 0.600.
56 The results of the simulations using the above design are listed in Table II.
57
58
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N

Type 1 Type 1T Type I Type II Type 1 Type I1 Type I Type II Type 1 Type I1 Type I Type II

N R O N KO ORKROOO
Wk N WA N W N = O

0.3668 - 0.4317 - 0.0912 - 0.0997 - 0.1479 - 0.1271 -

0.4706 0.1370 0.5211 0.1300 0.0741 0.2880 0.1360 0.2090 0.2134 0.2130 0.1259 0.2140
0.5691 0.1225 0.6025 0.1210 0.0839 0.4405 0.1916 0.2155 0.3064 0.1800 0.1124 0.2185
0.5671 0.3385 0.6163 0.3350 0.0861 0.5875 0.2028 0.4730 0.2938 0.4250 0.1509 0.5215
0.4771 0.1540 0.5145 0.1483 0.0897 0.5990 0.2003 0.3097 0.2726 0.2377 0.1835 0.3427
0.5231 0.1863 0.5544 0.1773 0.0917 0.5493 0.2246 0.3583 0.3114 0.2820 0.1905 0.4243
0.5876 0.1330 0.6120 0.1270 0.1139 0.6005 0.2457 0.3113 0.3620 0.2115 0.1487 0.3945
0.5692 0.1403 0.5999 0.1320 0.0821 0.4808 0.2390 0.2858 0.3405 0.2218 0.1746 0.4060
0.6841 0.1452 0.7059 0.1260 0.1024 0.5517 0.2886 0.4035 0.4314 0.3225 0.1269 0.5357
0.6876 0.1090 0.6978 0.1062 0.1492 0.6284 0.2866 0.3402 0.4577 0.2194 0.1045 0.4628
0.7327 0.1784 0.7492 0.1698 0.1452 0.6238 0.3385 0.4838 0.4782 0.3914 0.1336 0.5344
0.6419 0.3150 0.6636 0.2898 0.1597 0.7452 0.3432 0.5186 0.4375 0.5334 0.2445 0.6676

Table II: Methods performance for random model coefficients using 1000 simulations in Koukouvinos et al. design for p = 18 factors and

n = 10 runs, considering up to 5 active factors per block (9 factors in total per block).

The previous observations stand for the results of Table II too; when best subset terminates
using AIC and BIC, the values of Type I are very high, while the use of mAIC results to
extreme Type Il error rates. In contrary, the modified versions modAlIC and modBIC behave
better than AIC and BIC, since they reduce the values of Type I and also, give lower Type
II rates than SCAD.

A larger SSD

In cases that the number of experimental factors is large, best subset approaches could not
be applied because of their computer burden. So, it is of interest to test if a further division
within the blocks could be an alternative approach in such cases. We use the supersaturated
design for p = 66 factors and n = 12 runs ([10]) and we divide each one of the two original
blocks into three blocks; so, we have six blocks in total. For simplicity, we keep the same
notation for the number of active factors as in previous tables, but note that we now refer
in a subdivision of the two-block design. Active factors are assigned randomly in each of the

six sub-blocks.

t AIC BIC mAIC modAIC modBIC SCAD

o

o
o

N

Type I Type II Type I Type II Type I Type II Type I Type II Type I Type I1 Type I Type II

W N HONRFONRREOREORROOO
Wk OO W UNWRNW RN RO

0.2118 - 0.2301 - 0.0497 - 0.0838 - 0.1360 - 0.0861 -

0.3627 0.1820 0.3788 0.1820 0.0814 0.2140 0.1236 0.1840 0.2363 0.1800 0.1381 0.1830
0.4252 0.2250 0.4394 0.2285 0.1068 0.4565 0.1249 0.2595 0.2723 0.2350 0.1676 0.2880
0.4698 0.0860 0.4790 0.0900 0.1100 0.1575 0.1496 0.1270 0.3057 0.1115 0.1573 0.1095
0.5090 0.2220 0.5171 0.2220 0.1327 0.4367 0.1750 0.3360 0.3288 0.3090 0.1839 0.3807
0.4794 0.2743 0.4888 0.2687 0.1305 0.4853 0.1690 0.3897 0.3228 0.3570 0.1903 0.4350
0.5622 0.0747 0.5707 0.0752 0.1395 0.2288 0.1794 0.1358 0.3377 0.1155 0.1899 0.2208
0.5842 0.1318 0.5896 0.1345 0.1462 0.3320 0.1868 0.1683 0.3548 0.1452 0.1880 0.2402
0.5831 0.0210 0.5874 0.0205 0.1352 0.1817 0.1622 0.1678 0.3603 0.0532 0.1781 0.1920
0.6351 0.1642 0.6402 0.1618 0.1504 0.4744 0.2140 0.3032 0.3703 0.2662 0.1991 0.4236
0.6881 0.1066 0.6925 0.1054 0.1393 0.3046 0.1736 0.2208 0.3893 0.2008 0.1857 0.2656
0.6748 0.0740 0.6792 0.0728 0.1413 0.3278 0.2283 0.2514 0.3931 0.2110 0.2118 0.3432
0.6545 0.1822 0.6577 0.1793 0.1570 0.5843 0.2034 0.3870 0.4071 0.3350 0.2033 0.4458
0.6989 0.0952 0.7020 0.0962 0.1391 0.3933 0.2263 0.1690 0.3983 0.1387 0.2006 0.3938
0.7018 0.0820 0.7047 0.0812 0.1434 0.4357 0.2096 0.3227 0.4092 0.2388 0.2109 0.3810
0.6438 0.1197 0.6480 0.1190 0.1493 0.4912 0.2216 0.2955 0.4001 0.2263 0.2311 0.3705
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Table III: Methods performance for random model coefficients using 1000 simulations in Koukouvinos et al. design for p = 66 factors
and n = 12 runs, considering up to 6 active factors per block (11 factors in total in each of the six blocks). Each one of the two original
blocks is sub-divided in three blocks.

Let us note that the further split of the design in six blocks is less time consuming than
the division in two blocks. The modified versions modAIC and modBIC improve the results
of the original versions. modBIC yields lower Type II error rates than SCAD, but higher
values of Type I. On the other hand, modAIC outperforms SCAD run into blocks. The
above results show that when the number of experimental factors enlarges a further division
into sub-blocks could be an alternative approach of the proposed best subset method using
modAIC.

A three-block SSD

We also use the E(s?)-optimal SSD for p = 21 factors in n = 8 runs with 7,4 = 0.500
([11]) divided in three blocks in this simulation study. The obtained results are shown in
Table IV, where t1,to,t3 denote the number of active factors in the first, second and third
block respectively. Again modAIC and modBIC perform better than AIC and BIC giving
lower Type I rates and preserving Type Il rates in satisfactory levels. It is shown also, that

modAIC gives better results than SCAD run into three blocks.

t AIC BIC mAIC modAIC modBIC SCAD

t1 to t3 Type I Type II Type I Type I1 Type I Type II Type I Type II Type I Type II Type I Type II
0 0 0 0.3672 - 0.4120 - 0.0820 - 0.0963 - 0.2160 - 0.1053 -

1 0 0 0.4501 0.4290 0.4894 0.3950 0.0916 0.6040 0.1943 0.4580 0.2882 0.3640 0.2182 0.5020
2 0 0 0.6033 0.2470 0.6310 0.2370 0.1345 0.5570 0.2104 0.3450 0.3962 0.1725 0.2588 0.4575
1 1 0 0.5761 0.2955 0.6127 0.2720 0.1162 0.5185 0.2017 0.4995 0.3808 0.2880 0.2593 0.5270
3 0 0 0.5723 0.3157 0.5975 0.2927 0.1553 0.6587 0.2183 0.4827 0.3846 0.2603 0.2981 0.5970
2 1 0 0.6593 0.3243 0.6792 0.2963 0.1676 0.6433 0.2954 0.6203 0.4681 0.3447 0.2828 0.6143
1 1 1 0.6889 0.3237 0.7139 0.3077 0.1196 0.4070 0.2958 0.4810 0.4851 0.3083 0.3298 0.4090
4 0 0 0.6421 0.3115 0.6615 0.2953 0.1886 0.7083 0.2728 0.5058 0.4378 0.2643 0.3305 0.6138
3 1 0 0.6121 0.2432 0.6341 0.2350 0.1509 0.5433 0.2505 0.3927 0.4136 0.2013 0.2954 0.4970
2 2 0 0.6209 0.0850 0.6491 0.0818 0.1476 0.2630 0.2016 0.1535 0.4049 0.1108 0.2395 0.3200
2 1 1 0.6521 0.0153 0.6760 0.0115 0.0851 0.1820 0.2249 0.1143 0.4302 0.1362 0.2276 0.2330

Table IV: Methods performance for random model coefficients using 1000 simulations in Koukouvinos et al. design for p = 21 factors and

n = 8 runs, considering up to 4 active factors per block (7 factors in total per block).

A design without block structure

Moreover, supersaturated designs without a block structure are used in the simulations in
order to illustrate the method’s conduct when it is applied to a broader class of such designs.
In the following table, the results obtained from Nguyen’s ([20]) ave(s?)-optimal SSD for
p = 14 factors in n = 8 runs with 7,4, = 0.500 are listed. The following results show
that the proposed method performs well when it terminates using modAIC and modBIC.
Moreover, best subset using modAIC gives better results than block SCAD.
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t AIC BIC mAIC modAIC modBIC SCAD
tr, tr Type I Type II Type I Type II Type I Type II Type I Type II Type I Type I1 Type I Type II
0 0 0.2436 - 0.2478 - 0.1237 - 0.1260 - 0.1483 - 0.1550 -
0 1 0.3229 0.1240 0.3321 0.1210 0.0971 0.2740 0.1728 0.2190 0.2235 0.1980 0.1694 0.2220
0 2 0.3983 0.1000 0.4067 0.0945 0.0962 0.4750 0.2249 0.1950 0.3022 0.1515 0.2339 0.2435
1 1 0.3908 0.1685 0.3998 0.1580 0.1274 0.5710 0.2302 0.3405 0.2886 0.3675 0.2564 0.3750
0 3 0.4511 0.1567 0.4590 0.1487 0.1076 0.6183 0.2576 0.2950 0.3503 0.2170 0.2825 0.3900
1 2 0.4631 0.2107 0.4735 0.2040 0.0740 0.4903 0.2545 0.3220 0.3590 0.2640 0.2836 0.3983
0 4 0.5264 0.1245 0.5322 0.1210 0.1308 0.6775 0.3038 0.3040 0.4211 0.1918 0.2951 0.4895
1 3 0.4824 0.1457 0.4897 0.1442 0.0657 0.4140 0.2495 0.2275 0.3701 0.1840 0.2643 0.2920
2 2 0.5137 0.2205 0.5220 0.2147 0.1179 0.6228 0.3064 0.4022 0.4144 0.3020 0.3151 0.4150
Table VI: Methods performance for random model coefficients using 1000 simulations in Nguyen design for p = 14 factors and n = 8

runs, considering up to 4 active factors per block (7 factors in total per block).

Some general conclusion remarks are discussed in the next section.

4 Conclusion

In this paper, we have introduced a method for analyzing data in supersaturated designs by dividing
them into blocks. We approach the problem of variable selection combining several information
criteria, with the block structure of the SSDs given by Tang and Wu ([27]) and Koukouvinos et al.
([10], [11]). The proposed method enables us to make the best subset variable selection procedure
applicable even in high order designs. However, when there is a large number of experimental
runs, best subset approaches cannot be applied because of their time complexity. In these cases a
further division of the large designs into more blocks allows the application of best subset methods.
Empirical performance of our method based on simulations is tested and compared to SCAD run
into blocks ([9]). Simulation results show that the proposed method gives good results and can
compete existing analysis methods when it is applied to supersaturated designs with a block
orthogonal structure. Moreover, it outperforms when it is applied to supersaturated designs with
a block but not orthogonal structure or even to designs without any block structure by simply
dividing them into blocks.

As with any method for analyzing supersaturated designs, high risk is expected for this method
as well. Both Type I and Type II error rates are important and should be kept as low as possible.
A method with a low Type I error rate has the ability to exclude unnecessary factors, so it can be
helpful in reducing the cost of additional experiments based on the selected factors. On the other
hand, there are experiments, where the exclusion of one or more active factors and the weakness of
the method to identify them could have dramatic results. In these cases, the cost of declaring an
active effect to be inactive would be substantial and the application of any of the other methods
with lower Type II error rates is suggested. Best subset approach using AIC and BIC gives very
high Type I and low Type II error rates. The proposed method using mAIC gives the lowest Type

I error rates but extreme values of Type II. The combination of our method with the proposed in
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this paper modified information criteria achieves lower error rates than the conventional versions,

and especially modAIC gives better results than block SCAD in most of the cases.
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referees for their useful comments and suggestions.
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