Can the Mortensen-Pissarides Model Match the Housing Market Facts?
Gaetano Lisi

To cite this version:
Gaetano Lisi. Can the Mortensen-Pissarides Model Match the Housing Market Facts?. 2012. <hal-00676072v2>

HAL Id: hal-00676072
https://hal.archives-ouvertes.fr/hal-00676072v2
Submitted on 5 May 2012
Can the Mortensen-Pissarides Model Match the Housing Market Facts?

Gaetano Lisi *

Abstract

This paper examines whether the baseline Mortensen-Pissarides matching model can account for the housing market facts, namely: the existence of price dispersion, the positive correlation between housing price and time-on-the-market, and between housing price and trading volume. Our main finding is that the model can account for these three basic facts of the housing market, thus showing that the basic matching framework can be seen as the benchmark macroeconomic model not only for the labour market but for any market with frictions.

Keywords: housing price dispersion, time-on-the-market, trading volume, search and matching process.

JEL Classification: R21, R31, J63

* Centro di Analisi Economica CREAtività e Motivazioni – CreaM Economic Centre (University of Cassino). Email: gaetano.lisi@unicas.it.
1. Introduction

Housing markets are characterised by a decentralised exchange framework with important search and matching frictions. It has, in fact, been acknowledged that housing markets clear not only through price but also through the time and money that a buyer and a seller spend on the market. Consequently, the search and matching approach is widely used even in the real estate market (for an overview, see section 2).

Furthermore, three basic facts have been repeatedly reported: (a) the positive correlation between housing price and time-on-the-market (see Leung, Leong and Chan, 2002; Anglin et al. 2003; Merlo and Ortalo-Magne, 2004, among others);1 (b) the positive correlation between housing price and trading volume (see Leung, Lau and Leong, 2002; Fisher et al., 2003, among others); (c) the existence of price dispersion.

Price dispersion (or price volatility) is probably the most important distinctive feature of housing markets. It refers to the phenomenon of selling two houses with very similar attributes and in near locations at the same time but at very different prices. Although price dispersion research is more commonly found in studies of non-durable consumption goods,2 price dispersion studies on durable and re-saleable goods such as real estate are also growing rapidly (for an overview see Leung, Leong and Wong, 2006). Real estate is in fact the most important durable consumption good and one of the most important assets for most household portfolios (Leung, Leong and Wong, 2006). Since most real estate transactions come from re-sales between buyers and sellers (transactions in the housing markets are in fact dominated by a second-hand market), it should not be surprising that price dispersion exists even in the housing market (Leung, Leong and Wong, 2006).

In a nutshell, the variance in house prices cannot be attributed completely to the heterogeneous nature of real estate. Remaining price differentials are in fact empirically non negligible. A significant part of housing price dispersion is basically due to the heterogeneity of buyers and sellers, in particular their sustained search costs (see e.g. Leung and Zhang, 2011). Vukina and Zheng (2010) find very strong empirical

1 The time it takes to sell a property, the so-called time-on-the-market (TOM), measures the degree of illiquidity of the real estate asset and is a fundamental characteristic differentiating real estate from financial assets.

2 A literature review on price dispersion can be found in Baye et al. (2006).
support for the theoretical prediction that bargaining with search costs explains price dispersion in the agricultural market.

Nevertheless, the search and matching process is by itself able to explain the price dispersion. The main aim of this paper is to develop a search and matching model à la Mortensen-Pissarides (see e.g. the textbook by Pissarides, 2000) that explains the basic facts of housing markets only relying on the specific nature of the search and matching process in the real estate market. Precisely, we develop a decentralised long-run equilibrium model in which agents differ only with respect to their state in the house-search process and can change their condition after a match. The proposed work takes the distinctive feature of the considered market into account, where the formal distinction between buyer and seller becomes very subtle. In the model, in fact, a seller can become a buyer and vice versa. Indeed, most houses are bought by those who already own one, and most houses are sold by those wanting to buy another house (Janssen et al., 1994); buyers today are in fact potential sellers tomorrow (Leung, Leong and Wong, 2006).

In this model, price dispersion comes from the different kinds of matching which occur in the housing market. Also, this theoretical model is able to explain two other well-known empirical regularities, namely the positive correlation between housing price and time-on-the-market, and between housing price and trading volume. Therefore, this paper clearly shows that the behaviour of the housing market, reflected in the above empirical findings, can be addressed adequately by the standard matching framework à la Mortensen-Pissarides.³

The rest of the paper is organised as follows: section 2 briefly reviews the literature which makes use of the search and matching models to study the housing market; section 3 presents our housing market matching model; while section 4 concludes.

2. LITERATURE REVIEW

This paper belongs to the recent and growing literature that uses search and matching models to explain the behaviour of housing markets. The first search model of the

³ Although this approach is commonly used in the labour market, Wasmer and Weil (2004) show that it can also be used to describe matching difficulties between financial backers (banks) and firms.
housing market is Wheaton’s (1990). Since then, several papers have developed models to analyse the formation process of prices in housing markets with search/matching/trading frictions (see Table 1 for a summary).

Furthermore, recent search and matching models of the housing market (Diaz and Jerez, 2009; Novy-Marx, 2009; Piazzesi and Schneider, 2009; Genesove and Han, 2010; Leung and Zhang, 2011; Peterson, 2012) adopt an aggregate matching function and some of them also focus on the role of market tightness in determining the probability of matching between the parties. This is in line with the standard matching approach (see Pissarides, 2000). The main difference between our model and those in the quoted studies is that we closely track the standard matching framework à la Mortensen-Pissarides without any significant deviation from the baseline model.4

Among this literature, our model is most related to the competitive search framework developed by Leung and Zhang (2011), since it aims to explain the three basic facts of the housing market. In Leung and Zhang (2011), a necessary condition for explaining the housing market facts is the heterogeneity on the seller’s and/or the buyer’s side, which generates corresponding submarkets. Precisely, Leung and Zhang (2011) focus on one-side heterogeneity and assume that sellers are different in terms of their waiting costs for selling the house, where buyers are free to enter either submarket. However, in their model the reservation value of a buyer is exogenous and sellers commit to “stay” in one of the submarkets.5 Furthermore, in our model the free-entry or zero-profit condition for sellers à la Pissarides, rather than the buyer’s free entry assumption used by Leung and Zhang (2011), allows to obtain a solution which characterises the direct relationship between market tightness and house price.6

4 For example, Diaz and Jerez (2009), Novy-Marx (2009), Genesove and Han (2010), Leung and Zhang (2011), and Peterson (2012) define the market tightness from a buyer perspective, i.e. housing market tightness is the ratio of buyers to sellers. Instead, we prefer to use the standard definition of tightness, thus considering the ratio of vacant houses to home seekers (the buyers). In the labour market, in fact, tightness is the ratio of job vacancies to job seekers. In Piazzesi and Schneider (2009), houses for sale and potential buyers enter the matching function.

5 Sellers with higher waiting costs (the so-called impatient or “fire-sale” sellers) are willing to accept lower prices, which attract a larger number of potential buyers so that the house can be sold faster. However, patient sellers (sellers with lower waiting costs) may find it profitable to enter that submarket.

6 In Leung and Zhang (2011), the equilibrium is in fact determined by a system of three equations in three unknowns, where the value of seller, the value of buyer and the house price depend on market tightness. As a result, with a fixed entry value for the buyers and a fixed number of sellers, they first solve the market tightness, and then the seller value and the house price. Indeed, also in Genesove and
The free-entry condition for sellers is also used by Albrecht et al. (2009) to endogenise housing market tightness. Nevertheless, in their model, search is directed rather than random, houses are sold by auction rather than by bargaining and sellers post prices to attract buyers.

3. A Baseline Matching Model of Housing Market

3.1 The hypotheses of the model

We adopt a standard matching framework à la Mortensen-Pissarides (see e.g. Pissarides, 2000) with random search and prices determined by Nash bargaining. The random matching assumption is absolutely compatible with a market where the formal distinction between the demand and supply side is very subtle; whereas, bargaining is a natural outcome of decentralised markets for heterogeneous goods.

Since we are interested in selling price, the market of reference is the homeownership market rather than the rental market. In this way, if a contract is legally binding (as hypothesised) it is no longer possible to return to the circumstances preceding the bill of sale, unless a new and distinct contractual relationship is set up. In matching model jargon this means that the destruction rate of a specific buyer-seller match does not exist. As a result, the value of an occupied home for a seller is simply given by the selling price, while the buyer gets the house.

The economy is populated by sellers and buyers. Sellers (s) hold h houses (with $h \geq 2$) of which $h - 1$ are on the market; hence, vacancies (v) are simply given by $v = (h - 1) \cdot s$. Buyers (b) expend costly search effort to find a house (if they are homeless persons) or a new house (if they already hold a house). It is therefore possible that a buyer can become a seller and that a seller can re-enter the market as a buyer. In particular, the following transitions are possible:

Han (2010) there are fewer equations than unknowns, and in order to close the model they assume a constant value for the buyer’s search and an infinite supply of buyers, thus assuming that buyers can choose among a large number of markets, while sellers are tied to a specific market.

7 Since there is no rental market, this is a reasonable assumption.

8 In the housing market it is more interesting to study the transition from seller (buyer) to buyer (seller), rather than the dynamic in and out of the homelessness. According to Wheaton (p. 1274, 1990), in fact, although homelessness is equivalent to unemployment, shifts in the housing market are voluntary changes in the labour market and involve periods in which the household owns two (or more) units, whereas voluntary job transitions usually imply spells of unemployment.
TABLE 2. Transitions in the housing market

<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homeless-buyer</td>
<td>Homeowner-buyer</td>
</tr>
<tr>
<td>Homeowner-buyer</td>
<td>Seller</td>
</tr>
<tr>
<td>Seller</td>
<td>Homeowner-buyer</td>
</tr>
</tbody>
</table>

also, sellers can remain sellers. In this model, buyers differ only with respect to their state in the house-search process. We distinguish the two different buyer states by the upscript $i \in \{n, o\}$, where $n =$ homeless-buyer, and $o =$ homeowner-buyer. Also, agents can change their condition in the search process (see table 2). Hence, sellers are not able to distinguish between the two different buyer states, i.e. the buyers always appear identical to sellers ex ante. However, when the parties meet each other, the seller will observe the state of buyer ex post. Nevertheless, s/he always decides to sell since the search is costly in terms of time and money. In a nutshell, if the search is costly and random, it is not optimal for the seller to reject an offer and wait for a new one. Sellers accept offers as long as the selling price is higher than the value of a vacant house.

The expected values of a vacant house (V) and of finding a house (H) are given by: \[rV = -a + q(\theta) \cdot [P - V] \] \[rH^i = (1 - \delta) \cdot y^i - e + g(\theta) \cdot [x - H^i - P] \]

where $\theta \equiv \frac{v}{b^o + b^n} = \frac{v}{b}$ is the “overall” housing market tightness from the sellers’ standpoint; while $q(\theta)$ and $g(\theta)$ are, respectively, the (instantaneous) probability of filling a vacant house and of finding a home; also, the standard hypothesis of constant returns to scale in the matching function, $m = m\{v, b\}$, is adopted (see Pissarides, 9

10

Alternatively, one could assume that the homeless are ashamed to reveal their status.

11

Indeed, this condition is always satisfied in a non-trivial equilibrium.

12

Time is continuous; individuals are risk neutral, live infinitely and discount future payoffs at the exogenous interest rate $r > 0$. As usual in matching-type models, the analysis is restricted to the stationary state.

Note that the expression for the value of a vacant house should be the following:

\[rV = -a + q(\theta) \cdot \beta \cdot [P^o - V] + q(\theta) \cdot (1 - \beta) \cdot [P^n - V] \]

where $\beta = b^o / b$ and $(1 - \beta) = b^n / b$ are, respectively, the fraction of homeowner-buyers and homeless-buyers. However, since the buyers always appear identical to sellers ex ante, also the selling prices appear identical to sellers ex ante, i.e. $P^o = P^n = P$. Hence, the expression collapses to equation [1].
2000; Petrongolo and Pissarides, 2001), since it is also used in the recent search models of the housing market (see Diaz and Jerez, 2009; Novy-Marx, 2009; Piazzesi and Schneider, 2009; Genesove and Han, 2010; Leung and Zhang, 2011; Peterson, 2012). Hence, the properties of these functions are straightforward: \(q'(\theta) < 0 \) and \(g'(\theta) > 0 \). The term \(a \) represents the cost flows sustained by sellers for the advertisement of vacancies; whereas, \(e \) represents the effort flows in monetary terms made by buyers to find and visit the largest possible number of houses. If a contract is stipulated, the buyer gets a benefit \(x \) from the property (abandoning the home searching value) and pays the sale price \(P \) to the seller (who abandons the value of finding another buyer). The buyer’s benefit \(x \) depends on the housing characteristics (i.e. the value of the house) and it does not depend on the buyer’s state.\(^{15}\) Finally, \(y^o \) is the homeowner-buyer’s benefit deriving from the old house. In order to avoid that the mass of homeless persons can go to zero, we assume that during the search the homeowner-buyer can lose (for economic reasons) the old house at the exogenous rate \(\delta \), i.e. \(\delta \cdot [y^o - y^s] \), with, obviously, \(y^o = 0 \).

3.2 Search equilibrium and the trade-off between house prices and time-on-the-market

In this housing market with search frictions, the endogenous variables that are determined simultaneously at equilibrium are market tightness (\(\theta \)) and sale price (\(P \)).

The customary long-term equilibrium condition, namely the “zero-profit” or “free-entry” condition, normally used in the matching models (see Pissarides, 2000) yields the first key relationship of the model, in which market tensions are a positive function of price. In fact, using the condition \(V = 0 \) in \([1]\), we obtain:

13 This matching technology is consistent with the assumption of undirected or random search. By assuming undirected or random search, both homeowner-buyers and homeless-buyers have the same probability of meeting sellers. Hence, it is the total number of buyers that enters the matching function.
14 Standard technical assumptions are assumed: \(\lim_{\theta \to 0} q(\theta) = \lim_{\theta \to \infty} g(\theta) = \infty \), and \(\lim_{\theta \to 0} q(\theta) = \lim_{\theta \to \infty} g(\theta) = 0 \). By definition, markets with frictions require positive and finite tightness, i.e. \(0 < \theta < \infty \), since for \(\theta = 0 \) the vacancies are always filled, whereas for \(\theta = \infty \) the home-seekers immediately find a vacant house.
15 Also in Albrecht et al. (2007) and Leung and Zhang (2011) the value of the house is independent of agent types.
\[
\frac{a}{P} = q(\theta) \Rightarrow q(\theta)^{-1} = \frac{P}{a}
\]

with \(\frac{\partial \theta}{\partial P} > 0 \), since \(q(\theta)^{-1} \equiv \frac{1}{q(\theta)} \) is increasing in \(\theta \). This positive relationship is very intuitive: in fact, if the price increases, more vacant houses will be on the market.

The free-entry condition also implies a trade-off between the housing price and the speed of sale for the seller. In fact, with an arrival rate of \(q(\theta) \), the expected time-on-the-market is \(q(\theta)^{-1} \). As a result, from [3] there is a positive correlation between housing price and the time-on-the-market, since a higher price requires a longer time to sell a house (as pointed out by Leung, Leong and Chan, 2002; Anglin et al. 2003; Merlo and Ortalo-Magne, 2004; Leung and Zhang, 2011).

The generalised Nash bargaining solution, usually used for decentralised markets, allows the sale price \(P \) to be obtained through the optimal subdivision of surplus deriving from a successful match. The surplus is defined as the sum of the seller’s and buyer’s value when the trade takes place, net of the respective external options, i.e. the value of continuing to search (recall that in equilibrium \(V = 0 \)):

\[
\text{surplus} = (P-V) \text{ capital gain of seller} + (x-P-H^i) \text{ capital gain of buyer}
\]

The price is then obtained by solving the following optimisation condition:

\[
P = \arg \max \left\{ (P-V)^\gamma \cdot (x-H^i - P)^{1-\gamma} \right\}
\]

Hence, by the first order condition (FOC) we get:

\[
\Rightarrow P = \frac{V}{(1-\gamma)} \cdot (x-H^i - P)
\]

\[
\Rightarrow P = \gamma \cdot (x-H^i)
\]

where \(0 < \gamma < 1 \) is the share of bargaining power of sellers. Entering into a contractual agreement obviously implies that the surplus is always positive, i.e. \(x > H^i \), \(\forall \theta \). This realistic condition on the buyers’ side also ensures that the price is positive. Simple manipulations yield the equation for the selling price:

\[
P = \frac{\gamma \cdot (rx-(1-\delta) \cdot y^i + e)}{r + g(\theta) \cdot (1-\gamma)}
\]

[4]
being $H^i = \frac{(1-\delta)\cdot y^i - e}{r} + g(\theta) \cdot P \cdot \frac{(1-\gamma)}{r \cdot \gamma}$, and $(x - H^i - P) = P \cdot \frac{(1-\gamma)}{\gamma}$ from the FOC. As market tensions increase, the probability of finding a home increases, and the sale price decreases; hence, we obtain the second key relationship of the model: $\frac{\partial P}{\partial \theta} < 0$. In short, if the market tightness increases, the effect of the well-known congestion externalities on the demand side (see Pissarides, 2000) will lower the price.

By combining equations [3] and [4], this model is able to reproduce the observed joint behaviour of prices and time-on-the-market: in fact, the house with a higher selling price has a longer time on the market (see equation (3)), but, *ceteris paribus*, the longer the time-on-the-market the lower the sale price (see Krainer, 2001; Merlo and Ortalo-Magne, 2004; Leung and Zhang, 2011; Diaz and Jerez, 2009), since both $(1-\theta q)$ and (θg) are increasing in θ.

PROPOSITION 1: *The standard matching model extended to the housing market is able to mimic the trade-off between selling price and time-on-the-market.*

Finally, given the properties of the matching probabilities (see footnote 15), it is straightforward to obtain from equation [3] that when P tends to zero (infinity), θ tends to zero (infinity), as $q(\theta)$ tends to infinity (zero). Consequently, given the negative slope of equation [4], with positive intercept, and the fact that the selling price is always positive, the following remark can be stated:

REMARK: *Only one long term equilibrium deriving from the intersection of the two curves exists in the model (see point A in Figure 1).*

====== Figure 1 about here (now at the end) ======

3.3 Comparative statics, price dispersion and trading volume

From equation [4], the selling price clearly depends on the bargaining power of the parties. Also, the selling price crucially depends on the search costs of buyers and sellers. In particular, from [4] it is straightforward to obtain that an increase in the search effort of buyers increases the selling price, since a higher e implies a more eager buyer. As regards the effect of advertising vacancies on the selling price, an increase in a decreases market tightness θ, which in turn increases the selling price.
(since \(g(\theta) \) is lower). In short, an increase in the seller’s search cost also leads to an increase in the selling price (see point A’ in Figure 2).

\[\theta \equiv \frac{a \cdot v}{e \cdot b} \]

Intuitively, the trading volume for a given period, i.e. the number of contracts traded during a given period, is given by the matching rate (see Leung and Zhang, 2011). Following Pissarides (2000), it is straightforward to include the search cost/effort of sellers and buyers in the matching function, i.e. \(m = m\{a \cdot v, e \cdot b\} \), with those costs allow the matching probability to increase.\(^{16}\) Hence, in the “extended” matching function, an increase in the search effort or in advertising vacancies will increase the matching rate \(m \). As a result, the model could also explain the positive relationship between housing price and trading volume, since an increase in the search costs of buyers and sellers increases both the selling price and the matching rate. This is in line with the empirical works of Fisher et al. (2003) and Leung, Lau and Leong (2002).

Proposition 2: In the baseline Mortensen-Pissarides model of the housing market we find a positive correlation between house prices and trading volume.

A partially counter-intuitive result regards the effect of the rate \(\delta \) on the selling price: in facts, the worse the economic condition, the higher the selling price.

Finally, we consider two similar houses, which give the same benefit \(x \) (i.e. which have the same housing characteristics). In this case, price dispersion comes from the two different buyer states in the house-search process. Hence, housing prices would be different even for identical houses. In a nutshell, the house price depends on the kind of matching. Specifically, the homeless will pay a higher price for the same house, i.e. \(P^{\pi}(x) - P^{\alpha}(x) > 0 \), since their need for buying a house is greater. Furthermore, the higher \(y^{\pi} \) (and/or the lower \(\delta \)), the larger the price differential.

\(^{16}\) The search intensity and the cost of advertising vacancies may be seen as parameters of technological change in the matching function (see Pissarides, p. 124, 2000). The search intensity decision may be endogenised (see e.g. Yashiv, 2007). In the housing market, this implies that a buyer will choose the search effort which maximises the value of finding a home. In this case, a convex search cost function is usually assumed and the probability of finding a home also depends on the search intensity. It is straightforward to find that the optimal search intensity depends on: i) market tightness (positively); ii) the house value (positively); and iii) the house price (negatively).
PROPOSITION 3: Price dispersion exists in the basic model à la Mortensen-Pissarides only relying on the specific nature of the search and matching process in the housing market.

3.4 Closing the model with the natural vacancy rate and the homelessness equation

In order to find the “natural” vacancy rate, i.e. the optimal share of houses for sale on the market that prevails in long term equilibrium at which sellers make no economic profits (see Arnott and Igarashi, 2000; McDonald, 2000), we normalise the population in the housing market to the unit, i.e. \(1 = s + b^o + b^n\). As a result, using the definitions of equilibrium tightness, \(\theta = \theta^* = \frac{v}{b^o + b^n}\), and vacancies, \(v = (h-1)\cdot s\), it straightforward to obtain the stock of sellers and the “natural” vacancy rate:

\[
s = \frac{\theta^*}{h-1 + \theta^*} \tag{5}
\]

\[
v = \frac{(h-1)\cdot \theta^*}{h-1 + \theta^*} \tag{6}
\]

these equations have very intuitive properties: \(\frac{\partial s}{\partial \theta^*} > 0\) and \(\frac{\partial v}{\partial \theta^*} > 0\).

Instead, the evolution of homelessness in the course of time \((\dot{b}^n)\) is the following:

\[
\dot{b}^o = \delta \cdot b^o - g(\theta) \cdot b^n \tag{7}
\]

where \(\delta \cdot b^o\) represents the homelessness inflows, i.e. the homeowner-buyers who lose the old house at rate \(\delta\); whereas, \(g(\theta) \cdot b^n\) describes the homelessness outflows, i.e. the homeless that find a home. Therefore, in steady state (with \(\dot{b}^o = 0\)) we get:

\[
\delta \cdot b^o = g(\theta) \cdot b^n \Rightarrow g(\theta) \cdot b^n = \delta \cdot (1-s-b^n) \Rightarrow b^n = \frac{\delta \cdot (1-s)}{g(\theta) + \delta} \tag{8}
\]

with, obviously, \(\frac{\partial b^n}{\partial \delta} > 0\) and \(\frac{\partial b^n}{\partial g(\theta)} < 0\).

Eventually, by using the “summing-up” condition or the homelessness identity, namely \(1 = s + b^o + b^n \Rightarrow b^o = 1-s-b^n\), we find the share of homeowner-buyers.
4. CONCLUSIONS

Housing markets are characterised by a decentralised framework of exchange with important search and matching frictions. Furthermore, three basic facts have been repeatedly reported by empirical studies: 1) the variance in house prices cannot be completely attributed to the heterogeneous nature of real estate and the residual price volatility is empirically non negligible; 2) the positive relationship between housing price and the number of contracts traded during a given period (trading volume); 3) the trade-off between housing price and the speed of sale for the seller. This theoretical paper clearly shows that the behaviour of housing markets, reflected in the above empirical findings, can be addressed adequately by the standard matching framework à la Mortensen-Pissarides.

REFERENCES

FIGURES

Figure 1. Equilibrium

FIGURE 2. Increase in the advertising costs of vacancies
<table>
<thead>
<tr>
<th>Author/s</th>
<th>Key mechanism or insight behind the model</th>
<th>Price determination</th>
<th>Characteristics of search and matching process</th>
<th>Main result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wheaton (1990)</td>
<td>households move when a stochastic process leaves them dissatisfied with their current unit (moving or changing houses involves transaction costs)</td>
<td>Nash bargaining</td>
<td>matching function + random search</td>
<td>the model yields a strong theoretical relationship (inverse) between vacancy and prices, which with competitive supply explains the existence of longer-run "structural" vacancy</td>
</tr>
<tr>
<td>Krainer (2001)</td>
<td>as in Wheaton (1990), trade in housing market takes place because individuals are vulnerable to idiosyncratic shocks that break the match with their house</td>
<td>sellers makes a take-it-or-leave-it offer</td>
<td>random search</td>
<td>liquidity can be good while prices are high ("hot" markets) because the opportunity cost of failing to complete a trade is high for both buyers and sellers</td>
</tr>
<tr>
<td>Albrecht et al. (2007)</td>
<td>buyers and sellers move from one state (relaxed) into another (desperate), at the exogenous constant rate, if they remain unmatched</td>
<td>Nash bargaining</td>
<td>traders meet each other (randomly) at the exogenous constant rate</td>
<td>the expected price conditional on time to sale falls with time spent on the market, whereas the conditional variance of price first rises and then falls with time on the market</td>
</tr>
<tr>
<td>Caplin and Leahy (2008)</td>
<td>mismatch between sellers and buyers; whenever there is excess demand, sellers extract the maximal price; whenever there is excess supply, sellers must be indifferent between sales today and sales tomorrow</td>
<td>Bertrand competition among sellers</td>
<td>Search is a “black box” (however it is not directed)</td>
<td>the model generates the positive correlation between price changes and the volume of transactions displayed by the data</td>
</tr>
<tr>
<td>Novy-Marx (2009)</td>
<td>market participants optimally respond to shocks in a manner that amplifies a shock’s initial impact, which in turn further elicits a reinforcing response</td>
<td>Nash bargaining</td>
<td>matching function + random search + market tightness</td>
<td>the model generates a positive correlation between prices and tightness, but not necessarily a positive correlation between prices and the volume of transactions</td>
</tr>
<tr>
<td>Ngai and Tenreyro (2009)</td>
<td>Amplification mechanism due to the “thick-market effect” on “match-specific quality”: in a market with more houses for sale, a buyer is more likely to find a better match; this makes it appealing to all agents to transact in that season (“hot” market); also, better matches imply higher surpluses and thus higher house prices</td>
<td>Nash bargaining</td>
<td>random match-quality (while the contact probability is always one)</td>
<td>the calibrated model can quantitatively account for the seasonal fluctuations in prices and transactions observed in U.S. and U.K.</td>
</tr>
<tr>
<td>Author(s)</td>
<td>Abstract</td>
<td>Model Details</td>
<td>Summary</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>----------</td>
<td>--------------</td>
<td>--------</td>
<td></td>
</tr>
<tr>
<td>Diaz and Jerez (2009)</td>
<td>when hit by idiosyncratic shocks, agents become mismatched and seek to move, but they take time to locate an appropriate unit</td>
<td>sellers post prices to attract buyers (as in Albrecht et al. (2009))</td>
<td>competitive search process + matching function + market tightness</td>
<td>the model is able to generate a positive co-movement in prices, sales and liquidity</td>
</tr>
<tr>
<td>Albrecht et al. (2009)</td>
<td>houses are sold by auction and are sometimes sold above, sometimes below and sometimes at the asking price. Hence, the final selling price need not be the same as the posted price</td>
<td>“asking price”: the price posted by a seller is used to attract buyers (i.e. sellers post asking prices, and buyers direct their search based on these prices)</td>
<td>directed search + market tightness</td>
<td>it captures the main features of the house-selling process in the U.S. and explains the role of asking price and its relationship to the sales price</td>
</tr>
<tr>
<td>Piazzesi and Schneider (2009)</td>
<td>a household is initially a “happy owner” who obtains housing services; however, s/he may be hit by a shock that makes him an “unhappy” owner who no longer obtains any services from the house. S/he can then sell the house and purchase a new one to again begin obtaining housing services</td>
<td>seller makes a take-it-or-leave-it offer, and the buyer accepts or rejects the offer</td>
<td>matching function + random search</td>
<td>optimists (investors) can drive up the average transaction price without a large increase in trading volume or in their market share</td>
</tr>
<tr>
<td>Genesove and Han (2010)</td>
<td>demand shocks (average income and population are used as demand proxies)</td>
<td>Nash bargaining (with an extension to the case of “take-it-or-leave-it offer”)</td>
<td>matching function + random search + market tightness</td>
<td>a positive demand shock leads to shorter seller time on the market and fewer home visits, while buyer time on the market is much less sensitive</td>
</tr>
<tr>
<td>Lisi (2011)</td>
<td>direct relationship between market tightness and house price</td>
<td>Nash bargaining</td>
<td>matching function + random search + market tightness</td>
<td>the standard matching framework à la Mortensen-Pissarides is integrated with the hedonic price theory</td>
</tr>
<tr>
<td>Leung and Zhang (2011)</td>
<td>one-side heterogeneity which generates corresponding submarkets; sellers are different in terms of their waiting costs for selling the house, where buyers are free to enter either submarket</td>
<td>Nash bargaining</td>
<td>matching function + random search + market tightness</td>
<td>the model is able to reproduce the three basic facts of housing market (price dispersion, positive correlation between house prices and time-on-the-market, and between house prices and trading volume</td>
</tr>
<tr>
<td>Peterson (2012)</td>
<td>the model combines search frictions with a behavioural assumption where market participants incorrectly believe that the efficient market theory holds (the so-called “Fooled by search”)</td>
<td>Nash bargaining</td>
<td>matching function + random search + market tightness</td>
<td>the model can replicate the observation that real price growth and turnover are highly correlated, explaining over 70% of the housing bubble in the United States</td>
</tr>
</tbody>
</table>