Biot-JKD model: simulation of 1D transient poroelastic waves

Abstract : This article deals with time-domain numerical modeling of Biot poroelastic waves. The viscous dissipation inside the pores is described by the model of dynamic permeability of Johnson-Koplik-Dashen (JKD). Some coefficients of the Biot-JKD model are proportional to the square root of the frequency. In the time-domain, they introduce shifted fractional derivatives of order $1/2$, which involves a convolution product. A diffusive representation replaces the convolution kernel by a finite number of memory variables that satisfy local-in-time ordinary differential equations. Based on the dispersion relation, the coefficients of the diffusive representation are determined by optimization on the frequency range of interest. A numerical modeling based on a splitting strategy is proposed: the propagative part is discretized by a fourth-order ADER scheme on a Cartesian grid, whereas the diffusive part is solved exactly. Comparisons with analytical solutions are proposed, demonstrating the efficiency and the accuracy of the approach.
Type de document :
Communication dans un congrès
11ème Congrès Français d'Acoustique, Apr 2012, Nantes, France
Liste complète des métadonnées

Littérature citée [12 références]  Voir  Masquer  Télécharger
Contributeur : Bruno Lombard <>
Soumis le : vendredi 2 mars 2012 - 14:31:09
Dernière modification le : lundi 29 janvier 2018 - 16:06:04
Document(s) archivé(s) le : vendredi 23 novembre 2012 - 15:31:05


Fichiers produits par l'(les) auteur(s)


  • HAL Id : hal-00675960, version 1


Emilie Blanc, Guillaume Chiavassa, Bruno Lombard. Biot-JKD model: simulation of 1D transient poroelastic waves. 11ème Congrès Français d'Acoustique, Apr 2012, Nantes, France. 〈hal-00675960〉



Consultations de la notice


Téléchargements de fichiers