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A Direct Algorithm for

1D Total Variation Denoising
Laurent Condat, Member, IEEE

Abstract— A very fast noniterative algorithm is proposed for denoising

or smoothing one-dimensional discrete signals, by solving the total
variation regularized least-squares problem or the related fused lasso

problem. A C code implementation is available on the web page of the

author.

Index Terms— Total variation, denoising, nonlinear smoothing, fused

lasso, regularized least-squares, nonparametric regression, taut string
algorithm, accelerated Douglas-Rachford algorithm, convex nonsmooth

optimization, splitting

I. INTRODUCTION

The problem of smoothing a signal, to remove or at least attenuate

the noise it contains, has numerous applications in communications,

control, machine learning, and many other fields of engineering and

science [1]. In this paper, we focus on the numerical implementation

of total variation (TV) denoising for one-dimensional (1D) discrete

signals; that is, we are given a (noisy) signal y = (y[1], . . . , y[N ]) ∈
R

N of size N ≥ 1, and we want to efficiently compute the denoised

signal x ∈ R
N , defined implicitely as the solution to the minimization

problem

minimize
x∈RN

1

2

NX

k=1

˛
˛y[k]− x[k]

˛
˛2 + λ

N−1X

k=1

˛
˛x[k + 1]− x[k]

˛
˛, (1)

for some regularization parameter λ ≥ 0 (whose choice is a difficult

problem by itself [2]). We recall that, as the functional to minimize

is strongly convex, the solution x to the problem exists and is

unique, whatever the data y. The TV denoising problem has received

large attention in the communities of signal and image processing,

inverse problems, sparse sampling, statistical regression analysis,

optimization theory, among others. It is not the purpose of this paper

to review the properties of the nonlinear TV denoising filter, as

numerous papers can be found on this vast topic; see, e.g., [3]–[8]

for various insights.

To solve the convex nonsmooth optimization problem (1), we

mostly find in the literature iterative fixed-point methods [9], [10].

Until not so long ago, such methods applied to TV regularization

had rather high computational complexity [11]–[15], but the growing

interest for related ℓ1-norm problems in compressed sensing, sparse

recovery, or low rank matrix completion [16]–[18], has yielded

advances in the field. Recent iterative methods based on operator

splitting, which exploit both the primal and dual formulations of

the problems and use variable stepsize strategies or Nesterov-style

accelerations, are quite efficient when applied to TV-based problems

[19]–[23]. Graph cuts methods can also be used to solve (1) or its

extension on graphs [24]. They actually solve a quantized version of

(1): the minimizer x is not searched in R
N but in ε Z

N , for some

ε > 0, with complexity O(log2(1/ε)N). If ε is small enough, the

exact solution in R
N can be obtained from the quantized one, as

shown by Hochbaum [25], [26]. In this paper, we present a novel

and very fast algorithm to compute the denoised signal x solution

to (1), exactly, in a direct, noniterative, way, possibly in-place. It is
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Fig. 1. Total variation denoising can be interpreted as pulling the antideriva-
tive of the signal taut in a tube around it. The proposed algorithm is different
from the so-called taut string algorithm implementing this principle. This
figure is borrowed from a PDF slide of a talk by M. Grasmair in 2007,
entitled “dual settings for total variation regularization”.

appropriate for real-time processing of an incoming stream of data,

as it locates the jumps in x one after the other by forward scans,

almost online. The possibility of such an algorithm sheds light on

the relatively local nature of the TV denoising filter [27].

After this work was completed, the author found that, actually,

there already exists a direct, linear time, method for 1D TV de-

noising, called the taut string algorithm [28], see also [29]–[32]. To

understand its principle, define the sequence of running sums r by

r[k] =
Pk

i=1 y[i] for 1 ≤ k ≤ N , and consider the problem:

minimize
s∈RN+1

NX

k=1

q

1 +
˛
˛s[k]− s[k − 1]

˛
˛2 subject to

s[0] = 0, s[N ] = r[N ], and max
1≤k≤N

˛
˛s[k]− r[k]

˛
˛ ≤ λ. (2)

Then, the problems (1) and (2) are equivalent, in the sense that their

respective solutions x and s are related by x[k] = s[k]−s[k−1], for

1 ≤ k ≤ N [28], [33]. Thus, the formulation (2) allows to express the

TV solution x as the discrete derivative of a string threaded through

a tube around the discrete primitive of the data, and pulled taut such

that its length is minimized. This principle is illustrated in Fig. 1.

Its implementation consists in alternating between the computation

of the greatest convex minorant and least concave majorant of the

tube walls r + λ and r − λ. The taut string method seems to have

been largely ignored, as iterative methods are regularly proposed for

1D TV denoising [34]–[37]. The proposed algorithm is different, as

it does not manipulate any running sum and only performs forward

scans; the signal x is constructed definitively segment by segment.

The paper is organized as follows. In Sect. II, we describe and

discuss the new algorithm. In Sect. III, we suggest some applications.
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II. PROPOSED METHOD

We first introduce the dual problem to the primal problem (1) [13],

[21], [22]:

minimize
u∈RN+1

NX

k=1

˛
˛y[k]− u[k] + u[k − 1]

˛
˛2 s.t.

|u[k]| ≤ λ, ∀k = 1, . . . , N − 1, and u[0] = u[N ] = 0. (3)

Once the solution u to the dual problem is found, one recovers the

primal solution x by

x[k] = y[k]− u[k] + u[k − 1], ∀k = 1, . . . , N. (4)

Actually, the method of [13] and its accelerated version [20] solve

(3) iteratively, using forward-backward splitting [9].

The Karush-Kuhn-Tucker conditions caracterize the unique solu-

tions x and u [22]. They yield, in addition to (4),

u[0] = u[N ] = 0 and ∀k = 1, . . . , N − 1,
8

<

:

u[k] ∈ [−λ, λ] if x[k] = x[k + 1],
u[k] = −λ if x[k] < x[k + 1],
u[k] = λ if x[k] > x[k + 1].

(5)

Hence, the proposed algorithm consists in running forwardly

through the samples y[k]; at location k, it tries to prolongate the

current segment of x by x[k + 1] = x[k]. If this is not possible

without violating (4) and (5), it goes back to the last location where

a jump can be introduced in x, validates the current segment until

this location, starts a new segment, and continues. In more details,

the proposed direct algorithm is as follows:

1D TV Denoising Algorithm:

(a) Set k = k0 = k− = k+ ← 1, vmin ← y[1]−λ, vmax ← y[1]+λ,

umin ← λ, umax ← −λ.

(b) If k = N , set x[N ] ← vmin + umin and terminate. Else, we

are at location k and we are building a segment starting at k0, with

value v = x[k0] = · · · = x[k]. v is unknown but we know vmin

and vmax such that v ∈ [vmin, vmax]. umin and umax are the values

of u[k] in case v = vmin and v = vmax, respectively. Now, we are

trying to prolongate the segment with x[k + 1] = v, by updating the

four variables vmin, vmax, umin, umax, for the location k + 1. The

three possible cases (b1), (b2), (b3) are:

(b1) If y[k +1]+umin < vmin−λ, we cannot update umin without

violating (4) and (5), because vmin is too high. This means that the

assumption x[k0] = · · · = x[k + 1] was wrong, so that the segment

must be broken, and the negative jump necessarily takes place at the

last location k− where umin was equal to λ. Thus, we set x[k0] =
· · · = x[k−]← vmin, k = k0 = k− = k+ ← k− + 1, vmin ← y[k],
vmax ← y[k] + 2λ, umin ← λ, umax ← −λ.

(b2) Else, if y[k+1]+umax > vmax+λ, then by the same reasoning,

a positive jump must be introduced at the last location k+ where

umax was equal to −λ. Thus, we set x[k0] = · · · = x[k+]← vmax,

k = k0 = k− = k+ ← k+ + 1, vmin ← y[k] − 2λ, vmax ← y[k],
umin ← λ, umax ← −λ.

(b3) Else, no jump is necessary yet, and we can continue with k←
k + 1. So, we set umin ← umin + y[k]− vmin and umax ← umax +
y[k] − vmax. It may be necessary to update the bounds vmin and

vmax:

(b31) If umin ≥ λ, set vmin ← vmin + (umin − λ)/(k − k0 + 1),

umin ← λ, k− ← k.

(b32) If umax ≤ −λ, set vmax ← vmax +(umax +λ)/(k−k0 +1),

umax ← −λ, k+ ← k.

(c) If k < N , go to (b). Else, we have to test if the hypothesis

of a segment x[k0] = · · · = x[N ] does not violate the condition

u[N ] = 0. The three possible cases are:

(c1) If umin < 0, then vmin is too high and a negative jump is

necessary: set x[k0] = · · · = x[k−] ← vmin, k = k0 = k− ←
k− + 1, vmin ← y[k], umin ← λ, umax ← y[k] + λ− vmax, and go

to (b).

(c2) Else, if umax > 0, then vmax is too low and a positive jump

is necessary: set x[k0] = · · · = x[k−] ← vmax, k = k0 = k+ ←
k+ + 1, vmax ← y[k], umax ← −λ, umin ← y[k]− λ − vmin, and

go to (b).

(c3) Else, set x[k0] = · · · = x[N ] ← vmin + umin/(k − k0 + 1)
and terminate.

We note that the dual solution u is not computed. We can still

recover it recursively from x using (4). We also remark that the case

λ = 0 is correctly handled and yields x = y.

The worst case complexity of the algorithm is O(N+N−1+· · ·+
1) = O(N2). Indeed, every added segment has size at least one, but

the algorithm may have to scan all the remaining samples to validate

it in one of the steps (b1), (b2), (c1), (c2). However, this worst

case scenario is encountered only when x is a ramp with very small

slope of order N−2, except at the boundaries; for instance, consider

that λ = 1 and y[1] = −2, y[k] = α(k − 2) for 2 ≤ k ≤ N − 1,

y[N ] = α(N−3)+2, where α = 4/((N−2)(N−3)). The solution

x is such that x[1] = y[1] + 1, x[k] = y[k] for 2 ≤ k ≤ N − 1,

x[N ] = y[N ]−1. Actually, such a pathological case, for which there

is no interest in applying TV denoising, is only a curiosity, and the

complexity is O(N) in all practical situations, as the segments of x
are validated with a delay which does not depend on N .

The algorithm was implemented in C, compiled with gcc 4.4.1,

and run on a Apple laptop with a 2.4 GHz Intel Core 2 Duo

processor. We obtained computation times around 30 milliseconds

for N = 106, with various test signals and noise levels. Importantly,

the computation time is insensitive to the value of λ.

For illustration purpose, we consider the example of a discrete

Lévy process, which is a stochastic process with independent in-

crements [8], corrupted by additive white Gaussian noise (AWGN).

More precisely, y[k] = x∗[k] + e[k] for 1 ≤ k ≤ N = 1000,

where the e[k] ∼ N (0, 1) are independent and identically distributed

(i.i.d.), and the ground truth x∗ has a fixed value x∗[1] and i.i.d.

random increments d[k] = x∗[k] − x∗[k − 1] for 2 ≤ k ≤ N .

We chose a sparse Bernoulli-Gaussian law for the increments, since

TV denoising approaches the optimal minimum mean square error

(MMSE) estimator for such piecewise constant signals [7], [8]; that

is, the probability density function of d[k] is

p δ(t) +
(1− p)

σ
√

2π
e
− t

2

2σ2 , t ∈ R, (6)

where p = 0.95, σ = 4, and δ(t) is the Dirac distribution. We found

empirically that the root mean square error (RMSE) ‖x∗−x‖2/
√

N
is minimized for λ = 2. The computation time of x, averaged over

several runs and realizations, was 30 microseconds. One realization

of the experiment is depicted in Fig. 2.

III. FURTHER APPLICATIONS

Besides denoising of 1D signals, the proposed algorithm can be

used as a black box to solve other problems.

A. The Fused Lasso

The fused lasso signal approximator, introduced in [38], yields a

solution that has sparsity in both the coefficients and their successive

differences. It consists in solving the problem

minimize
z∈RN

1

2

NX

k=1

˛
˛z[k]−y[k]

˛
˛2+λ

N−1X

k=1

˛
˛z[k+1]−z[k]

˛
˛+µ

NX

k=1

˛
˛z[k]

˛
˛,

(7)
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Fig. 2. In this example, y (in red) is a piecewise constant process of size N = 1000 (unknown ground truth, in green) corrupted by additive Gaussian noise
of unit variance. The TV-denoised signal x (in blue), solving (1) with λ = 2 exactly, was computed by the proposed algorithm in 30 microseconds.

for some λ ≥ 0 and µ ≥ 0. The fused lasso has many applications,

e.g. in bioinformatics [39]–[41]. As shown in [40], the complexity

of the fused lasso is the same as TV denoising, since the solution z
can be obtained by simple soft-thresholding from the solution x of

(1):

z[k] =


x[k]− µ.sign(x[k]) if |x[k]| > µ
0 otherwise

. (8)

It is straightforward to add soft-thresholding steps to the proposed

algorithm to solve the generalization (7) of (1), for essentially the

same computation time.

B. Using the Algorithm as a Proximity Operator

As is classical in convex analysis, we introduce the set Γ0(R
N)

of proper, lower semi-continuous, convex functions from R
N to

R ∪ {+∞} [9]. Many problems in signal and image processing

can be formulated as finding a minimizer x ∈ R
N of the sum of

functions Fi ∈ Γ0(R
N), where each Fi is introduced to enforce

some constraint or promote some property on the solution [6], [9],

[16], [18]. To solve such problems, convex nonsmooth optimization

theory provides us with first-order proximal splitting methods [9],

[22], which call the gradient operator or the proximity operator of

each function Fi, individually and iteratively. The Moreau proximity

operator of a function F ∈ Γ0(R
N ) is defined as

proxF : s ∈ R
N 7→ argmin

s′∈RN

1

2
‖s− s′‖2 + F (s′). (9)

Thus, if we define TV : r ∈ R
N 7→ PN−1

k=1 |r[k + 1] − r[k]|, we

can rewrite (1) as x = proxλTV (y). In other words, the proposed

algorithm computes the proximity operator of the 1D TV. Hence, we

are equipped to solve any convex minimization problem which can

be expressed in terms of the 1D TV. For instance, we can denoise an

image y of size N1 ×N2 by applying the proximity operator of the

2D anisotropic TV:

minimize
x∈RN

1

2
‖x− y‖2 + λ

N1X

k1=1

TVv,k1
(x)

| {z }

F1(x)

+ λ

N2X

k2=1

TVh,k2
(x)

| {z }

F2(x)

,

(10)

where TVv,k1
(x) and TVh,k2

(x) are the TV of the k1-th column and

k2-th row of the image x, seen as 1D signals, respectively, and N =

N1N2. To find a minimizer of the sum of two proximable functions

F1 and F2 of Γ0(R
N), we propose a new splitting algorithm as

follows:

Accelerated Douglas-Rachford Algorithm (ADRA)

Fix γ > 0, x0, s0 ∈ R
N , and iterate, for n = 0, 1, . . .

rn+1 = sn − xn + proxγF1
(2xn − sn),

sn+1 = rn+1 + n
n+3

(rn+1 − rn),

xn+1 = proxγF2
(sn+1).

Establishing convergence properties of splitting algorithms is a hot

topic in the community of convex optimization, and the ongoing con-

cern of the author [22]. Although there is currently no convergence

proof of xn to the minimizer x of F1 + F2 as n → +∞ with

ADRA, it was found empirically to converge and to be remarkably

effective for the problem (10), with γ = 1 and s0 = x0 = y. For

the example illustrated in Fig. 3, we considered the classical Lena

image of size 512 × 512, with gray values in [0, 255], corrupted by

AWGN of std. dev. 30. When used to solve (10) with λ = 30, ADRA

consists in applying the 1D TV denoising algorithm on the rows and

columns of the image, iteratively. Remarkably, the convergence is

very fast and the image x5 after five iterations is visually identical

to the image x obtained at convergence, with a RMSE of 0.5 gray

levels, for a computation time of 0.27s. This is about four times

less than the times reported in [24] with state-of-the-art graph-cuts

approaches and a similar quantization step of 1 gray level. Still, the

latter remain faster if a quantization step of 2−16, corresponding to

machine precision, is to be reached.

IV. CONCLUSION

In this article, we proposed a direct and very fast algorithm for

denoising 1D signals by total variation (TV) minimization or fused

lasso approximation. Since the algorithm computes the proximity

operator of the 1D TV, it can be used as a basic unit within iter-

ative splitting methods, like the new proposed accelerated Douglas-

Rachford algorithm, to solve more complex inverse multidimensional

problems.

This work opens the door for a variety of extensions and appli-

cations. Future work will include the extension of the algorithm to

generalized forms of the TV, where the two-tap finite difference is

replaced by another discrete differential operator, to favor piecewise
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(a) (b)

(c)

Fig. 3. (a) The image Lena corrupted by AWGN of std. dev. 30; (b) the
image after 5 iterations of the proposed ADRA method for 2D anisotropic
TV denoising; (c) log-log plot of the RMSE between the iterate xn and the
solution x of (10) with λ = 30, in term of the number n of iterations.

polynomial reconstruction of higher degree or other types of signals

[33], [35]. Also, the algorithm should be extended to complex-

valued or multi-valued signals [41]. The extension to data of higher

dimensions, like 2D images or graphs, deserves further investigation

as well [31]. Furthermore, we should consider replacing the quadratic

data fidelity term by other penalties, like the anti-log-likelihood of

Poisson noise [32].

Besides, path-following, a.k.a. homotopy, algorithms have been

proposed for ℓ1 penalized problems; they can find the smallest value

of λ and the associated x in (1) such that x has at most m segments,

with complexity O(mN) [18], [29], [40], [42]–[44]. The relationship

between such algorithms, the approach in [45], and the proposed one

should be studied.
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