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Abstract—This note considers Hamiltonian identifi-
cation for a controllable quantum system with non-
degenerate transitions and a known initial state. We
assume to have at our disposal a single scalar control
input and the population measure of only one state at
an (arbitrarily large) final time T. We prove that the
quantum dipole moment matrix is locally observable in
the following sense: for any two close but distinct dipole
moment matrices, we construct discriminating controls
giving two different measurements. This result suggests
that what may appear at first to be very restrictive
measurements are actually rich for identification, when
combined with well designed discriminating controls, to
uniquely identify the complete dipole moment of such
systems.

I. INTRODUCTION

Quantum control has been receiving increasing
attention [1] and one of its promising applications is
to Hamiltonian identification [2] by using the ability
to actively control a quantum system as a means to
gain information about the underlying Hamiltonian
governing its dynamics. The underlying premise
is that controls may be found which make the
measurements not only robust to noise but also
highly sensitive to the unknown parameters in the
Hamiltonian. Hence, although the performance of
laboratory measurements may be constrained, the
ability to control a quantum system has the prospect
of turning this data into a rich source of information
on the system’s Hamiltonian.

In this note, we consider the problem of iden-
tifying the dipole moment (which is assumed to
be real) of an N—level quantum system, initialized
to a known state (ground state), from a single
population measurement at one arbitrarily large time

T. We suppose an ability to freely control the
system with a time dependent electric field e(t).
The measurements are obtained by (i) initializing
at time ¢ = 0 the system’s state at a known
state |7), (ii) controlling in open loop and without
measurement the system with an electric field e ()
for t € [0,7] where T" > 0, and (iii) measuring
at final time 7 the population of one state |f).
This may be repeated for many controls (). We
prove the existence of controls which make the
identification from one population measurement a
well posed problem (theorem 1). These controls
have a simple physical interpretation in analogy
with Ramsey interferometry (see Fig. 1).

The perspective above combined with control
theory is motivated by three practical arguments.
First, measuring a state population at one time 7' is a
technique which can have a very high signal to noise
ratio (~ 100). Second, technological progress with
spatial light modulators (SLM) permits generating
a broad variety of controls in the laboratory. Third,
ultra short pulsed fields can be well measured in
the laboratory [3]. Hence, we are able to design a
variety of precisely known control inputs.

Le Bris and al [4] prove the observability of the
dipole moment when the population of all states
are measured over an arbitrarily large interval of
time. Algorithms to reconstruct the dipole from
the measured data were proposed using nonlinear
observers [5], [6]. A different setting is considered
in [7], [8] where it is supposed that one can prepare
and measure the system in a set of orthogonal
states at various times, and the available data is
the probability to measure the system in a certain
state when it was prepared in another; Bayesian es-



timation is used to reconstruct the energy levels, the
damping constants and the dipole moment from the
measured data. We consider here the less demanding
case where the only available measurement is the
population of one state at one arbitrarily large time,
and the initial state is known and coincides with the
ground state.

The note is organized as follows. In section II we
state the main result in Theorem 1, and section III
gives the proof of the Theorem and an important
lemma on which the main result is based. Finally
concluding remarks are presented in Section IV.

II. OBSERVABILITY OF THE QUANTUM DIPOLE
MOMENT

A. Problem setting

We consider a quantum system in a pure state
described by the wave function [¢)) € S. Here S is
the set of NV dimensional complex vectors of unit
norm. The system interacts with an electric field (the
real control input) ¢ € & for some 7' > 0 with
Er 2 {f:]0,T] — R|f piecewise continuous }.
For a given control ¢ we measure the population of
the state | f) at time 7" denoted as P;¢(e). We denote
by Hj the free Hamiltonian (Hermitian matrix) and
by u the dipole moment operator, also a Hermitian
matrix. The initial state |7) and the measured state
|f) are eigenvectors of H,. We consider a semi-
classical model for the light-matter interaction, and
the dynamics of |¢)) are given by the Schrodinger
equation:

WO D) = (Ho— i) (t)
WO) = 1) . Pyle) = | oD P

For all 7" > 0, we suppose that we can create any
field € € & and that we can measure P;f(e). For
M different fields {ej,..,ex} we can collect the
measurements {P;¢(e1), .., Pif(en)}. Through (1)
Py 1s a function of 4 and a functional of €, and when
necessary this explicit dependence will be written
as P,s(e,pu). The aim of this note is to explore
the feasibility of estimating the dipole moment p
from the measured data {P;f(e;), .., P;f(epr)} using
well chosen controls {ey,..,en}. Below, Pif(e, p)
refers to the measurement achieved on the real
system using a control ¢, and for any f, Pis(e, f1)
is the estimated measurement which is obtained
by simulating system (1) with the control e and
coupling /.

€]

B. Main result

For all k£ < N we denote |k) as the eigenvector
of H, with associated eigenvalue F}. Through-
out the note, all matrices are written in the basis
(|1),..,]/V)). The initial and measured states cor-
respond to some indexes i, f € {1,..., N}. For all
k,l < N we specify o = |I) (k|+|k) (I|. We define

M £ Span{c¥\k,l < N with Tr (uclF) # 0},

with Tr being the trace operation. When all non di-
agonal elements of y are non-null, M = dim(M) =

w. The main result is the following:

Theorem 1. Consider a real symmetric matrix |
with zero diagonal entries and a real diagonal
matrix Hy with non-degenerate transitions. Suppose
that the system state in (1) is controllable. Then for
any positive constant « there exists a time T" > (

and M fields (e, ..,er) € Ep™ such that the cost
function

M
J:M>p— Z (Pis(ex, r) — Pig(en, p))?

k=1

1

is in C*(M,R) and locally a-convex' around .

C*(A, B) denotes the set of k times continuously
differentiable functions defined over A with values
in B. In the appendix we provide the definitions
of controllability and a matrix with non-degenerate
transitions. Here and throughout this note, the norm
of matrix p, noted ||u|| refers to the max norm.

A direct consequence of Theorem 1 is the local
observability of the dipole moment:

Corollary 1. Under the assumptions of Theorem I,
the dipole moment is locally observable in M.

a) Proof: Take o > 0. Theorem 1 implies that
there exists a time 7" > 0 and M fields (e, .., €)
€ ™ such that the cost function J is C*(M,R)
and locally a-convex around p. Hence there 3r > 0
such that for all 1 € M with || — u|| < r and 1 #
i, J(ft) > 0, and hence there exists € € {e,..,€p}
such that Pis(e, 1) — Pig(e, p) # 0.0

Remark 1. The local a—convexity is a property
stronger than the mere possibility to identify the
dipole matrix. It states that the distinction between
a dipole candidate [i and the true dipole | can

'The smallest eigenvalue of the Hessian V2J (i) is larger than a.



be observed (through the measurements aggregated p € {1, ...,

in J) to first order in the distance || — fi||. This
first order dependence of the measurement P;; with
respect to the dipole | is addressed in more detail in
lemma 1. For well chosen controls, the J function
has a very simple shape around i and a simple
gradient algorithm could be used to identify it.

The eigenvalues of H, are commonly measured
through spectroscopy and can be found in reference
tables [9] with precisions of order 10~7. The re-
sult of theorem 1 is also relevant for the problem
of discriminating between two molecules with the
same free Hamiltonian and different effective dipole
operators. In that framework, j« and p would be the
dipole operators of these two molecules (as opposed
to one estimated and one true dipole, as considered
in this note), and the aim is to find controls which
produce different data sets for these two different
but similar quantum systems. This was experimen-
tally accomplished in [10] where a genetic algorithm
is used to find these discriminating controls. A
complementary theoretical controllability analysis
can be found in [11].

III. PROOFS
A. Existence of discriminating controls

We denote 1/ = mu the normalized dimension-
less dipole moment operator, i}, = Tr (y/o%) and
gfz: (€) the partial derivative of P,s(e) with respect

to s, Theorem 1 is based on the following lemma:

Lemma 1. Suppose that 1 is real, symmetric and
has only zeros on its diagonal and H, is real,
diagonal, with non-degenerate transitions. Suppose
system (1) is controllable. Then for all (I, k) with
e # 0, there exists & > 0 such that, for all
€ €]0,&], exist T > 0 and € € Er satisfying

. gf;: (€) = 5+ O(1)
o V{m,n} # {I,k} with pn # 0, 57-(€) =
O(1),
where O(1) corresponds to zero order terms with
respect to & around 0.

B. Proof of Theorem 1
To each pair of integers (,,k,), I, < k, such
that Tr <u’ ai”k”> # (0 we associate a unique index

M}, and we define o7 = orke
with pf = Tr (/o?).
According to lemma 1, 3¢, > 0 such that V¢ €

along

]O,go[, 3 Tl, ..,TM and (61, ..,EM) < ng X .. X gTM
such that: (i) Vp € [1 : M| %Pef(e ) = 3 +0(1)

and (i) Vp' # p g]:”(ep) = O(1). We take T' =
max(77, .., Ty) and forall k € {1,.., M} we extend
the definition of ¢ from [0, 7}] to [O,T] by taking
ex(t) = 0forallt €]T;, T]. We willuse J : M — R
defined by:

M

Z if Eka

=1

Pig(er, 1))

For a fixed T > 0 and € € &p, since p —

Pis(e, u) is CY(M,R), J(i1) is in C*(M,R). We
ap, oP,,

find a,/au (1) = 2241 d#f( “)aﬂ (%M) SO

that for all ped{l,..M}: aﬂ,g(ﬂ) = 452 + O(%)

and when p 7é P 8;t’3u (1) = O(g). We have:

Vi(p) = (I+O(§)), where V2J(u) is the
Hessian of J at w1 and [ is the identity matrix. The
smallest eigenvalue of V2.J(u) scales as @(1 +
O(€)), hence by taking ¢ small enough it can be
made larger than « thereby reaching the conclusion
above. [J

C. Proof of lemma 1
A

We define the dimensionless time scale 7 =
F|Hollt and also T £ 1| Ho|/T. For two times
7,7 € [0, T] we define the propagator U(7’,7)
such that [¢(7)) = U(7’,7)[¢(7)). Rewriting (1)
for U(7,0) we obtain:

1

0
ZEU(Tv O) = m(HO - E(T)M)U(T, O) (2)

Py(e) = [{flU(T,0)}5)[*,U(0,0)=1.

The proof of lemma 1 has two parts I and II
separately treated below.
i) Part I: Take two times 7,79, 0 < 7 <
79 < T. We can write (for any complex z we denote
by Z its complex conjugate): P;s(e) = zZz where
2= (flU(T,m)U(re, m)U(11,0) 7).

Denote for any m,n = 1,..,.M : o/ = Eﬁngﬁn
and consider the control deﬁned on [Tl, 9
€(1) = e cos(wy (T — 1)) , 3)

where ¢ is a small strictly positive real parameter.

Take & = Nﬁ‘(‘j. The only remaining degree of




ei(r)  ecos(uy(t — 7)) € ()
T
0 T T T
Fig. 1. A good control € has three components (inspired from

Ramsey interferometry) to enable the identification of ;. The field
€1 is defined over [0, 71] (analog of first Ramsey pulse) to steer the
known initial state |¢) to |¢1) = |I): |I) = U(71,0)]é). The field
€2 is defined over [z, T] (analog of second Ramsey pulse) is such
that | f) = U(T, 72) [1b2) where [1h2) = U (72, 71) ('”;”k ) and the
propagator U(72,71) corresponds, for a long interval 72 — 71, to a
large number of Rabi oscillations with the control & cos(wj;, (T —71))
resonant with the |I) < |k) transition.

freedom in the control over [y, 73] is &, Which can
be taken arbitrarily small. We define H) = Tl = Hp

and w),, = (m|H)|m) — (n| H||n). Note that
wh . = —w. . We have [12]
0 il
= U(m,n) = 15— U(72, 71)
Hi || Holl

We now rewrite (2) and (4) for the control given in
(3) on the time interval |1y, 75]:

Z(%U(T’ 1) = (Hy — & cos(wyy, (1 — 7)) )U(T,m1)  (5)

0
7U(T2,’7'1)

= ZfU(TQ,’ﬁ)
Opuyy,

X /72 cos(wj (1 — ) U (7, 1) ok U (1, 7)dr . (6)

1

The goal is to show that BL/U (T2, 71) can be
lk

made arbitrarily “large” while WU (T2, 71) stays
bounded. Note that all the terms in the integrand
of (6) are bounded, and a rough estimate of the
norm of %U (79, 71) gives a quantity proportional
to (7o — 11 )€. Hence, we take 7o — 7y = g%, implying
the need to have expressions for U(7, 71) over a time
scale on the order of gig To this end we state lemma
2 which gives such an approximation.

Lemma 2. Consider Eq. (5). There exists a Her-
mitian matrix K and & > 0 such that, for any
¢ €]0,&], we have:

sup ZHU(T Tl) l(ﬁulk ol 4+ K) (r— TI)H

76[7177'1-"-&%]

1U(7,71) =

= 0(9).

We continue with the proof of Lemma 1 and will
come back to Lemma 2 in Section III-D.

Using the expression of U(7,71) given in lemma
2, the integrand in (6) is:
cos(wjy (1 — U (7, 7)ok U (1, 71) =

6_1(5““‘ oK) (r— ™) (cos(w] (T—Tl))eZHé(T_ﬁ)
]

Ik —zHO(‘r 7'1)) (€

ol kalk_,_g K)(t— Tl)—|—0(§)

In order to compute (6), we need the following
result:

COS(wl/k(T _7_1)) zH(')(‘rf'rl) lk: 77,H6(7'771) _

1otk 41 Ik

cos(2wlk(7' —1))o,

+ & sinuy (1 — 1))oly ()

where we denote ol =+ |l) (k| — 2 |k) (I|. In (7),
the terms 0sc1llat1ng at frequency 2wj, independent
of ¢ will only contribute to O(&) in (6). We now
focus on the contribution of the term with ¢/* in
(6) which calls for (see appendix): V7

/ /
oW I K) (T—m) 1k (6B o+ 2K (r—m1) _
x

o +0(€). (8)

Introducing (8) into (6), we find:

0
7U(7’2,T1)

=1€U (12, 71)
Oy,

(7227105;6 +0(1) + (ry — 71)0(£)> :

From now on, we take m» = 71 + gig and obtain:

0

o
We define |¢;) = |I) and [t)y) = \%U(Tg,ﬁ)(ﬂ) +
v|k)). Since the system is controllable there exists a
time 71 and a field ¢; € £, such that U(7,0) |i) =
|11), and there exists a time T and a field e, defined
over [7p, T| such that UT(T,7)|f) = [¢)2). Since
the state space is compact (here it is a sphere), we
know that if the system is controllable, it is control-

lable in bounded time, and with bounded controls
(see Theorem 6.5 in [13]). Hence, T — 7 can be

(72, 71) )

=W (7, m1)(5¢05 +O(1)).



chosen bounded for all £. Therefore %U (0,7)

and BLU (72, T) are bounded. Thus, we have:
Hik

o P = 2RI U(T, ) 20 U, m)U 1,001

(UM (r1, 0)U (72, )UN(T, ) | £)) + O(1).

We now utilize U(7,0) i) |t1) and

UNT,m)|f) = Ia) where [¢1) and i) are
defined above, and replace WU (19,7) by its
Lk

expression in (9) to find: %Pif(f) = % + O(1).
This expression holds for the control defined as:

(1), if 7 €10, 7]
e(r) = %5 cos(wy (T — 1)), if 7 €lm, 1|
€o(T), if 7€ [, T]

(10)

ii) Part II: We now need to prove that
9 _Pit(e) = O(1) for {m,n} # {l,k}, where ¢

aufmn

is the control found above in (10). As in Eq. (6),
we have:

0
Ot
/ cos(wj, (T — Tl))UT(T, 7)o" U (T, 7)dT , (11)

U(TQ,Tl) = ZfU(TQ,Tl)X

and again the result of lemma 2 is employed. Eq.
(11) calls for

2 cos(wj, (T — Tl))ezHé(T_Tl)agme_lH‘l)(T_”) =

cos((Wig =Wy ) (T—71)) o™ —sin((wig, =Wy ) (T—71) oy "+

cos((wigtwy,, ) (T—71)) o™ sin((wyg +wy,, ) (T—71) ) o™
(12)

Considering that H, has non-degenerate transitions
(see definition in the appendix) implies that wj, —
wh, # 0 and wj, + w,,,, # 0. As the expression
in (12) oscillates at frequencies independent of &, it
therefore contributes to O(&) in (11). Hence, for 75—
T = 5% we can directly conclude that ﬁmﬂ 7€) =
o(1). 0O

D. Proof of lemma 2

This proof relies on three consecutive changes of
frame that aim to cancel the oscillating terms of
order 0 and 1 with respect to £&. We then derive
a specific form of the averaging Theorem (see
theorem 4.3.6 in [14] for a general form of the
averaging theorem). For the sake of clarity and with
no loss of generality, we take 77 = (0 and note

U(r) U(r,m1). Eq. (5) may be written in the
interaction frame U;(7) £ eo7U(7),

0 B PJEI@ 1k
EUI(T) - Z§ (70-x +

where:

0 1
EHI(T):i Z

(m,n)#(k,l)

S

(m,n)#(1,k)

%HI(T)) Ui(7)

pl R ) ()

+1 ! (9t ) (]

b

and the average of H; is zero. The average of a time
dependent operator C'(7) is defined as follows (see
defintion 4.2.4 in [14]): C = limy_ ., 1 [Y C(r)dr.
We now take Uj(7) = (I — ZfHI(T))Ung). Since
%H 7 1s almost periodicz, then H; is also almost
periodic and hence bounded for all 7. Hence, there
exists & > 0, V& < &, [ —1£H;(T) has an inverse
and (I —&H; (7)™ = T +£H (1) + O(£%). We
find:

a ’
o UHE) =0 (4ol

/ B

& (41101, + Hir) - 11(7) ) + O(€) ) U o).
Notice~that, with K = —H I%H ; independent of
¢ and K (7) almost periodic with zero average, we
also have: “6[H;(7), o]+ H (1) £ H/ (1) = o(K +
2 K(r)). It is important to note that 3.2 H? =0 =
HiZH+(Z£H)H; =K —K'). Hence K = K'
is Hermitian. .

We now take Uj(r) = (I — «&*K(7))Uj(7).
Since K(7) is bounded for all 7, then for a suf-
ficiently small &, J —«*>K(7) has an inverse and
(I—1&2K (1))t = I+1£2K (1) +0(&Y). U} satisfies
the following equation:

9 . 1"
SU () =1 (€40l + K+ 0(E9) UF(r), - (13)

and we define U,, to be the solution to the
averaged dynamics (Uy,(0) = I):

) ,
—Ua(7) =2 <5%0§f + §2K> Un(r).  (14)
-
We can directly solve (14): U,,(7) =
(eHeotirern)r .
e Subtracting (13) from (14),

we find, using Gronwall’s lemma, that for all

T < gig one has Uj(r) Uw(T) + O(&). Also
note that to go from U; to U] we have used two

: M iwy,
*Can be written as >, , €"“*7 Ay,



consecutive changes of variables which are close
to the identity, hence: V7 U/ (1) = Ur(7) + O(§).
Finally, since e "7 is an isometry, we have:

U(T) — e—zH{)Teq,(gﬂlk lk+fZK)T +O(f) for all T < 5% In|

IV. CONCLUSION

Identification of the real dipole moment matrix
is shown to be well posed for a controllable finite
dimensional quantum system with non-degenerate
transitions and using as measurements only one
population at a final time 7'. The results also provide
a theoretical foundation to optimal discrimination
experiments.
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APPENDIX

Definition 1. We say that system (1) is controllable
[15] if for all [yn) ,|¢2) € S there exists a time t
and a control € € & such that for |(0)) = |¢1),

(1) leads to |1)(t)) = |1s).

Definition 2. Let Hy and ;1 be N x N Hermitian
matrices. We denote E, .., En the eigenvalues of
Hy and |1),..,|N) its corresponding eigenvectors.
We say that Hy has non-degenerate transitions [16]
if V(I,k) # (m,n), | # k and m # n, such that
(l| | k) # 0 and (m| u|n) # 0, we have E, — Ej, #
E, — FE,.

Definition 3. Take system (1). Let us denote M
as the space to which p belongs. We say that p is
locally observable in M if there exists r > 0 such
that for all i € M with 0 < ||i—pl|| < r there exists
T >0 and € € Ep such that Pig(e, i) # Pif(e, ).

Computation: Here, we compute X(7) =
(61 ot 42 ) (r— n)alkedf“”“rf”“JrEQK)(T ™. We
have (i, # 0 and a”€ + 5 2K js Hermitian. Hence,

there exists a unitary matrlx Pg and a real dlagonal
matrix Ag such that ol + £2% = = P:AcP]. The
k

function ¢ € [0,&] — a”“ + & 2K js analytic,

lk:
therefore the eigenvectors of o + €25 can

be continued analytically as a functionlk of ¢
(see Theorem 6.1 in chapter II, §6 section 1
and 2 in [17]). Hence, P = Fy + O(§) where
Py is such that PJO'ikPQ = o* is real and
diagonal. o* = |I)(l] — |k)(k|. We find, V7:
Yk(r) = o* + O(), where O(€) is a first order
term in £ and a bounded function of 7.



