N

N

Activity-based Credit Assignment (ACA) in
Hierarchical Simulation
Alexandre Muzy, Bernard P. Zeigler

» To cite this version:

Alexandre Muzy, Bernard P. Zeigler. Activity-based Credit Assignment (ACA) in Hierarchical Sim-
ulation. ITEEE/ACM/SCS: SpringSim Multi-conference, Symposium On Theory of Modeling and
Simulation, Mar 2012, Orlando, United States. hal-00674306

HAL Id: hal-00674306
https://hal.science/hal-00674306
Submitted on 27 Feb 2012

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-00674306
https://hal.archives-ouvertes.fr

Activity-based Credit Assignment (ACA) in Hierarchical Simulation

Alexandre Muzy™*, Bernard P. Zeigler**

* LISA UMR CNRS 6240, Universita di Corsica — Pasquale
Paoli, Campus Grossetti, BP 52, 20250 Corti - France, Email:
a.muzy@Quniv-corse.fr.

** Chief Scientist, RTSync Corp, 530 Bartow Drive Suite A
Sierra Vista, AZ 85635, United-States of America, Email:
zeigler@rtsync.com.

The use of activity-based credit assignment (ACA) for
the automatic evaluation and selection of candidate com-
ponents of systems is considered here. The whole process
consists of a precise automatic structured specification of
systems. Mathematical definitions and algorithms are pro-
vided. ACA converges on good components/compositions
faster than repository-based random search. As systems
constitute a vast class of problems to be specified by a mod-
eler, this automatic composition of systems opens new re-
search perspectives. The paper also places ACA within the
context of existing approaches to credit assignment in clas-
sifier systems.

1 Introduction

Among the plethora of learning methods in machine Learn-
ing [SBI8],supervised learning focuses on the determination
of optimal functions and reinforcement learning on the de-
termination of optimal actions on world’s state. In super-
vised learning, considering a set of inputs/outputs (I/0)
pairs: {(z1,vy1), (z2,¥2), .., (TN, yN)}, & learning algorithm
will determine, in a set of functions G, a functiong : X — Y,
with X the input set, and Y the output set. In reinforce-
ment learning, a learning algorithm will determine an opti-
mal action-value function: Q*(s,a) = mTcer”(s,a), where

7 is a policy', s is the state of the world, and a the action
modifying the world’s state s.

In systems theory [BPZ00] the hierarchical specification
of the dynamic of a system is achieved from the I/O frame:
TOF =< X,Y >, where X and Y have been defined
previously, passing through the I/O function: TOFO =<
X, QY F >, where X and Y have been defined previously,
F = {f1, fo, f3,...} is the set of I/O functions, and is
the input segment set, and ending to structured systems:
S =<T,X,00,Y,A,A >, where X,Y,) have been de-
fined previously, T is the time base, @ is the set of states,
A Q x Q — Q is the global state transition function, and
A:Q x X — Y is the output function. As pinpointed by

14A policy, m, is a mapping from each state, s € S, and action,
a € A, to the probability 7 (s, a) of taking action a when [the world is]
in state s”[SB98|.

George Klir in [KE03], systems constitute a large class of
problems.

The main idea of this paper is, at a high level of control, to
automatically and hierarchically specify the components of
a structured system, using a discrete-event system specifica-
tion (DEVS) and supervised learning. To achieve this goal,
activity of components and compositions [MZ08, MTV*10]
is used to select target components. Activity consists of a
quantitative measure of both external and internal event oc-
currences in components. This usage amount of components
is correlated with the evaluation of compositions. The basic
idea is to assign credit based on the correlation of activity of
a component and the score of the composition it is in. This
is referred to the credit assignment problem.

The main advantages of activity-based credit assignment
(ACA) can be summarized as follows:

1. Applies to any DEVS hierarchical components and com-
positions within any DEVS Experimental Frame,

2. Evaluates components,/compositions at each level of the
hierarchy;,

3. Converges on good components/compositions faster
than repository-based random search,

4. Automatically synthesises systems from a model-base
thus enabling reusability of highly rated components in
compositions.

Section 2 describes the main definitions and the credit as-
signment problem and the underlying search algorithims.
Section 3 validates the whole approach drawing the main
simulation statistics. Section 4 compares ACA with other
credit assignment approaches. Finally Section 5 concludes
and presents some research perpectives.

2 Credit Assignment Problem

We define here the activity, credit and algorithm used for
automatically selecting high performance components and
compositions of systems.

2.1 Activity and ACA Definitions

Activity of a composition is defined recursively as the sum of
activity of its lower level components. Running many trials
allows finding progressively “good” components.

2.1.1 Definition of Activity

A component corresponds to a Discrete Event System Spec-
ification, which is a tuple, denoted as ¢ =< X, Y, 5,0, A\, 7 >,
where X is the set of input values, Y is the set of out-
put wvalues, S is the set of partial sequential states, § :
Q x (X U{@}) — S is the transition function, where
Q = {(s,e)|s € 5,0<e<7(s)} is the set of total states,
e is the time elapsed since the last transition, @ is the null
input value, A : S — Y is the output function, 7: S — Rg,oo
is the time advance function. If no event arrives at the sys-
tem, it will remain in partial sequential state s for time
7 (s). When e = 7 (), the system produces an output A (s),
then it changes to state ((s,e,z),e) = (6(s,7(s),9),0),
which is defined as an internal transition. If an external
event, € X, arrives when the system is in state (s, e), it
will change to state (d(s, 7 (s),x),0), which is defined as an
external transition.

For a simulation that starts at ¢ and ends at ¢/, activity is
defined as:

e External activity, Acyt, in the time interval [¢,¢'], is de-
fined as a natural number equal to the sum of external
transitions Sezi(s,x) = (6(s, 7 (s),x),0).

o Internal activity, A;nt, in the time interval [¢,¢'], is de-
fined as a natural number equal to the sum of internal
transitions 0;ne(s) = (8(s, 7 (s),?),0).

e Total activity is equal to: A = Acpr + Ajne.

A hierarchical composition of components is defined as:
N =< X, Y, D, {c},{I,}.{Z;;} >, where X is the set of
input values, Y is the set of output values, D is the set of
references to lower level components, I; is the set of influ-
encees of the lower level components ¢ € D, and Z;; is the 1
to j translation function inside the hierarchical composition.

As previously defined in [MTV™10], the activity of a com-
posite model depends on the activity of its components. The
activity of a hierarchical composition N is the total activity
of its components {c}: Ay = Z;cp4;

2.1.2 Definition of ACA

Our goal is to evaluate candidate components and compo-
sitions in a candidate composition N, at trial » € N, with
r < R, where R is the total number of trials. To achieve
this goal, a score is defined as a measure of performance
of the top level hierarchical composition By, where N is
the top level composition. The objective of ACA is to find
compositions that achieve a high level of performance.

In one trial r, the credit ¢;, of a candidate component
i € D is defined as the product of its activity A, , and of
the score of the top level hierarchical composition By ,:

Siyr = Ai,’I"BNﬂ‘

The accumulated credit (or achievement) S - of a compo-
nent ¢ € D over a number of R trials, is defined as:

R

Si,R = Er:ﬁi,r

At trial R the accumulated credit of a component S g is
used to drive the selection of the components or composi-
tions.

2.2 Simulation Algorithm

Algorithm 1 summarizes the main function runGeneralTrial()
of the program. This loop consists in a composition-
simulation-evaluation algorithm. At each iteration, various
models are successively instantiated and tested:

e Line 1: The trial loop, with nbTrial the number of trials,

e Line 2: If nbTrial is smaller than startOfBias, the model is
“pruned” (instantiated) randomly, i.e., all components
are chosen randomly. If nbTrial is greater than startOf-
Bias, the newModel is pruned based on previous credit
results of components through the pruneWBestEvaluat-
edCreditComponents(maxComposition,searchLevel) function,
described in Algorithm 2.

e Line 3: The newModel is run,

e Line 4: Credit-based evaluations are saved to reposi-
tory.

e Line 5: The loop ends when the maximum score (known
in advance) is found.

Algorithm 1 Main Activity-based
simulation-evaluation Algorithm.

runGeneralTrial():

Composition-

1. for(nbTrial = 0; nbTrial < maxNbTrial; nbTrial++)

2. newModel=nbTrial > startOfBias ? pruneWBestEvaluatedCreditCompo-

nents(maxComposition,level): pruneRandomlyModel()

3. run(newModel)

4. creditRepository.add(newModel)
5. If (terminate(bestScore)) Then
6. break

Algorithm 2 summarizes the pruneWBestEvaluatedCredit-
Components(maxComposition,level) function:

e Line 1: For levels lower than the top level, the credit-
based probability relation, probaRn, is built as:

Si,R

probaRn = {(p(i, R), M) |i € D, p(i, R) = ST
i=154,

, M C D}

where n is the number of lower level components.

e Line 2: The bestComponents are selected from the repos-
itory (more details in Algorithm 3),

e Line 3: bestModel is pruned using bestComponents.

Algorithm 2 pruneWBestEvaluatedCreditCompo-
nents(maxComposition,level) Algorithm.

pruneWBestEvaluatedCreditComponents(maxComposition,level):

1. Relation probaRn=repHierarchy.buildCreditProbaFunctionFrom(level)

2. bestComponents

=getBestComponentsFromRep(repHierarchy,maxComposition,probaRn)
3. bestModel = pruneWith(bestComponents)

4. return bestModel

Algorithm 3 summarizes the getBestComponentsFrom-
Rep(repHierarchy, maxComposition, probaRn) function:

e Line 1: The number of best components nbOfBestCom-
ponents is randomly drawn according to maxComposition,
which is equal to the maximum number of components
at this level.

e Line 2: The corresponding bestComponents (whose num-
ber is equal to nbOfBestComponents) are obtained.

e Line 3-4: Remaining components are randomly selected
(randomComponents).

e Line 4: The selectedComponents consist of both bestCom-
ponents and randomComponents. As discussed in sections
4 and 3.1, this allows to do not be trapped in local
optima.

Algorithm 3 getBestComponentsFromRep(repHierarchy, max-
Composition, probaRn) Algorithm.

getBestComponentsFromRep(repHierarchy,maxComposition,probaRn):

1. int nbOfBestComponents=rand.nextInt(maxComposition)
2. bestComponents=getBestModels(probaRn,nbOfBestComponents)

3. If(nbOfBestComponents < maxComposition) Then
randomComponents

=getBestModels(probaRn,maxComposition,nbOfBestComponents)
4, selectedComponents=bestComponents + randomComponents

5. return selectedComponents

3 Simulation Results

An archetype model (hockey team) is presented here. Effi-
cency of ACA is shown in section 3.2 .

3.1
3.1.1

Model and Simulation
Description of the Hockey Team Model

Simulation results concern a generic example implementa-
tion: The hockey team. A picture of the whole composition
is provided in Figure 1.

This model has the following characteristics:

e Only two kinds of position are considered: Defense and
attack,

e Only four players are selected at a time, two in defense
and two in attack,

e Abilities can be only good or bad. Therefore, there are
23 = 8 possible players at each position (see Figure 2
for player compositions),

e Defenders consist of abilities to: pass to defense, pass
to forward, and stop. There are 82 = 64 possible com-
positions in defense.

e Attackers consist of abilities to: (good or bad) to: pass
to forward, get puck, shoot. There are 8% = 64 possible
compositions in attack.

e Number of possible team selections: 642 = 4096.

Figure 1 shows the coupling of the experimental frame
to the model. During a trial, the experimental frame sends
one attack (puck external event) to each defender. When
a defender receives the puck he must stop it, pass it to the
other defender who must forward it to one attacker. The
latter must pass it to the other attacker who must shoot, in
oder to score a goal. Any break in this chain results in no
score. To ensure a score, the abilities at every point of the
sequence are required to be “good”. Therefore, since there
are two such attacks, the maximum score is two.

Finding the best hockey team (i.e., the global optimum)
consists in finding the best players (the local optima). The
class of problems corresponding to this hockey model is
equivalent to the ones resolved by the greedy algorithm
[CLRS09|, which achieves/assumes local optimal choices to
find a global optimum. Also, as described in both sections
4 and 2.2, for ACA, in order to do not be trapped in local
optima, some components are selected randomly.

3.1.2 Parallel Pseudorandom Simulation

A simulation is determined by: a random number seed, a hi-
erarchical level, and a bias. The random number seed is used
to randomly generate a team, using Algorithm 1. There are
four hierarchical levels: Level 0 is the top team level, level 1
is the lines level, level 2 is the players level, and finally, level
3 is the abilities level (atomic level). Refering to Algorithm
1, first the bias is set to infinity and the simulation is run
(without any connection to the activity credit assignment),
until the maximum score is reached. The resulting number
of trials is called nbEval WithoutHistory. This variable rep-
resents the number of trials required for that seed at that
level to find purely randomly the team that can score two
goals. After, for each bias from 0 to nbFEval WithoutHistory,
the simulation is run using the activity credit assignment
function and the number of trials required at that level (to
find the team that can score two goals), is obtained and
called nbEvalWithHistory. For each bias value, the speed
is defined as: speedUp = "Z%”E”ﬁgﬁmﬁiﬁi";y Note that
speedUp > 1 for any algorithm that is not worse than ran-
dom search. Also speedUp < 1 is possible.

hitrz ey Te aemHieT ey

\efensalinainTean

singleDefenderinLined o
e Int SELS outt

b star

attackl inalrTaam

ingleARackennLingl
singleAfiackernline ol @ it

P REEY M. ST,
sInpiATACkeNNLINEZ
sinpleAtiackerinking2 outt @

g2 lan | owa

Out 8

b atant
—

—
Les L Ll
st

1o o = O

t stp

Ha et

Outl

Figure 1: Hockey Team Components. On the bottom is the experimental frame. On the top are the coupled models:

attack and defense lines.

As described in Algorithm 1, at each level, different from
level 0, atomic components and components of compositions
are evaluated. Above the value startOfBias, the algorithm
takes advantage of the credits of components and compo-
sitions. At level 3, there are 12 possible abilities (atomic
models). A threshold is randomly selected between 0 and
12, such that below and equal to the threshold, components
c are generated using a credit-based probability discrete den-
sity function: p(i, R) = 2":’: —. Above this threshold, com-
ponents are randomly gelﬁerzited using a uniform distribu-
tion function for each choice. This is the same approach as
the one used to obtain the nbEval WithoutHistory. For level
2, there are 4 possible players (compositions). For level 1,
there are 2 possible lines (compositions). For levels 2 and
1, the same mechanism is used except than the threshold
choice is based on the number of players and lines respec-
tively. Level 0 is different because there is only one compo-
sition.

For each bias, 30 replications (random seeds) have been
run in parallel on a Symmetric Multiprocessing (SMP) with
8 quadcore-processors (32 cores). Each level runs roughly
40 biases for 30 replications each. It takes approximatively
one hour to run one level. Approximately, it would take a
day, on a sequential machine, to do the same thing.

3.2 Efficiency of Activity-based Hierarchi-
cal Composition Algorithm

The behavior of speed up is a function of bias shown in Fig-
ure 3 for a repository-based random strategy at level 1 (line
level). This strategy is an intermediate one between a purely
random strategy and ACA. This strategy intends to evalu-
ate the impact of the repository use on ACA gains. Here,

at each bias, the algorithm scans the repository and builds
randomly new compositions reusing components from the
repository. As for algorithms in Section 2.2, some compo-
nents are randomly chosen to avoid being trapped in local
optima. Above bias=100 and until bias=400, some speed
up seems to arise. At level 1, a maximum of two best com-
ponents can be selected. During the start up phase (be-
fore the bias), it seems that there is a high probability for
best lines to have been selected randomly and stored in the
repository. Then, the repository-based random strategy gets
higher probability to select the good lines in a restricted can-
didate set (the repository). Above bias=400, the average
speed up oscillates around 1.0. At bias=0, a very large con-
fidence interval occurs (with a lower bound negative). This
can be explained because at this bias, the minimum speed
up is only 0.29, which is three times slower than no speed
up.

The behavior of speed up is a function of bias shown in
Figure 4 for atomic level 3. Note that the curve shows con-
sistency. The average speed up is increasing until 100 and
then decreasing. The curve converges to one, without going
below. Even the lower bound of the confidence interval never
goes below one (showing that bias algorithm is never worse
than only randomly selecting components without any use
of repository).

Table 1 summarizes the data from the bias perspective for
the repository-based random strategy. The table shows that
minimum and maximum speed ups are close to the average
speed up, which is equal (or very close to one). Also, the
bias for largest minimum is very large. It can be concluded
that there is no impact of the bias on speed up.

Table 2 summarizes the data from the bias perspective
for ACA. For level 3, the table shows the bias (300) for

HockeyDefenseline

t® leftOut

He start

farDefenseline_EF

forTwn_genrinputs g 0ot

active
o = 50,000

Start2-

e outz
ransdEwval

anfin

solfved @

&o

actve - -val

aval

leftin
200,000

F rightDut

Deienzeline

Left_DefensePlayer

good_Pass passut o
In & o phase & cut
o =infinity

good_Step g Out1

In @ ND phase

o = infinity @ Y

in @ N pliase e Oui

leftDui 2

good_gerd

© = infinity

Right_DefensePlayer

goed_Stop g Cutt

In a-ndRespon:

a=0,000 € U2

fightin w
good_Pass pasOut-3
in-a- no phase - ou
@ =infinity
fightOut @]
good_Send
In@ no phase < ™
o =irfinity sendOut @4

Figure 2: Defense player components.

Lewvel Largest minimum Bias for largest minimum Average at that bias Mazimum at that bias
3 - atomic abilities 0.84 2 700 1.04 1.27
2 - players 1.18 2 900 1.2 1.23
1 - lines 1.17 2 900 1.2 1.23

Table 1: Repository-based random strategy: Largest Minimum and Bias where the largest minimum occurs.

which the largest value of minimum speed up is obtained 4 Comparison with other Credit As-

(2.6), the average at that bias (6.5), and the maximum at
that bias (11). This can be interpreted as providing guid-
ance for the use of a riskadverse activity credit assignment
approach, where a bias should be selected, which guaran-
tees a minimum speed up without sacrifycing possibility for
significantly larger speed up. On the other hand the risky
approach would be to use a smaller bias with a lower mini-
mum and higher maximum. Levels 1 and 2 show the same
kind of behavior. The riskadverse bias choice decreases to
a value of 100 where a minimum of 1.76, average of 7 and
maximum of 24 occur. At level 2, except for largest min-
imum, which is slightly lower than for level 1 and level 3,
average and maximum values are better. Therefore, we can
consider that it should be more valuable to use ACA at this
level, for bias=100.

Table 3 shows the size of each components and the num-
ber of components for each level. Increasing in levels, the
number of components increases. This explains the ACA
results at level 2. At this level the size of each component
is not too small or too large.

signment Methods

The credit assignment problem [Min61] consists in assigning
partial credit to sub-decisions leading to a complete task.
This allows investigating new rule paths even if the first
steps do not provide immediate reward (e.g., at chess, you
can choose to loose a piece to win the game...)

A first solution to credit assignment problem consists in
the bucket brigade algorithm [Hol92]. In the bucket brigade
algorithm, the basic entities are classifier systems. A Learn-
ing Classifier system interacts with the environment through
an I/O interface using condition-action rules. The rule-base
consists of a population of many condition-action rules (clas-
sifiers.) The rule conditions and actions are strings of char-
acters from the ternary alphabet: {0,1,#}, with # being as
“don’t care” when appearing in the condition part. Accord-
ing to the reward of an action (changing the state of the
environment) a rules reinforcement is performed. Rules are
generated by a genetic algorithm. In the bucket brigade al-
gorithm, “the highest bidding classifiers may place their mes-
sage on the message list of the next cycle, but they have to
pay with their bid which is distributed among the classifiers
active during the last time step which set up the triggering

15

14

13

12

11

a 10
9

2 8
o 7
w 6
4

3

2

1

0

-1

-2

-3

BIAS

Figure 3: Repository-based random strategy: Average speed up and confidence interval results for each bias (accross 30

replications) — at level 1.

10

o
) i
(] 6
w O—
Ll 5 ® Average
o
(%] 4 - = No gain
3
2
i AR EEEEE R R,
4] T 1
0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600

BIAS

Figure 4: ACA: Average, maximum, and minimum speed up results for each bias (accross 30 replications) — at atomic

level 3.

conditions. (...) The central idea is that classifiers which are
not active when the environment gives payoff but which had
an important role for setting the stage for directly rewarded
classifiers can earn credit by participating in 'bucket brigade
chains’. ” [Sch89]. The first classifiers of a classifier chain
gets a partial reward even if the action performed on the en-
vironment does not provide the maximum reward expected.
Another solution to credit assignment problem consists in
the profit-sharing plan [Gre88]. Bucket brigade algorithm
focuses on incremental schemes. Profit-sharing plan focuses
on reward schemes waiting for external rewards. In this ap-
proach, problem solving is divided into episodes delimited
by the receipt of external reward. A rule is active during an
episode if it wins a bidding competition. Whereas bucket
brigade is better adapted to rules firing in parallel, profit-
sharing is more adapted for single active chains [GBV].

We describe now the main differences/similarities be-
tween both activity-based and genetic algorithms(GA)-
based credit assignments, starting from usual GA vocab-

ulary:

e Rules: GA produces rules, i.e., pairs of (condi-
tions,actions) of a classifier system, expressed in bits
(or #), GA selects the best actions to make new rules.
In contrast, ACA applies to any DEVS hierarchical
components and compositions, where the inputs of
the component/composition correspond to the condi-
tions from the environment, and outputs of the compo-
nent/composition correspond to actions.

o Selection:

— GA, at every generation: 1. Rank individuals ac-
cording to their fitness value, and 2. Keep a per-
centage of best individuals. On the other hand,
ACA: 1. Ranks components and compositions ac-
cording to their performances in one or more envi-
roment, 2. Maintains a model-base of components
and compositions according to their ranking.

Lewvel Largest minimum Bias for largest minimum Average at that bias Mazimum ot that bias
3 - atomic abilities 2.6 300 6.5 11
2 - players 1.76 100 7 24
1 - lines 1.98 300 4.2 6.5

Table 2: ACA strategy: Largest Minimum and Bias where the largest minimum occurs.

Level

Number of components ‘ Size of each component

3 - atomic abilities 0-12 2
2 - players 0-4 8
1 - lines 0-2 64

Table 3: Number of components and size of each component, for each level.

— GA, e.g. in bucket brigade, select a rulei to fire
using a bid-based probability distribution:

(i) = it
PR =S bid;

where 7 is the number of rules. On the other hand,
ACA select components and compositions using a
credit-based probability distribution:

Si,R

p(i, R) = ey
G154,

where n is the number of lower level components.

o Awoiding traps in local optima: GA use mutation, i.e.,
a bit can be randomly changed in a rule, likewise ACA,
in the model-base, uses a combination of highly ranked
or randomly selected components/compositions.

e Combination of sub-solutions: GA use crossover ge-
netic operator to combine parts of two parent chromo-
somes to make a new child chromosome. ACA, using
hierarchical composition and at any level, combines (ac-

Furthermore, as described in sub-section 4, bucket brigade
algorithm is better adapted to rules firing in parallel, profit-
sharing is more adapted for single active chains. ACA can
be applied to models embedding both sequential and parallel
chains of components.

In further research, the ACA needs now to be applied
to more challenging (realistic/stochastic) model composition
problems where the best performance is not known a-priori.
Finally, more theoretical work can be done to justify the
fact that there is an underlying credit ranking that any sim-
ulation using ACA would converge to. However, the results
provided here still indicate that significant speed ups were
achieved for ACA at each level of the hierarchy (e.g., be-
tween 2.6 and 85 for bias=0, at atomic level) and executed
within feasible time frame on relatively unexpensive multi-
processor.

Acknowledgements

This research is supported by the CNRS.

cording to the above policies) components from the next R eferences
lower level. Similarly to crossover both highly ranked
and randomly selected lower level components are used. [BPZ00] H. Praehofer B. P. Zeigler, T. G. Kim. Theory

5 Conclusion and Future Work

of Modeling and Simulation. Academic Press,
2000.

[CLRS09] Thomas H. Cormen, Charles E. Leiserson,
Using a hockey team archetype, we illustrate a proof of con- Ronald L. Rivest, and Clifford Stein. Introduc-
cept in this paper that ACA: tion to Algorithms. The MIT Press, third edition
e applies to any DEVS hierarchical components and com- edition, July 2009.
positions within any DEVS Experimental Frame, [GBV] A. H. Gilbert, Frances Bell, and Christine L.
e evaluates components/compositions at each level of the Valenzuela. AfiaptiX{e learI}ing of Process control
hierarchy and profit optimisation using a classifier system.
’ Evolutionary Computation.
e converges on good components/compositions faster G b Gref Credi . .)
than purely random search, [Gre88] J9 n J. Grefenstette. Credit ass1gnment in rule
discovery systems based on genetic algorithms.
e is built-in to the DEVS simulators with little overhead Mach. Learn., 3:225-245, October 1988.
and a minable to high performance parallel, and o
[Hol92] John H. Holland. Adaptation in Natural and Ar-

e automatically synthesises systems from a model-base
thus enabling reusability of highly rated components in
compositions.

tificial Systems: An Introductory Analysis with
Applications to Biology, Control, and Artificial
Intelligence. MIT Press, 1992.

[KEO03] George J. Klir and Doug Elias. Architecture of
Systems Problem Solving. Springer, 2003.

[Min61] Marvin Minsky. Steps toward artificial intelli-
gence. In Computers and Thought, pages 406—
450. McGraw-Hill, 1961.

[MTV+10] Alexandre Muzy, Luc Touraille, Hans
Vangheluwe, Olivier Michel, Mamadou
Kaba Traoré, and David R. C. Hill. Ac-
tivity regions for the specication of discrete
event systems. In Spring Simulation Multi-
Conference Symposium On Theory of Modeling
and Simulation (DEVS), pages 176-182, 2010.

[MZ08] A. Muzy and B. P. Zeigler. Introduction to
the activity tracking paradigm in Component-
Based simulation. The Open Cybernetics and
Systemics Journal, 2:48-56, 2008.

[SBYS] Richard Sutton and Andrew Barto. Rein-
forcement Learning: An Introduction (Adap-
tive Computation and Machine Learning). MIT
Press, 1998.

[Sch89] J. Schmidhuber. A local learning algorithm for
dynamic feedforward and recurrent networks.
Connection Science, 1(4):403-412, 1989.

Author Biographies

ALEXANDRE MUZY is research fellow CNRS at the
Universita di Corsica Pasquale Paoli. He received his Ph.
D. from the same university, in 2004. He is currently Asso-
ciate Editor of the SIMULATION Journal (Transactions of
The Society for Modeling and Simulation International) and
member of many international program committees. His
main research domain concerns the use of activity for mod-
eling and simulating complex systems.

BERNARD P. ZEIGLER is RTSync Chief Scientist,
Emeritus Professor of Electrical and Computer Engineer-
ing at the University of Arizona (UA) and Research Profes-
sor in the C4I Center at George Mason University, is inter-
nationally known for his seminal contributions in modeling
and simulation theory. He has published several books. He
is well known for the Discrete Event System Specification
(DEVS) formalism that he invented in 1976 and was named
Fellow of the IEEE and SCS.

