Exit times for an increasing Lévy tree-valued process

Abstract : We give an explicit construction of the increasing tree-valued process introduced by Abraham and Delmas using a random point process of trees and a grafting procedure. This random point process will be used in companion papers to study record processes on Lévy trees. We use the Poissonian structure of the jumps of the increasing tree-valued process to describe its behavior at the first time the tree grows higher than a given height, using a spinal decomposition of the tree, similar to the classical Bismut and Williams decompositions. We also give the joint distribution of this exit time and the ascension time which corresponds to the first infinite jump of the tree-valued process.
Type de document :
Article dans une revue
Probability Theory and Related Fields, Springer Verlag, 2014, 159 (1-2), pp.357-403. 〈10.1007/s00440-013-0509-9〉
Liste complète des métadonnées

Littérature citée [24 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00673870
Contributeur : Patrick Hoscheit <>
Soumis le : vendredi 24 avril 2015 - 16:22:18
Dernière modification le : jeudi 3 mai 2018 - 15:32:07
Document(s) archivé(s) le : mercredi 19 avril 2017 - 05:59:21

Fichier

Revised.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Romain Abraham, Jean-François Delmas, Patrick Hoscheit. Exit times for an increasing Lévy tree-valued process. Probability Theory and Related Fields, Springer Verlag, 2014, 159 (1-2), pp.357-403. 〈10.1007/s00440-013-0509-9〉. 〈hal-00673870v2〉

Partager

Métriques

Consultations de la notice

203

Téléchargements de fichiers

88