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ABSTRACT
Dynamic Bayesian Networks (DBNs) can serve as succinct models
of large biochemical networks [19]. To analyze these models, one
must compute the probability distribution over system states at a
given time point. Doing this exactly is infeasible for large models
and hence approximate methods are needed. The Factored Frontier
algorithm (FF) is a simple and efficient approximate algorithm [25]
that has been designed to meet this need. However the errors it
incurs can be quite large. The earlier Boyen-Koller (BK) algorithm
[3] can also incur significant errors.

To address this, we present here a novel approximation algorithm
called the Hybrid Factored Frontier (HFF) algorithm. HFF may be
viewed as a parametrized version of FF. At each time slice, in ad-
dition to maintaining probability distributions over local states -as
FF does- we also maintain explicitly the probabilities of a small
number of global states called spikes. When the number of spikes
is 0, we get FF and with all global states as spikes, we get the -
computationally infeasible- exact inference algorithm. We show
that by increasing the number of spikes one can reduce errors while
the additional computational effort required is only quadratic in the
number of spikes. We have validated the performance of our al-
gorithm on large DBN models of biopathways. Each pathway has
more than 30 species and the corresponding DBN has more than
3000 nodes. Comparisons with the performances of FF and BK
show that HFF can be a useful and powerful approximation algo-
rithm for analyzing DBN models of biopathways.

Categories and Subject Descriptors
G.3 [Mathematics of Computing]: Probability and Statistics; I.1.2
[Computing Methodologies]: Symbolic and Algebraic Manipula-
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tion—Algorithms; J.3.1 [Computer Applications]: Life and Med-
ical Sciences—Biology and Genetics

1. INTRODUCTION
The probabilistic graphical model known as Dynamic Bayesian
Network (DBN) was used in [19] to compactly approximate the
dynamics of a biochemical network originally given as a system
of (deterministic) Ordinary Differential Equations (ODEs). This
approximation -explained in more detail later- is derived by dis-
cretizing both the time and value domains, sampling the assumed
set of initial states and using numerical integration to generate a
large number of representative trajectories. Then based on the net-
work structure and simple counting, the generated trajectories are
compactly stored as a DBN. One then studies the dynamics of the
biochemical network by applying Bayesian inferencing techniques
to the DBN approximation. This approach has been developed ex-
tensively in [19], it scales well and has been used to aid biological
studies [21].

The random variables associated with each discretized time point
t in the DBN are used to represent the discretized concentrations
of the proteins of the biochemical network at time t. Tasks such
as parameter estimation and sensitivity analysis can be carried out
directly on the DBN by repeatedly computing the probability of a
random variable assuming a specific value at a given time point.
Due to conditional dependencies between the variables, carrying
out this computation exactly will require -roughly speaking- an ef-
fort which is exponential in the number of species in the biochem-
ical network. Hence for large networks, exact computation will be
infeasible and one must resort to approximate methods. An effi-
cient approximate inferencing technique called the Factored Fron-
tier algorithm (FF, for short) developed for DBNs [16,25] was used
to perform these computations in [19, 21].

The crucial role played by the FF algorithm and the fact that it
was an approximate algorithm led us to consider its error behav-
ior. Surprisingly, we could not find in the literature a rigorous er-
ror analysis. Further, we found that in all the models we consid-
ered (as detailed later), though FF performed well for many vari-
ables, there were a few where it incurred significant errors. This



motivated us to construct an improved approximate inferencing al-
gorithm for DBNs called the Hybrid Factored Frontier algorithm
(HFF, for short) that we present here. As the name suggests, HFF
is based on FF and is a parametrized version of FF. To bring out
its main features, it will be convenient to briefly describe how FF
works in our DBN setting.

The DBNs we consider have a finite set of random variables with
each variable having a finite domain of values. The value of a vari-
able at time t only depends on the values of a few other variables
(called its parents) at time t− 1. Further, the probabilistic dynam-
ics is captured by a Conditional Probability Table (CPT) associated
with each variable at each time point (see fig. 1.c for an example).
Thus, the global state of the system at time t is a tuple of values with
each component denoting the value assumed by the corresponding
variable at t. One is interested in the marginal probability, i.e., the
probability of a variable X taking value v at time t. To compute
this exactly, we need the joint probability distribution over global
states at time t. This can be computed from the joint probability
distribution over the global states at time t − 1 by propagating it
through the CPTs. FF maintains and propagates these joint prob-
ability distributions approximately. Such approximate joint proba-
bility distributions are usually called belief states.

FF is a simplified and more efficient version of the earlier Boyen-
Koller algorithm [3] (BK, for short). In BK, a belief state is main-
tained compactly as a product of the probability distributions of in-
dependent clusters of variables. This belief state is then propagated
exactly at each step through the CPTs. Then the new belief state is
compacted again into a product of the probability distributions of
the clusters. In contrast, the FF algorithm maintains a belief state
as a product of the probability distributions of the individual vari-
ables usually called marginal distributions. Instead of computing
first the new belief state as done by BK, the FF algorithm computes
the new marginal distributions directly via the propagation of the
current marginal distributions through the CPTs.

In our context, both BK and FF have drawbacks. FF is attractive
in terms of simplicity and computational effort but unlike BK [3],
it lacks a rigorous error analysis. More importantly, as we observe
in Section 4, FF can exhibit significant errors. As for BK, its accu-
racy crucially depends on how one clusters the variables. Further,
computing the next belief state exactly is computationally infea-
sible when the size of clusters is large. Identifying the right set
of clusters is a difficult problem and there seem to be no efficient
techniques for doing this with guaranteed performance. One could
avoid the problem of identifying clusters by just using singleton
clusters (the so called fully factored BK algorithm). However, as
we report in Section 4, this also leads to significant errors.

The main idea of our new algorithm, HFF, is to maintain the belief
state as a hybrid entity; for a small number of global states called
spikes, their current probabilities are maintained. The probability
distribution over the remaining states is represented, as in FF, as
a product of the marginal probability distributions. The spikes are
chosen to be those global states which have high probabilities cur-
rently. This is based on the insight that when the error produced by
one step of FF is large for a global state, then actual probability of
this state must itself be high. Further, since the total probability of
the spikes is bounded by 1, the number of spikes at any time point
must be small. For instance, there can at most be 2 spikes each with
probability greater than 0.4. However, it is infeasible to explicitly
identify and exactly compute the probabilities of the spikes. HFF

does this approximately, as well as propagating the hybrid belief
state through the CPTs. The main goal is to keep the one step error
low since the error analysis for BK [3] suggests that this is the key
to minimizing the overall error.

A pleasing feature of HFF is that it is a parametrized version of FF
with σ, the number of spikes, being the parameter. When σ = 0,
we get FF and when σ = N where N is the total number of global
states, we get the brute-force exact inferencing algorithm. Thus by
tuning σ, one can gain control over the error behavior. We have
derived the single step error bound for HFF, which then also leads
to an error analysis for FF. We show that the worst case one step
error of HFF is lower than that of FF. The time complexity of HFF
is O(n · (σ2 + KD+1)) where n is the number of nodes in the
DBN, σ is the number of spikes, K is the maximum number of
values that a random variable (associated with each node) can as-
sume and D is the maximum number of parents that a node can
have in the DBN. This compares well with the time complexity of
FF which is O(n ·KD+1). Since the time complexity of HFF (and
FF) is linear in n, our algorithm scales well in terms of network
size. The factor D is determined by the maximum number of reac-
tions that a species takes part in as a product or reactant. For most
of the networks we have encountered, D (≈ 4) is much smaller
than n (≈ 30). Our experimental results confirm that HFF is a use-
ful and efficient algorithm. We considered four large DBNs. Three
of them arise from the EGF-NGF pathway [4] with one model for
NGF stimulation, the second for EGF stimulation and the third for
EGF-NGF co-stimulation. The fourth DBN captures the behavior
of the Epor mediated ERK signaling pathway [22]. Each of these
pathways contained more than 30 species and we traced their be-
haviors through 100 time points. Starting from their deterministic
ODEs based models (with all rate constants and initial concentra-
tions known) we applied the technique developed in [19] to obtain
the DBNs each of which had more than 3000 nodes. In all four
cases, we found that the errors suffered by FF and BK (with single-
ton clusters) were high for marginal distributions of some biolog-
ically significant species. The errors incurred by HFF was always
lower and they reduced monotonically when the number of spikes
were increased.

Turning to related work, DBNs are used extensively in domains
such as as AI, computer vision, signal processing and computa-
tional biology [10, 11, 16, 23]. HFF is a generic inferencing algo-
rithm and it can be applied to compute and maintain belief states in
these settings as well. As done in HFF, capturing a large probabil-
ity mass using only a few values has been considered in [1] and [2].
The main idea of [1] is to use stochastic sampling methods to look
for cut-sets in the graph structure that have high probability mass.
The approach of [2] consists of predictive pruning to remove all but
a few high probability nodes. Loosely speaking, these methods se-
lect the spikes with methods that differ from HFF’s. Further, they
are not guaranteed to improve the accuracy in theory as is the case
for HFF.

There is a rich vein of work that uses Continuous Time Markov
Chains to study the dynamics of biochemical networks [5,6,13,14,
17, 18, 20, 28]. Typically, these studies are population-based in that
one maintains the number of molecules of each species in the net-
work and tracks their changes as reactions occur one by one. This
approach is needed when the number of molecules of the species
is too low to support the “smoothness” assumptions made by the
ODEs based models. As might be expected, the exact inferencing
problem for large CTMCs is computationally infeasible. Analysis



methods based on Monte Carlo simulations [8, 9, 12, 14] as well
as numerically solving the Chemical Master Equation describing a
CTMC [7, 13] are being developed. In these studies the CTMCs
are presented implicitly while our DBNs are available explicitly.
Hence it is not clear at present whether inferencing algorithms such
as FF,BK and HFF can be deployed to analyze CTMCs arising as
populations-based models of biochemical networks.

In the next section we introduce DBNs and explain in more detail
how they arise in our context as models of biochemical networks.
In Section 3, we sketch the FF algorithm and then present our HFF
algorithm. This is followed by an error analysis for the two algo-
rithms. The experimental results are presented in Section 4 and
we conclude with a discussion in Section 5. Many of the technical
details can be found in [27].

2. DBN MODELS OF BIOPATHWAYS
We first introduce DBNs and related notations. We shall then de-
scribe how DBNs arise as models of biochemical networks through
the approximation technique reported in [19].

We fix an ordered set of n random variables {X1, . . . , Xn} and let
i, j range over {1, 2, . . . , n}. We denote by X the tuple (X1, . . . ,
Xn). The random variables are assumed to take values from the
set V of cardinality K. We let xi, ui, vi to denote a value taken by
Xi. Our dynamic Bayesian networks will be time variant but with
a regular structure [25]. They will be unrolled over a finite number
of time points. Further, there will be no distinction between hidden
and observable variables.

A Dynamic Bayesian Network (DBN) is a structure D = (X , T,Pa ,
{Ct

i}) where,

• T is a positive integer with t ranging over the set of time
points {0, 1, . . . , T}.

• X = {Xt
i | 1 ≤ i ≤ n, 0 ≤ t ≤ T} is the set of random

variables. As usual, these variables will be identified with
the nodes of the DBN. Xt

i is the instance of Xi at time slice
t.

• Pa assigns a set of parents to each node and satisfies: (i)

Pa(X0
i = ∅) (ii) If Xt′

j ∈ Pa(Xt
i ) then t′ = t − 1. (iii)

If Xt−1

j ∈ Pa(Xt
i ) for some t then Xt′−1

j ∈ Pa(Xt′

i )

for every t′ ∈ {1, 2, . . . , T}. Thus the way nodes at the
((t − 1)th time slice are connected to nodes at the tth time
slice remains invariant as t ranges over {1, 2, . . . , n}.

• Ct
i is the Conditional Probability Table (CPT) associated

with node Xt
i specifying the probabilities P (Xt

i | Pa(Xt
i )).

In general, Ct
i will be different from Ct′

i if t 6= t′

A state of the DBN at t will be a member of V n, say s = (x1, x2,
. . . , xn) specifying that Xt

i = xi for 1 ≤ i ≤ n. This in turn
stands for Xi = xi for 1 ≤ i ≤ n at t. Suppose Pa(Xt

i ) =
{Xt−1

j1
, Xt−1

j2
, . . . , Xt−1

jm
}. Then a CPT entry of the form Ct

i (xi |
xj1 , xj2 , xjm) = p says that if the system is in a state at t− 1 such
that Xjl = xjl for 1 ≤ l ≤ m, then the probability of Xi = xi

being the case at t is p. In this sense the CPTs specify the proba-
bilistic dynamics locally which will then induce in a canonical way
the global dynamics as a Markov chain [16].

We introduce some notations for later use. To start with, the regular
structure of our DBNs induces the function PA given by: Xj ∈
PA(Xi) iff Xt−1

j ∈ Pa(Xt
i ). We define î = {j | Xj ∈ PA(Xi)}

to capture Pa in terms of the corresponding indices.

In the following, xI will denote a vector of values over the index set
I ⊆ {1, 2, . . . , n}. It will be viewed as a map xI : I → V . We will
often denote xI(i) as xI,i or just xi if I is clear from the context. If
I = {i} and xI(i) = xi, we will identify xI with xi. If I is the full
index set {1, 2, . . . , n}, we will simply write x. Further, we denote
by Xt the vector of random variables (Xt

1, . . . , X
t
n).

Thus using these notations, we can write Ct
i (xi | uî) = p to

mean that p is the probability of Xi = xi at time t given that
at time t − 1, Xj1 = uj1 , Xj2 = uj2 , . . . , Xjm = ujm with
î = {j1, j2, . . . , jm}.

The probability distribution P (Xt
1, X

t
2, . . . , X

t
n) describes the pos-

sible states of the system at time t. In other words, P (Xt = x) is
the probability that the system will reach the state x at t. Starting
from P (X0) at time 0, given by P (X0 = x) =

∏
i C

0
i (xi), one

would like to compute P (Xt
1, . . . , X

t
n) for a given t.

We can use the CPTs to inductively compute this:

P (Xt = x) =
∑

u

(∏

i

Ct
i (xi | uî)

)
P (Xt−1 = u)

with u ranging over V n.

Since | V |= K, the number of possible states at t is Kn. Hence
explicitly computing and maintaining the probability distributions
is feasible only when n is small or if the underlying graph of the
DBN falls apart into many disjoint components. Neither restric-
tion is realistic and hence one needs approximate ways to maintain
P (Xt) compactly and compute it efficiently. Before we get into
ways of doing this, we first describe how we use DBNs to model
the dynamics of biopathways.

2.1 DBN Models of Biopathways
Biological pathways are often described as a network of biochem-
ical reactions. The dynamics of a pathway can be often mod-
eled as a system of deterministic ODEs; one equation of the form
dy

dt
= f(y, r) for each molecular species y, with f describing the

kinetics of the reactions that produce and consume y, y being the
molecules taking part in these reactions and r denoting the rate con-
stants (parameters) associated with these reactions. For large path-
ways, this system of ODEs will not admit a closed-form solution.
Hence one will have to resort to large scale numerical simulations
to perform analysis. A crucial analysis task will be parameter esti-
mation since many of the rate constants and initial concentrations
will be unknown and will have to be estimated. This in turn will in-
volve searching through high dimensional spaces accompanied by
repeated numerical simulations to evaluate the quality of the can-
didate parameter values. Further, model calibration and validation
will have to be carried out using limited data that has only crude
precision. Guided by these considerations, we have developed a
method for deriving a dynamic Bayesian network from a system
of ODEs that models a biopathway [19, 20]. Its main features are
illustrated by the example shown in Figure 1.

For biopathways, experimental data will be available only for a few
time points with the value measured at the final time point typi-
cally signifying the steady state value. Hence we assume the dy-
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Figure 1: a) The enzyme catalytic reaction network (b) The ODEs model (c) The DBN approximation for 2 successive time slices

namics is of interest only for discrete time points and, furthermore,
only up to a maximal time point. We denote these time points as
{0, 1, . . . , T}. It is not necessary to uniformly discretize the time
domain though we shall often do so for convenience.

Next we assume that the values of the variables can be observed
with only finite precision and accordingly partition the range of
each variable yi (rate constant rj) into a set of intervals Ii (Ij).
Again, it is not necessary to partition the value range of each vari-
able evenly but we will often do so for convenience. The initial
values as well as the parameters of the ODE system are assumed to
be distributions (usually uniform) over certain intervals. We then
sample the initial states of the system many times [19] and generate
a trajectory by numerical integration for each sampled initial state.
The resulting set of trajectories is then treated as an approximation
of the dynamics of ODE system.

To handle unknown rate constants we assume that the minimum
and maximum values of these constants are known. We then par-
tition these ranges of values also into a finite numbers of intervals,
and fix a uniform distribution over all the intervals. After building
the DBN, we use a Bayesian inference based technique to perform
parameter estimation to complete the construction of the model (the
details can be found in [19]). However, unlike the variables, once
the initial value of a rate constant has been sampled, this value will
not change during the process of generating a trajectory. Natu-
rally, different trajectories can have different initial values for an
unknown rate constant. Similar considerations apply to unknown
initial concentrations.

A key idea is to compactly store this set of trajectories as a dy-
namic Bayesian network. This is achieved by exploiting the net-
work structure and by simple counting. First we specify one ran-
dom variable Yi(Rj) for each variable yi (parameter rj). The node
Y t−1

k (Rt−1

j ) will be in Pa(Y t
i ) iff k = i or yk(rj) appears in the

equation for yi. On the other hand Rt−1

j will be the only parent

of the parameter node Rt
j since the parameter values don’t change

once their initial values have been fixed. (Hence in Figure 1 we
have suppressed rate constant nodes to avoid clutter.)

A CPT entry of the form Ct
i (I | Iî) = p says that p is the probabil-

ity of the value of yi falling in the interval I at time t, given that the
value of Zkl

was in Ikl
for each Zt−1

kl
in Pa(Y t

i ). The probability
p is calculated through simple counting. Suppose N is the number
of generated trajectories. We record, for how many of these trajec-

tories, the value of Zkl
falls in the interval Ikl

simultaneously for

each kl ∈ î. Suppose this number is J . We then determine for how
many of these J trajectories, the value of Yi falls in the interval I

at time t. If this number is J ′ then p is set to be J′

J
.

The one time cost of constructing the DBN can be easily recov-
ered through the gains obtained in doing parameter estimation and
sensitivity analysis [19] and this method can cope with large bio-
chemical networks with many unknown parameters. It has been
used to uncover new biological facts about the complement sys-
tem [21] where the starting point was a ODEs based model with 71
unknown parameters.

In these studies FF was used as the core inferencing algorithm. It
was then we began to notice its shortcomings and started to work
toward an improved version of FF.

3. THE HYBRID FACTORED FRONTIER

ALGORITHM
In this section, we present the HFF algorithm. As it is a parametrized
version of FF, it will be convenient to begin with a brief formal de-
scription of FF. Throughout this section we will assume the DBN
notations developed in Section 2.

As mentioned earlier, approximate probability distributions will be
called belief states. They will be denoted by B, Bt etc. while exact
probability distributions will be denoted by P , P t etc. Formally, a
belief state B is a map from V n → [0, 1] such that∑

u∈V n B(u) = 1. Thus it is just a probability distribution over
V n but it will be convenient to linguistically distinguish between
belief states and probability distributions.

The FF algorithm uses marginal functions to represent belief states.
A marginal function is a map M : {1, . . . , n} ×V → [0, 1] such
that

∑
v∈V M(i, v) = 1 for each i. In what follows, u, v will range

over V while u and v will range over V n. From a marginal function
M , one can obtain the belief state BM via BM (u) =

∏
i M(i, ui).

On the other hand, a belief state B induces the marginal function
MB via MB(i, v) =

∑
u|ui=v B(u). It is easy to see that for a

marginal function M we have MBM
= M , but in general BMB

6=
B for a belief state B. However, when the variables are all mutually
independent, we will have BMB

= B.

Given a DBN D = (X , T,Pa, {Ct
i}) as defined previously, FF

computes inductively a sequence M t of marginal functions as:



• M0(i, u) = C0
i (u),

• M t+1(i, u) =
∑

v∈V
î

[Ct
i (u | v)

∏
j∈î M

t(j, vj)].

Thus FF maintains Bt, the belief state at t, compactly via the marginal
function M t. More precisely, Bt(u) =

∏
j M

t(j, uj) = BMt for
every u.

Now suppose the DBN transforms the belief state Bt−1 into the

new belief state B̂t. It is easy to show that B̂t is given by:

B̂t(x) =
∑

u

(∏

i

Ct
i (xi | uî)

)
Bt−1(u)

However, FF computes only the marginal function M t = MB̂t ,
which then abstractly represents the new belief state Bt = BMt .
This belief state Bt represented via M t is an approximation of the

required belief state B̂t.

One can show that if Bt−1 is accurate then M t as computed by
FF will also be accurate. More precisely, if Bt−1 = P t−1 then
M t = MP t (see Prop.1 in [27]). We note that B0 is accurate by
definition and hence M1 will also be accurate but not necessarily
B1. Due to Bt = BM

B̂t
, the one step error ǫt incurred by FF at

step t is bounded by:

maxu∈V n{|B̂t(u)−BM
B̂t

(u)|}

The simple but crucial observation is whenever ǫt is large for some
u then M t(i, ui) is large for every i. This is so since M t(j, uj) =

MB̂t(j, uj) ≥ max(B̂t(u), Bt(u)). The second important ob-
servation is that there can only be a few instances of u with large
values of Bt(u), since these values sum to 1. Consequently there
can only be a few instances of u such that M t(i, ui) is large for
every i. For instance, there can be only one such u if we want
M t(i, ui) >

1

2
for each i. Hence, if we can record Bt(u) explicitly

for a small subset of V n for which M t is high for all dimensions
then one can hope to improve FF in terms of its error behavior. This
is the intuition underlying the HFF algorithm.

3.1 The Hybrid Factored Frontier algorithm
As observed above, if during the execution of FF one can record
Bt(v) explicitly for members of V n for which M t is high for all
dimensions (and there can only be a few such) then one can hope
to reduce the errors incurred by FF. Unfortunately, this cannot be
done exactly since it would involve an exhaustive search through
V n. Hence, we must do this approximately.

The overall structure of HFF is as follows. Starting with t = 0,
we inductively compute and maintain the tuple (M t, St, Bt

H , αt),
where:

• M t is a marginal function.

• St ⊆ V n is a set of tuples called spikes.

• Bt
H : V n → [0, 1] is a function s.t. Bt

H(u) = 0 if u 6∈ St

and
∑

u∈St B
t
H(u) < 1.

• αt =
∑

u∈St B
t
H(u).

We next define the marginal function M t
H(i, v) for all i and v via:

M t
H(i, v) = [M t(i, v)−

∑

{u∈St|ui=v}

Bt
H(u)]/(1− αt)

It is easy to observe that this is indeed a marginal function. We
next define (but not compute!) the belief state Bt represented by
(M t, St, Bt

H , αt) as follows:

Bt(u) = Bt
H(u) + (1− αt)

∏

i

M t
H(i, ui)

We need to use M t
H rather than M t since the cumulative weight

of the contribution made by the spikes needs to be discounted from
M t. It is easy to check that Bt is a belief state.

3.1.1 The HFF algorithm
We initialize with M0 = C0, S0 = ∅, B0

H = 0 and α0 = 0 and
fix a parameter σ. This σ will be the number of spikes we choose
to maintain. It is a crucial parameter as our results will show. We
inductively compute (M t+1, St+1, Bt+1

H , αt+1) from
(M t, St, Bt

H , αt) as follows.

Step 1: We first compute M t+1 as:

M t+1(i, v) =
∑

u∈St

[Ct+1

i (x | uî)×Bt
H(u)]

+(1− αt)
(∑

u
î

[Ct+1

i (x | uî)×
∏

j∈î

Bt
H(j, uj)]

)

Step 2: We next compute a set St+1 of at most σ spikes using
M t+1. We want to consider as spikes u ∈ V n where M t+1(i, ui)
is large for every i. To do so, we find a constant ηt+1 such that
M t+1(i, ui) ≥ ηt+1 for every i for a subset of V n containing σ el-
ements and for all other u′, there exists i with M t+1(i, u′

i) < ηt+1.
We compute ηt+1 via binary search. First we fix the precision with
which we want to compute ηt+1 to be ξ. We have found ξ = 10−6

to be a good choice and for this choice there will be at most 20 it-
erations of the loop described below. The search for ηt+1 proceeds
as follows:

• η1 = 0 and η2 = 1.

• While η2 − η1 > ξ do

1. η = η1+η2
2

.

2. Determine the set of values Ui such that v ∈ Ui iff
M t+1(i, v) > η.

3. Set ai to be the cardinality of Ui.

4. If
∏

i(ai) > σ then η1 = η; otherwise η2 = η

• endwhile

• Return ηt+1 = η2 and St+1 =
∏

i Ui

Step 3: Finally, we compute Bt+1

H (u) for each u in St+1 as follows.

Bt+1

H (u) =
∑

v∈St

(Bt(v)×
∏

i

Ct+1

i (ui | vî))

It is not difficult to establish the following properties of our algo-
rithm. We refer the reader to the full paper [27] for the proof.



PROPOSITION 1. Let D be the maximum in-degree of the DBN

graph. Then, recalling that T is the number of time points, σ is

the number of spikes, n is the number of variables, V is the set of

values, K = |V | is the number of values, we have,

1. if σ = 0, the HFF algorithm is the same as FF and if σ =
Kn, it is the exact algorithm.

2. Suppose P t = Bt. Then P t+1(Xi = v) = M t+1(i, v) for

every i ∈ {1, . . . , n}, v ∈ V .

3. The time complexity of HFF is O(T · n · (σ2 +KD+1)).

It is easy to see that the time complexity of FF is O(n · KD+1)
and hence the additional computational effort required by HFF is
O(T · n · σ2). HFF gathers in one sweep -just as FF does- the
required information about the belief states. Hence, where repeated
executions are required, such as for parameter estimation ( [19])
one can initially run FF repeatedly to narrow down the range of
possibilities and then run HFF once to get a more accurate estimate.

3.2 Error analysis
The overall error at time t, denoted ∆t is given by ∆t = maxu∈V n

(|P (Xt = u) − Bt(u)|). Using a reasoning similar to [3], this
error can be bounded as: ǫ0(

∑t

j=0
βj), where 0 ≤ β ≤ 1 is a

constant determined by the stochastic transition matrix associated
with the DBN, and ǫ0 is an upper bound over the maximum one
step error (different for FF, HFF, BK). Further, β < 1 under fairly
mild restrictions placed on this matrix [3]. In this case we have∑t

j=0
βj < 1/(1 − β). We note that

∑t

j=0
βj depends only on

the DBN. Hence, comparing FF and HFF theoretically amounts to
comparing their single step errors ǫ0. In fact, this remark holds for
comparison with BK as well.

We then analyze the one-step error ǫt = maxu∈V n{|B̂t(u) −
Bt(u)|} made by FF and HFF at step t. For both algorithm, we
have Bt = BM

B̂t
. For FF, we can bound ǫt from above by ǫ0

where : ǫ0 = max{|B(u) − BMB
(u)|} with B ranging over the

set of all possible belief states and u ranging over V n. A technical
analysis of ǫ0 for FF shows that it will tend to 1 as n tends to ∞.
The FF error can be large in practice too as we demonstrate in the
next section. For HFF, the one step error is bounded by ǫ̂0 with
ǫ̂0 ≤ min{(1− α), η}, where α = mint(α

t) and η = maxt(η
t).

Thus, the worst case error for HFF is smaller than the one for FF
(with at least 2 spikes). Also, taking more spikes makes α increase
and η decrease, which reduces the worse case error. Experiments in
the next section shows that the effective accuracy is also improved.

4. RESULTS
We have implemented our algorithm in C++. The experiments re-
ported here were carried out on a Opteron 2.2Ghz Processor, with
3GB memory. We evaluated our algorithms on five DBN models
of biochemical networks: the small enzyme catalytic reaction net-
work shown in Figure 1 for initial experimentation, the EGF-NGF
pathway [4] under (a) EGF-stimulation (b) NGF-stimulation (c) co-
stimulation of EGF and NGF, and the Epo mediated ERK signaling
pathway. The ODE model for the EGF-NGF pathway was obtained
from [26] and the Epo mediated ERK signaling pathway from [22].
For all these models, there were no unknown parameters and this
enabled us to focus on the main issue of evaluating the performance
of HFF.
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Figure 2: M t(E ∈ [0, 1))

The DBNs were constructed using the method developed in [19]
and explained in Section 3. As mentioned above, we used synthetic
models with no unknown parameters and with no experimental data
available for validation. Further, our focus was on evaluating the
quality of HFF as an inferencing algorithm for DBNs regardless of
how these DBNs arise. Hence we did not focus here on the orthog-
onal issue of validating the accuracy of the DBN approximation
reactive to the original ODEs dynamics. The methods developed
in [19] can be used to ensure that a large enough representative
samples of trajectories is generated so that the resulting DBN is
sufficiently accurate.

In what follows, we highlight the main findings of our experiments
which compare the different DBN inferencing algorithms. All the
details can be found in [27].

4.1 Enzyme catalytic kinetics
For initial validation, we started with the enzyme catalytic reaction
network shown in Figure 1 which has only 4 species/equations and
3 rate constants.

We divided the value space of each variable and rate constant into 5
equally wide intervals ({[0, 1), [1, 2), . . . , [4, 5]}). We assumed the
initial distributions of variables to be uniform over certain intervals.
We then fixed the time horizon of interest to be 10 minutes and di-
vided this interval evenly into [0, 1, . . . , 100] time points. The con-
ditional probability tables associated with each node of the DBN
were filled by generating 106 trajectories up to 10 minutes by sam-
pling the distribution over the initial states.

This being a small example, we could compute the probability dis-
tributions over the states for each time point exactly and hence de-
rive the marginal distributions for each species also exactly. Then,
we ran FF and HFF(σ) with various choices of σ where σ is the
number of spikes. The resulting estimates were then compared
against the exact marginals. We also ran the fully factored version
of BK (which we call BK in this section), using the implementation
provided in the Bayes Net tool box of MATLAB [24].

In what follows we report the errors in terms of the absolute dif-
ference between the marginal probabilities computed by the exact
and approximate methods. Thus if we say the error is 0.15 then
this means that if the actual marginal probability was p then the
marginal probability computed by the approximate algorithm was
p′ with | p− p′ |= 0.15.



Figure 3: EGF-NGF pathway

Even for this small network, FF and BK deviated from some of the
exact marginals by as much as 0.169. Figure 2 shows the profile
of the marginal distribution of E (the enzyme) assuming a value in
the first interval as computed by FF, BK, HFF(64) and the exact
method. The profiles of exact and HFF(64) were almost the same
while FF and BK (whose curve practically coincides with that of FF
and is hence not shown) make noticeable errors. The computation
times for all the algorithms were negligible. The maximum error
incurred for the 4 species taken over all the interval values and all
time points was 0.169 for FF and 0.024 for HFF(16) and 0.003 for
HFF(64). Further, the number of errors greater than 0.1 taken over
all the species, intervals and time points reduced to 0 for HFF(16).

4.2 The large pathway models
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Figure 4: M t(Erk ∈ [1, 2)) under NGF-stimulation

For the remaining DBNs (arising from EGF-NGF pathway and
Epo mediated ERK pathway), exact inference is infeasible due to
the large sizes of the corresponding biochemical networks. To get
around this, we used simulation based inferencing of the DBN to
obtain an estimate of the exact marginal distribution against which
we could compare the performance of the different algorithms. We
generated around 200 million trajectories from the underlying DBN
to obtain the various marginal probabilities. This took around 2
days for each DBN. These marginals were then used -in place of
exact marginals- as benchmarks to compare the performance of the
various algorithms. Here again we compared HFF(σ) for various

choices of σ with FF and BK. We discuss towards the end of this
section the performance of the clustered version of BK. In what
follows, we write HFF(cK) to mean the HFF(σ) with σ = c ·1000.

4.2.1 The EGF-NGF pathway
The EGF-NGF pathway describes the behavior of PC12 cells under
multiple stimulations. In response to EGF stimulation they prolif-
erate but differentiate into sympathetic neurons in response to NGF
stimulation. This phenomenon has been intensively studied [15]
and the network structure of this pathway is as shown in Figure 3.
The ODEs model of this pathway [26] consists of 32 differential
equations and 48 associated rate constants (estimated from multi-
ple sets of experimental data as reported in [26]).

To construct the three DBNs arising out of EGF, NGF and co-
stimulation, we divided as before the value domains of the vari-
ables and rate constants into 5 equally wide intervals and assumed
the initial distributions to be uniformly distributed over some of
these intervals. The time horizon of each model was set at 10 min-
utes which was evenly divided into 100 time points. To fill up the
conditional probability tables, 5 · 106 trajectories were generated
up to 10 mins by sampling the assumed initial distributions. Once
we had the DBNs, we ran FF, BK and HFF(σ) for various choices
of σ.
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Figure 6: (a) Normalized mean errors over all marginals, (b) Number of marginals with error greater than 0.1: NGF-stimulation
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For the DBN obtained for the pathway under NGF-stimulation, for
6 of the 32 species there were significant differences between FF
and BK on one hand and HFF on the other, including some bio-
logically important proteins such as Sos and Erk. In Figure 4, we
show for Erk, the marginal probability of the concentration falling
in the interval [1, 2) at various time points as computed by FF, BK,
HFF(3K) and HFF(32K) as well as the pseudo-exact marginals
obtained via massive Monte Carlo simulations. We observe that
HFF tends to the exact values as the number of spikes increases.

To measure the overall error behavior we noted that HFF always
did better than FF. Hence we fixed the error incurred by FF as the
base (100%) and normalized all other errors relative to this base.
Under this regime, the relationship between computation time and
normalized mean error for Erk’s value to fall in [1, 2) is shown
in Figure 5. We observe that the mean error reduces to 22% for
HFF(32K) at the cost of ∼ 104 seconds increase in running time.
Similar trends were observed for other marginals associated with
the 6 species for which FF and BK incurred significant errors. For
HFF(σ) the errors did not decrease linearly with as the number of
spikes were increased. This is to be expected since the probabil-
ity mass captured by the additional spikes will less than what is
captured by the initial spikes.

Overall, the maximum error over all the marginals (32×5×100 =
16000 data points) reduced from 0.42 for FF to 0.3 for HFF(3K)
and to 0.12 for HFF(32K). The normalized mean error over all
marginals went down to 60% for HFF(3K) and 30% for HFF(32
K) as shown in Figure 6(a) which also displays the correspond-
ing computation times. Further, when we computed the number of

marginals with errors greater than 0.1, we found that this number

reduced by more than half for HFF(3K) and by more than a factor
of 10 for HFF(32K) as shown in Figure 6(b).

For the DBN obtained for the pathway under EGF-stimulation we
found similar results. Overall, the maximum error over all the
marginals reduced from 0.36 for FF to 0.14 for HFF(3K) and to
0.07 for HFF(32K). The normalized mean error over all marginals
went down to 40% for HFF(3K) spikes and 20% for HFF(32K)
spikes as shown in Figure 7(a) which also displays the correspond-
ing computation times. Further, when we computed the number
of marginals with errors greater than 0.1, we found that this num-
ber reduced by more than a factor of 4 for HFF(3K) and to 0 for
HFF(32K) as shown in Figure 7(b). Similar results were obtained
for the DBN describing the dynamics of the EGF-NGF pathway
under co-stimulation of both NGF and EGF.

4.2.2 The Epo mediated ERK pathway
Next we considered the DBN model of Epo mediated ERK Signal-
ing pathway as shown below in Figure 8. ERK and its related ki-
nase isoforms play a crucial role in cell proliferation, differentiation
and survival. This pathway describes the effect of these isoforms
on the Epo (cytokine) induced ERK cascade.

The ODEs model of this pathway [22] consists of 32 differential
equations and 24 associated rate constants. As before the value do-
mains were divided into 5 intervals but the time horizon was fixed
at 60 minutes which was then divided into 100 time points.

Again, we ran FF, BK and HFF(σ) for various choices of σ. FF
and BK were quite accurate for many of the species. However,
for JAK2, phosphorylated JAK2, EpoR, SHP1 and mSHP1 which
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pathway

JAK2 pJAK2 EpoR pEpoR

Raf pRaf

mSOS

SOS pSOS

actSHP1

mSHP1 SHP1
MEK2 pMEK2 ppMEK2

MEK1 pMEK1 ppMEK1

ERK1 pERK1 ppERK1

ERK2 pERK2 ppERK2

Delay

Variables

Epo

Figure 8: Epo mediated ERK Signaling pathway

are biologically relevant, FF and BK incurred a max error of 0.34.
On the other hand, HFF(1K) incurred a max error of 0.22 while
HFF(32K) incurred a max error of 0.18. The normalized mean
error over all marginals went down to 70% for HFF(3K) and
60% for HFF(32K) as shown in Figure 9(a). Further, when we
computed the number of marginals with errors greater than 0.1,
we found that this number reduced by around half for HFF(32K)
compared to FF as shown in Figure 9(b).

It is worth noting that our current implementation is quite crude
and sequential. We believe significant performance gains can be
expected from an optimized version.

4.3 Comparison with clustered BK
An important component of the BK algorithm is the grouping of
the variables into clusters. The idea is to choose the clusters in
such a way that there is not much interaction between variables
belonging to two different clusters. When this is done well, BK
can also perform well. However, choosing the right clusters seems
to be a difficult task. The easy option, namely, the fully factored BK
in which each cluster is a singleton performs in our case studies as
badly (or well) as FF.

We tried to gain a better understanding of BK augmented with non-
trivial clusters by using the structure of the pathway to come up
with good clusters. A natural way to form 2-clusters seemed to be
to pair together the activated (phosphorylated) and inactivated (de-
phosphorylated) counterparts of a species in the pathway. For the
EGF-NGF pathway, this clustering indeed reduced overall errors
compared to FF and HFF(3K). However, we found that HFF(σ)
with σ > 5000 outperformed this version of BK. We did not con-
sider bigger clusters for two reasons: first, when we tried to in-
crease the sizes and the number of clusters in different ways, BK
ran out of the 3GB memory. Second, there seemed to be no biolog-
ical criterion using which one could improve the error performance
of BK.

For the Epo mediated ERK pathway too we tried similar clustering.
Here the natural clusters were of size 3. Unfortunately, the results
were as bad as the ones for fully factored BK. HFF, even with 1K
spikes (σ = 1000) was able to perform better than this clustered
version of BK. This suggests that the clusters we chose were not
the right ones. Hence in our setting, a clustered version of BK that
performs well in terms of the computational resources required and
the errors incurred appears to be difficult to realize.

5. DISCUSSION
DBNs are an important class of probabilistic graphical models and
can often be a succinct representation of the underlying Markov
chains. Computing the probability distribution over the global states
of the Markov chain underlying a DBN is a basic analysis task. But
this can be performed only approximately for high dimensional sys-
tems. FF and BK are two attractive approximate algorithms that
have been proposed in this context. However they can incur signif-
icant errors. To cope with this, we have developed here the Hybrid
Factored Frontier (HFF) algorithm. In HFF, in addition to main-
taining and propagating belief states in a factored form, we also
maintain a small number of full dimensional state vectors called
spikes and their probabilities at each time slice. Using this param-
eter, one can gain accuracy at the cost of increased but polynomial
(quadratic) computational cost. We have provided an error analy-
sis for HFF as well as FF which shows that HFF is more accurate.
Our experimental results confirm that HFF outperforms both FF
and fully factored BK in biologically relevant practical settings.

One may consider BK also to be a parametrized algorithm with
the number of clusters and their sizes constituting the parameters.
However identifying the clusters is a difficult problem and our ex-
perimental results suggest that as the sizes of the clusters increase



the errors may reduce but the memory consumption could raise
rapidly. In contrast, HFF’s parameter can be computed in an ef-
ficient, approximate and automated fashion. In our case studies
we have found that by using HFF, the accuracy of results can be
improved albeit with an increase in computational times. Further,
for tasks such as parameter estimation that require repeated execu-
tions, one can first deploy FF to get good approximations and then
run HFF with a suitable number of spikes just once to achieve the
required error bounds.

In terms of future work, an important goal will be to deploy HFF
to perform tasks such as parameter estimation and sensitivity anal-
ysis. An equally important goal will be to develop approximate
probabilistic verification methods for DBN models of biochemical
networks and evaluate them with respect to approaches developed
in related settings [8, 9, 12, 14].
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