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Abstract: In this paper, a model of the beam propagation is developed
according to the physical properties of THz waves used in THz computed
tomography (CT) scan imaging. This model is �rst included in an acqui-
sition simulator to observe and estimate the impact of the Gaussian beam
intensity pro�le on the projection sets. Second, the model is introduced
in several inversion methods as a convolution �lter to perform ef�cient
tomographic reconstructions of simulated and real acquired objects. Results
obtained with three reconstruction methods (BFP, SART and OSEM) are
compared to the techniques proposed in this paper. We focus our discussion
on the ef�ciency of optimized algorithms to increase the overall quality and
accuracy of the reconstructions.
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1. Introduction

Terahertz (THz) technology, and especially THz spectro-imaging, is now a well-established
tool in the �eld of contact-free and non-destructive testing (NDT). While commercial devices
become available, the fundamental issues of the imaging process [1] often remain overlooked.
In the �eld of 3D imaging, X-Ray Computed Tomography (CT) is an omnipresent technique
which provides cross-sectional images of an object by analyzing the radiation transmitted by the
sample through different incidence angles. This technique provides 3D visualization of dense
materials such as human body, biological tissues and also starts to enter in the industrial �eld.
Nevertheless, this powerful technique cannot be easily applied to soft materials such as plas-
tics, papers or paintings owing to the low absorption of the X-Ray radiation for example. Al-
ternatively, THz radiation proposes attractive features such as non-invasive and non-destructive
analysis, transparency and good penetration depth through various materials specially below
1 THz. All these remarkable properties make THz radiation very ef�cient for direct applications
in non-destructive inspection and the security �eld. Most of the experimental demonstrations
were performed in 2D whereas THz CT, which is a powerful technique, the literature remains
scattered [1, 2, 3, 4, 5, 6].

The �rst reason concerns the diffraction effects and Fresnel losses experienced by the propa-
gation of the THz wave through the sample [7]. Secondly, although low NEP (Noise Equivalent
Power< 10� 9 W=Hz

1
2 at room temperature) - and consequently fast detectors [8] - have been

developed and successfully applied in imaging [9], they are not yet integrated in an array con-
�guration. Detectors are thus mono- to few-pixels large, resulting in a long scanning process in
order to acquire 2D images. Reconstruction algorithms allowing accurate reconstruction from
a limited number of slices are crucial in order to circumvent these current technical limita-
tions, but also for future development. The limitation is also directly connected to the number
of projection data. At least, an important consideration in CT concerns the choice of the re-
construction method to be able to visualize the different cross-sectional images and the �nal
3D volume of the sample. In X-Ray, iterative reconstruction methods have been proposed for
X-Ray CT such as the Simultaneous Algebraic Reconstruction Technique (SART) [10] and
the Ordered Subsets Expectation Maximization (OSEM) [11, 12]. These well-established tech-
niques inherited from X-Ray know-how were successfully applied in a �rst approximation to



THz CT.
In this paper, we propose to improve the physical modeling by adding an heuristic propa-

gation of a gaussian beam. We aim to take into account a more realistic physical behavior of
the electromagnetic waves used in THz CT. This approach is justi�ed by the fact that the re-
construction methods assume a ray tracing approach while THz beam pro�le is very far from
this basic hypothesis. There is indeed a trade-off range in the focusing condition of the diffract-
ing THz wave. While 2l -waist beams can be qualitatively treated as a ray of light, tightly
focused ones (down the ultimate resolution ofl =2) can badly accommodate with the ray trac-
ing approach of all the reconstruction methods used in X-Ray. This model is �rst included in
an acquisition simulator to observe and estimate the impact of the gaussian beam distribution
on the acquisition images. Second, the model is tested in several reconstruction methods as
a convolution/deconvolution �lter to perform a more ef�cient tomographic reconstruction of
simulated and real acquired objects. Results obtained with three usual methods (BFP, SART
and OSEM) are compared to the new methods proposed in the paper. The discussion focuses
on the ef�ciency of optimized algorithms to increases the overall quality and accuracy of the
reconstructions.

2. THz Computed Tomography

2.1. Experimental Setup Properties

The experimental setup of the 3D millimeter wave tomographic scanner is shown in Fig. 1(a).
The output beam of a compact millimeter wave (mmw) Gunn diode coupled with a horn an-
tenna is collimated using an off-axis parabolic mirror. The Gunn diode used is a 80 GHz diode
coupled to a frequency tripler delivering 0:3 mW at 240 GHz (wavelength 1:25 mm). The THz
beam is then focused with a Te�on lens on the sample which is positioned on a three-axes
motorized stage comprising the X,Y andq movements, respectively. Fig. 1(b) shows the 2D
transversal pro�le of the THz beam at the beam waist visualized using a photothermal THz
convertor. This result shows that, at the sample position, the beam pro�le is homogeneous with
a Gaussian circular shape (2 mm beam diameter, measured at FWHM) in agreement with the
theoretical values obtained from the propagation of Gaussian beam models. This result indi-
cates that the spatial resolution of the 3D millimeter wave tomographic scanner is limited to a
few millimeters owing to the long wavelength of the emitting sources. Consequently, the sys-
tem is more adapted for the visualization of sub-centimeter structures within large size object,
typically more than(100� 100� 100) mm3.

Emitter

Chopper
PM1

PM2

Detector

ObjectL1 L2

Motors

(a)
(b)

Fig. 1. (a) Experimental setup. L1 - L2 : HDPE lenses, PM1 - PM2 : Parabolic Mirrors.
(b) 2D spatial pro�le of the THz beam waist at the sample position (240 GHz source)
visualized with a pyroelectric detector.



In order to perform a 3D reconstruction of volumetric objects, the experimental procedure is
organized as follows [13]. First, we record a 2D transmission image of the sample by moving
the object in the X and Y directions with a scan rate of 10 Hz. Usually a(1 � 1) mm2 scan
step is selected. The acquisition time for a(100� 100)mm2 image size is about 15 minutes.
Then, the sample is rotated by a rotation stepdq in order to provide a different visualization
of the object. The operation is repeatedNq times fromq = 0� to q = 180� and we �nally get
a set ofNq projections of the sample corresponding to the different angles of visualization. For
instance, ifNq = 18 anddq = 10� , the total acquisition time is about 5 hours for the complete
3D visualization of the sample. However, to visualize only a single cross-sectional image of
the sample, corresponding to a 100 mm horizontal scan associated to 18 different projections,
this acquisition time is reduced to approximately 3 minutes. From these projection data, we are
able to construct the sinogram of the object which represents, for a given horizontal slice, the
evolution of the transmitted THz intensity as a function of the rotation angle. Finally, we apply
tomographic algorithms to reconstruct the �nal 3D volume of the sample.

2.2. Usual Tomographic Reconstruction methods

Tomography is used to reconstruct the volume of an object from the set of projections per-
formed on the exterior of the object [14, 15]. This technique, widely developed in X-Ray CT
scan imaging, is modeled by the Radon theorem [16]. The direct transformR describes the
projection line acquisition. It maps a 2D function de�ned byf (x;y) into a 1D projection along
an angleq and a moduler . It is de�ned by the following formula :

R q (r ) =
Z ¥

� ¥

Z ¥

� ¥
f (x;y)d(r � xcosq � ysinq)dxdy (1)

whereq andr are respectively the angular and radial coordinates of the projection line(q; r ),
and d is the Dirac impulse. Then,R q (r ) represents the absorption sum undergone by the
ray along the line. The acquisition along several angles of an horizontal cross-section repre-
sents a sinogram composed withNq lines, corresponding to the number of projections, and
Nr columns, corresponding to the number of acquired values per projection. For instance, the
sinogram Fig. 2(b) corresponds to an acquisition, at the indicated cross-section, of the object
represented Fig. 2(a) withNq = 18 andNr = 46.

(c) BFP

(d) SART

(e) OSEM

(b) Sinogram
       at    z=zi

(a)

}{
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•

Fig. 2. (a) Medicine box acquired at the indicated cross-section. (b) Corresponding sino-
gram withNq = 18 andNr = 46. (c) BFP, (d) SART, (e) OSEM results.

The reconstruction process is given by the inverse Radon transform which recovers the orig-
inal domain from the projections. Given a sinogramS h(q; r ) containing severalR q (r ) values



at the cross-section depthh, the discrete inverse Radon transform computes each image pixel
as follows :

I (i; j) =
Nq � 1

å
iq = 0

Nr
2

å
r = �

Nr
2

Wq(iq )(r )A(q;r );(i; j) (2)

where :

• q(iq ) = iq p
Nq

,

• A(q;r );(i; j) is the weight-matrix de�ning the weight value between each pixel and each
projection line,

• Wq (r ) =

Nr
2

å
n= � Nr

2

jnj

0

@
Nr
2

å
r s= � Nr

2

R q (r s)exp(� i2pr sn)

1

A exp(i2prn ).

First, this inversion �lters each projectionR q in the Fourier domain with the ramp �lterjnj to
increase geometric details. Second, it computes the pixel values from the �ltered projections
Wq(iq ) . This method, denoted back-projection of �ltered projections (BFP), is widely used in
THz CT imaging since it is proposed in most of CT software tools. However, it is known that
BFP suffers from several drawbacks such as the beam hardening and noise sensitivity.

To overcome these problems, the iterative methods SART (Simultaneous Algebraic Recon-
struction Technique) [10] and OSEM (Ordered Subset Expectation Maximization) [12] have
been introduced for THz CT imaging in [17]. The SART method is based on the Karczmarz
algorithm used to approach the solution of the linear equation systemI = ATR, whereI is the
image,R is the sinogram andA is the weight-matrix [18]. SART is an iterative process follow-
ing k 2 [0� � � Niter[. Each sub-iterations, 0 � s < Nq , updates each pixel of the imageIk;s by
comparing the original projectionR qs with Rk

qs
(computed fromIk;s� 1) as follows :

Ik;s(i; j) = Ik;s� 1(i; j) + l

Nr � 1

å
ir = 0

A(q;r );(i; j)

"
R qs(r ) � Rk

qs
(r )

Dqs(r )

#

Nr � 1

å
ir = 0

A(q;r );(i; j)

(3)

where :

• Dq (r ) =
W� 1

å
i= 0

H� 1

å
j= 0

A(q;r );(i; j) is the norm of the segment(q; r ) crossing the image,

• Rk
qs

(r ) =
W� 1

å
i= 0

H� 1

å
j= 0

A(qs;r );(i; j) I
k;s� 1(i; j),

• (W � H) is the image size.

A super-iterationk is completed when all the projections have been used. Iterations ink are
performed until the convergence of the solution. The initialI0;0 image is usually an uniform
image.

The OSEM algorithm [11] is another iterative process which slightly differs from the SART.
The update is done from a subset of several projections at once and the error correction is



multiplicative :

Ik+ 1(i; j) = I (i; j)k

Nq � 1

å
iq = 0

Nr � 1

å
ir = 0

A(q;r );(i; j)
Rq (r )

Rk
q (r )

Nq � 1

å
iq = 0

Nr � 1

å
ir = 0

A(q;r );(i; j)

(4)

The scheme on Fig. 3 summarizes the iterative method process.

Fig. 3. Iterative reconstruction process.

The images on Fig. 2(c-e) represent the reconstructions from the sinogram on Fig. 2(b) using
the three methods. In our example, these results reveal a part of a tablet inside the medicine
box.

3. From Propagation Beam Modeling to Tomographic Reconstruction Optimizations

3.1. Propagation beam observation and Modeling

In X-ray CT transmission processes, the beam shape can be considered constant because of the
smallness of the wavelength with respect to the object size so that there is no diffraction. For
the same reason, the intensity distribution is uniform over the beam cross-section. This property
allows Radon model to be used directly in all reconstruction methods.

In THz CT imaging, the propagation beam is close to a Gaussian distribution which is both
determined by the THz wave properties and, eventually, the lens used to enforce the beam focus.
The radius of the beam (from the beam axis) has its minimum valuew0 at the so-called beam
waist. According to the wavelengthl , the radius at the positionz from the beam waist is :

w(z) = w0

s

1+
�

z
zR

� 2

(5)

wherezR = pw2
0

l is the Rayleigh range. Moreover, the intensity distribution over the cross-
section is given by :

I (r;z) = I0

�
w0

w(z)

� 2

exp
�

� 2r2

w2(z)

�
(6)

where :

• r is the distance from the beam axis,

• I0 is the intensity at the center of the beam waist.



As an illustration, Fig. 4(a) shows beam cross-sections observed for a 240 GHz source along
the Z-axis with a 5mm step. Note that the energy decreases from the center to the edge of the
beam following a Gaussian distribution. A pro�le at the central plane of the beam is given in
Fig. 4(b). It shows the variation of the radius (horizontally) and the Gaussian distribution of the
intensity (vertically).

(a)

(b)

Fig. 4. (a) Propagation beam acquired along the Z-axis with a 5 mm step. (b) Beam propa-
gation along the Z-axis.

Knowing the source properties and using the Eq. (5) and Eq. (6), the observed Gaussian
beam can be computed to simulate a given source. For instance, Fig. 5 shows the 3D pro�le
and energy distribution of a beam simulating the 240 GHz source. When the beam is focalized
by a lens, THz source is modi�ed by the in�uence of the lens which as well is treated by a
Gaussian model. In such a case, the overall Gaussian beam is expressed as a convolution of
both beams modeling the source and the lens. If the propagation beam distribution is unknown,
the overall model could be estimated from each observation of the intensity pro�les given in
Fig. 4(a) using, for example, a non trivial 3D Newton-Gauss algorithm.

Fig. 5. Simulated propagation of the beam for a 240 GHz source (Intensity (a.u), position
in meters).



3.2. Simulated Acquisition

Using the Gaussian beam modeling, we develop now the simulated acquisition from such a
beam. Fig. 6 illustrates theq-projection acquisition. An object is modeled in aN2 pixel image
and the Gaussian beam is given at the same size and resolution. The object is rotated byq
from the original angular position to perform easily the column-by-column convolutions with
the Gaussian beam. These convolutions simulate at each depth of the projection point of view
(POV), the manner that the beam acquires the object. Then, they lead to a modi�ed object cor-
responding to what it is viewed by the sensors. Finally, the acquisition ofN samples leads to the
projection acquired through the Gaussian beam. The process is easy to extend in 3D : each 1D
convolution is replaced by a 2D convolution between each depth-image and the corresponding
2D cross-section of the beam.

Fig. 6. Simulated acquisition of a projectionq in 2D.

Mathematically, this process is obtained by the following optimized version of the Eq. (1) :

R f = 0(r ) =
Z ¥

� ¥
fq (x;y = r ) � I (x� x0; r � y0)d(r � xcosf )dx (7)

whereI(x;y) is the Gaussian propagation model (6),� is the convolution operator and(x0;y0) is
the center of the beam waist. Thef (x;y) domain is rotated byq to assumef = 0. It leads to an
horizontal acquisition allowing an easier computation of the column-by-column convolutions.
Note that the integral alongy is simpli�ed by �xing the valuey = r .

As an illustration, let us consider the image Fig. 7(b) representing the four metallic bars of
the object in Fig. 7(a). An usual Radon acquisition is shown in Fig. 8(a). Simulated acquisition
using Gaussian beam convolutions is given in Fig. 8(b). In such an acquisition, the edges are
not well de�ned anymore. Then, the simulated sinogram characteristics are closer to the real
acquisition given in Fig. 8(c). It puts in evidence the better reliability of our model to simulate
the THz physical acquisition phenomenon and moreover, the discrepancy between Gaussian
beam and ray-tracing approaches.

3.3. Tomographic Reconstruction Optimizations

Up to here, the modeling and the in�uence of the Gaussian beam have been introduced. Now,
we deal with its consideration in the reconstruction methods in order to try to reduce induced
artifacts.

Using the BFP, the idea consists in inverting the convolution proposed in Fig. 5. The projec-
tion acquired through a Gaussian beam, denotedRE

q , is retroprojected into a temporary image
IE
f = 0 sizedN2. The image is deconvolued column-by-column with the beam model to obtainIq .

This one is rotated by the angle� q and added to the result image. The Wiener deconvolution
method [19] is used to avoid well-known problems of direct deconvolution in Fourier space.



(a)

(b)

Fig. 7. (a) Object composed of four metallic bars (two bars diameter 10mm on the top and
on the left, one bar diameter 12mm on the right and one bar diameter 8mm on the bottom),
(b) Synthetic model of the object.

(a) (b) (c)

Fig. 8. (a) Usual Radon acquisition from synthetic model, (b) Simulated acquisition using
Gaussian beam convolutions of the synthetic model, (c) Acquisition of the real object.

Using iterative methods, the projection acquired through the Gaussian beam at an iteration
k is given by the discrete version of the Eq. (7). The update step comparison between com-
puted and measured acquisitions becomes consistent because the projections are both obtained
through a simulated/real Gaussian beam. Moreover, similarly than BFP, the obtained error pro-
jection is deconvolued before it is added in theIk+ 1 image. Everything else in the algorithm
Fig. 3 remains the same.

4. Results and Discussion

4.1. Discussion from simulated acquisition

Images in Fig. 9(a-c) correspond to the results obtained with BFP, SART and OSEM from the
theoretical sinogram Fig. 8(a). Fig. 9(d-f) represent the images obtained with the usual methods
from the simulated sinogram Fig. 8(b). The distortions of each metallic bar circular shape are a
consequence of the Gaussian distribution encountered during the acquisition. Inversely, images
on Fig. 9(g-i), which are obtained from the simulated acquisition using the optimized methods,
provide a closer circular shape of the metallic bars.

To show the new method ef�ciency, quality and accuracy of the results are now compared to
each other using image-based comparison metrics. First, the quality preservation is estimated
using the equivalence rate between two images. The image properties are compared to each
other using the Structural SIMilarity (SSIM) criterion [20] :

SSIM(I ;J) = l (I ;J) � c(I ;J) � r(I ;J) (8)

where 0� l (I ;J) � 1 (resp.0 � c(I ;J) � 1) is the global intensity (resp.contrast) comparison
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Fig. 9. (a)(b)(c) BFP, SART, OSEM results from the ideal sinogram Fig. 8(a). (d)(e)(f),
BFP, SART, OSEM from simulated Gaussian beam acquisition 8(b). (g)(h)(i) BFP, SART
and OSEM reconstructions from the same sinogram using optimized algorithms.

between two imagesI andJ, and 0� r(I ;J) � 1 is the correlation coef�cient. 0� SSIM(I ;J) �
1 gives the quality rate of J compared to the reference I. The closer the SSIM value is to 1, the
better the reconstruction quality is.

Image l c r SSIM

(a) 0:99 0:98 0:99 0:96
(d) 1:00 0:97 0:93 0:90
(g) 0:99 0:97 0:95 0:92

(b) 0:99 0:99 0:98 0:97
(e) 1:00 0:97 0:94 0:91
(h) 0:97 0:94 0:95 0:87

(c) 1:00 1:00 1:00 0:99
(f) 1:00 0:97 0:93 0:91
(i) 0:99 0:98 0:98 0:94

Table 1. Comparison between reconstruction from sinogram acquired through a Gaussian
beam and the original domain. It relates on the quality rate of each method to reconstruct
the original image.

Table 1 gives quality results for each image on Fig. 9 according to the theoretical signal
Fig. 7(b) chosen as reference. Quality results from the images Fig. 9(a-c) show that iterative re-
constructions are better than BFP, especially the OSEM method. Results from images Fig. 9(d-
f) highlight the quality loss induced by the Gaussian beam acquisition : SSIM decreases at least
by 6%. The detail of SSIM metrics shows that the geometrical properties of the reconstructed
images are degraded. The optimized techniques proposed in this paper allow a better recon-



struction of the geometry whatever the method. For instance,r increases by 5% with OSEM,
and SSIM is globally more accurate with optimized BFP and OSEM. However, it generates
luminance and contrast losses with the SART method.

To complete the quality analysis, an accuracy study is proposed by a comparison of the
horizontal pro�les of the top bar. Pro�les given by the BFP, SART and OSEM reconstructions
are shown in Fig. 10(a-c). Whatever the method, the theoretical pro�le (red curves) is not well
recovered even if it is reconstructed from a theoretical sinogram (green curves). However, it
is close to the great pro�le whereas reconstructions from Gaussian beam simulation lead to a
spreading of the pro�le (blue and violet curves). Using the optimized techniques, the spreading
is signi�cantly reduced (violet curves), especially using the optimized SART.

(a) (b)

(c) (d)

Fig. 10. Top bar pro�les reconstructed with BFP (a), SART (b) and OSEM (c) : from the
theoretical sinogram (Green) and from the simulated Gaussian acquisition with usual (blue)
and optimized (Violet) methods. (d) : Top bar pro�les reconstructed with the optimized
methods. (Green) : BFP. (Blue) : SART. (Violet) : OSEM. (Red) : Theorical signal.

Fig. 10(d) compares the pro�les obtained by the optimized techniques and the theoretical
signal. These results con�rm that the optimized SART gives the minimal spreading, followed
by the OSEM and �nally by the BFP technique. Then, for a given acquisition, SART provides
a better accuracy than BFP and OSEM.

4.2. 2D and 3D reconstructions from real acquisitions

Reconstructions computed from the real acquisition Fig. 8(c) are proposed in Fig. 11. The lesser
spreading of the metallic bars observed with the optimized methods con�rm the theoretical
analysis results discussed above.
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Fig. 11. (a)(b)(c) Usual BFP, SART and OSEM results from the real acquisition Fig. 8(d).
(d)(e)(f) Optimized BFP, SART and OSEM results.

Images given in Fig. 12 show 3D reconstructions of the medicine box. These visualizations
are obtained from the stacks of reconstructed cross-sections, computed one-by-one from the
3D acquisition (stack of sinograms). Using the standard methods, each cross-sectional image is
directly computed from its corresponding sinogram. Inversely, the optimized methods need all
the sinograms at once to take into account the 3D propagation beam model. From the results,
we can remark a better quality and accuracy of details in general. For example, the contact
area (de�ned by the high-intensity pixels) between the tablet and the box is easier to estimate.
Indeed, as we can see in the cross-sectional images in Fig 13, this area is less thick on the results
obtained with optimized methods. Such qualitative analysis improvement highlights the need
to take into account the propagation beam into the tomographic reconstructions for THz CT.

5. Conclusion

We demonstrated a development of an improved beam propagation model taking into account
the physical properties of THz waves used in THz computed tomography (CT) scan imaging.
This more realistic model is clearly justi�ed by the fact that previous models were simply rely-
ing on well-known and commonly applied X-Ray reconstruction methods, which assume a ray
tracing approach, whereas the THz beam pro�le is very far from this basic hypothesis. There-
fore, we included in an acquisition simulator the Gaussian beam intensity pro�le in order to
observe and to estimate its impact on the projection sets. The simulated sinogram characteris-
tics are found closer to the real acquisition and demonstrate the better reliability of our model
to simulate the THz physical acquisition process. Moreover, the discrepancy between Gaussian
beam and ray-tracing approaches has been studied. At least, the model is introduced in several
inversion methods as a convolution �lter to perform ef�cient tomographic reconstructions of
simulated and real acquired objects. Results obtained with three different reconstruction meth-
ods (BFP, SART and OSEM) have been compared on the basis of the ef�ciency of optimized
algorithms to increase the overall quality and accuracy of the reconstructions. This rigorous
quantitative approach provides a new insight for the improvement of 3D THz CT imaging.
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Fig. 12. 3D reconstructions of the medicine box using usual BFP (a), SART (b) and OSEM
(c) compared to the optimized BFP (d), SART (e) and OSEM (f) methods.

(a) (b) (c)

(d) (e) (f)

Fig. 13. Estimation of the contact area between the tablet and the medicine box (red pixels)
on the images obtained with standard BFP (a), SART (b) and OSEM (c) in one hand and
optimized BFP (d), SART (e) and OSEM (f) on the other hand.


