Structural properties of recursively partitionable graphs with connectivity 2

Abstract : A connected graph G is said to be arbitrarily partitionable (AP for short) if for every partition ($n_1, ..., n_p$) of |V(G)| there exists a partition ($V_1, ..., V_p$) of V(G) such that each V_i induces a connected subgraph of G on $n_i$ vertices. Some stronger versions of this property were introduced, namely the ones of being online arbitrarily partitionable and recursively arbitrarily partitionable (OL-AP and R-AP for short, respectively), in which the subgraphs induced by a partition of G must not only be connected but also fulfil additional conditions. In this paper, we point out some structural properties of OL-AP and R-AP graphs with connectivity 2. In particular, we show that deleting a cut pair of these graphs results in a graph with a bounded number of components, some of whom have a small number of vertices. We obtain these results by studying a simple class of 2-connected graphs called balloons.
Type de document :
Article dans une revue
Discussiones Mathematicae Graph Theory, University of Zielona Góra, 2017, 37, pp.89-115. 〈10.7151/dmgt.1925〉
Liste complète des métadonnées

Littérature citée [33 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00672505
Contributeur : Julien Bensmail <>
Soumis le : mardi 7 novembre 2017 - 07:54:35
Dernière modification le : lundi 13 novembre 2017 - 13:44:13

Fichier

bbfp12-orbit.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Olivier Baudon, Julien Bensmail, Florent Foucaud, Monika Pilsniak. Structural properties of recursively partitionable graphs with connectivity 2. Discussiones Mathematicae Graph Theory, University of Zielona Góra, 2017, 37, pp.89-115. 〈10.7151/dmgt.1925〉. 〈hal-00672505v4〉

Partager

Métriques

Consultations de la notice

49

Téléchargements de fichiers

7