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We propose a model for the dynamics of a limit order book in a liquid market where buy and sell orders
are submitted at high frequency. We derive a functional central limit theorem for the joint dynamics of the
bid and ask queues and show that, when the frequency of order arrivals is large, the intraday dynamics of
the limit order book may be approximated by a Markovian jump-diffusion process in the positive orthant,
whose characteristics are explicitly described in terms of the statistical properties of the underlying order
flow. This result allows to obtain tractable analytical approximations for various quantities of interest,
such as the probability of a price increase or the distribution of the duration until the next price move,
conditional on the state of the order book. Our results allow for a wide range of distributional assumptions
and temporal dependence in the order flow and apply to a wide class of stochastic models proposed for order
book dynamics, including models based on Poisson point processes, self-exciting point processes and models
of the ACD-GARCH family.
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1. Introduction

An increasing proportion of financial transactions -in stocks, futures and other contracts- take
place in electronic markets where participants may submit limit orders (for buying or selling),
market orders and order cancelations which are then centralized in a limit order book and executed
according to precise time and price priority rules. The limit order book represents, at each point in
time, the outstanding orders which are awaiting execution: it consists in queues at different price
levels where these orders are arranged according to time of arrival. A new limit buy (resp. sell)
order of size x increases the size of the bid (resp. ask) queue by x. Market orders are executed
against limit orders at the best available price: a market order decreases of size x the corresponding
queue size by x. Limit orders placed at the best available price are executed against market orders.

The availability of high-frequency data on limit order books has generated a lot of interest in
statistical modeling of order book dynamics, motivated either by high-frequency trading applica-
tions or simply a better understanding of intraday price dynamics (see Cont (2011) for a recent
survey). The challenge here is to develop statistical models which capture salient features of the
data while allowing for some analytical and computational tractability.

Given the discrete nature of order submissions and precise priority rules for their execution,
is quite natural to model a limit order book as a queueing system; early work in this direction
dates back to Mendelson (1982). More recently, Cont, Stoikov and Talreja Cont et al. (2010b) have
studied a Markovian queueing model of a limit order book, in which arrivals of market orders and
limit orders at each price level are modeled as independent Poisson processes. Cont and de Larrard
(2010) used this Markovian queueing approach to compute useful quantities (the distribution of
the duration between price changes, the distribution and autocorrelation of price changes, and the
probability of an upward move in the price, conditional on the state of the order book) and relate
the volatility of the price with statistical properties of the order flow.

However, the results obtained in such Markovian models rely on the fact that time intervals
between orders are independent and exponentially distributed, orders are of the same size and that
the order flow at the bid is independent from the order flow at the ask. Empirical studies on high-
frequency data show these assumptions to be incorrect (Hasbrouck (2007), Bouchaud et al. (2002,
2008), Andersen et al. (2010)). Figure 1 compares the quantiles of the duration between order book
events for CitiGroup stock on June 26, 2008 to those of an exponential distribution with the same
mean, showing that the empirical distribution of durations is far from being exponential. Figure
9 shows the autocorrelation function of the inverse durations: the persistent positive value of this
autocorrelation shows that durations may not be assumed to be independent. Finally, as shown
in Figure 2 which displays the (positive or negative) changes in queue size induced by successive
orders for CitiGroup shares, there is considerable heterogeneity in sizes and clustering in the timing
of orders.

Other, more complex, statistical models for order book dynamics have been developed to take
these properties into account (see Section 2.3). However, only models based on Poisson point
processes such as Cont et al. (2010b), Cont and de Larrard (2010) have offered so far the analyt-
ical tractability necessary when it comes to studying quantities of interest such as durations or
transition probabilities of the price, conditional on the state of the order book. It is therefore of
interest to know whether the conclusions based on Markovian models are robust to a departure
from these simplifying assumptions and, if not, how they must be modified in the presence of other
distributional features and dependence in durations and order sizes.

The goal of this work is to show that it is indeed possible to restore analytical tractability without
imposing restrictive assumptions on the order arrival process, by exploiting the separation of time
scales involved in the problem. The existence of widely different time scales, from milliseconds to
minutes, makes it possible to obtain meaningful results from an asymptotic analysis of order book
dynamics using a diffusion approximation of the limit order book. We argue that this diffusion
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approximation provides relevant and computationally tractable approximations of the quantities
of interest in liquid markets where order arrivals are frequent.

Figure 1 Quantiles of inter-event durations compared with quantiles of an exponential distribution with the same
mean (Citigroup, June 2008). The dotted line represents the benchmark case where the observations
are exponentially distributed, which is clearly not the case here.

Figure 2 Number of shares per event for events affecting the ask. The stock is Citigroup on the 26th of June 2008

As shown in Table 1, most applications involve the behavior of prices over time scales an order
of magnitude larger than the typical inter-event duration: for example, in optimal trade execution
the benchmark is the Volume weighted average price (VWAP) computed over a period which may
range from 10 minutes to a day: over such time scales much of the microstructural details of the
market are averaged out. Second, as noted in Table 2, in liquid equity markets the number of
events affecting the state of the order book over such time scales is quite large, of the order of
hundreds or thousands. The typical duration τL (resp. τM) between limit orders (resp. market
orders and cancelations) is typically 0.001−0.01� 1 (in seconds). These observations show that it
is relevant to consider heavy-traffic limits in which the rate of arrival of orders is large for studying
the dynamics of order books in liquid markets.
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Regime Time scale Issues
Ultra-high ∼ 10−3− 0.1 s Microstructure,
frequency (UHF) Latency
High ∼ 1− 100 s Trade
Frequency (HF) execution
“Daily” ∼ 103− 104 s Trading strategies,

Option hedging

Table 1 A hierarchy of time scales.

Average no. of Price changes
orders in 10s in 1 day

Citigroup 4469 12499
General Electric 2356 7862
General Motors 1275 9016

Table 2 Average number of orders in 10 seconds and number of price changes (June 26th, 2008).

In this limit, the complex dynamics of the discrete queueing system is approximated by a simpler
system with a continuous state space, which can be either described by a system of ordinary
differential equations (in the ’fluid limit’, where random fluctuations in queue size vanish) or
a system of stochastic differential equations (in the ’diffusion limit’ where random fluctuations
dominate) (Iglehart and Whitt (1970), Harrison and Nguyen (1993), Whitt (2002)). Intuitively, the
fluid limit corresponds to the regime of law of large numbers, where random fluctuations average
out and the limit is described by average queue size, whereas the diffusion limit corresponds to the
regime of the central limit theorem, where fluctuations in queue size are asymptotically Gaussian.
When order sizes or durations fail to have finite moments of first or second order, other scaling
limits may intervene, involving Lévy processes (see Whitt (2002)) or fractional Brownian motion
Araman and Glynn (2011). As shown by Dai and Nguyen (1994), there are also cases where such a
’heavy traffic limit’ may fail to exist. The relevance of each of these asymptotic regimes is, of course,
not a matter of ‘taste’ but an empirical question which depends on the behavior of high-frequency
order flow in these markets.

Using empirical data on US stocks, we argue that for most liquid stocks, while the rate of arrival
of market orders and limit orders is large, the imbalance between limit orders, which increase queue
size, and market orders and cancels, which decrease queue size, is an order of magnitude smaller:
over, say, a 10 minute interval, one observes an imbalance ranging from 1 to 10 % of order flow.
In other words, over a time scale of several minutes, a large number N of events occur, but the
bid/ask imbalance accumulating over the same interval is of order

√
N �N . In this regime, random

fluctuations in queue sizes cannot be ignored and it is relevant to consider the diffusion limit of
the limit order book.

In this paper we study the behavior of a limit order book in this diffusion limit: we prove a
functional central limit theorem for the joint dynamics of the bid and ask queues when the intensity
of orders becomes large, and use it to derive an analytically tractable jump-diffusion approximation.
More precisely, we show that under a wide range of assumptions, which are shown to be plausible
for empirical data on liquid US stocks, the intraday dynamics of the limit order book behaves like
as a planar Brownian motion in the interior of the positive orthant, and jumps to the interior of
the orthant at each hitting time of the boundary.
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This jump-diffusion approximation allows various quantities of interest to be computed analyti-
cally: we obtain analytical expressions for various quantities such as the probability that the price
will increase at the next price change, and the distribution of the duration between price changes,
conditional on the state of the order book.

Our results extend previous analysis of heavy traffic limits for such auction processes (Kruk
(2003), Bayraktar et al. (2006), Cont and de Larrard (2010)) to a setting which is relevant and
useful for quantitative modeling of limit order books and provide a foundation for recently proposed
diffusion models for order book dynamics Avellaneda et al. (2011).

Outline. The paper is organized as follows. Section 2 describes a general framework for the
dynamics of a limit order book; various examples of models studied in the literature are shown to
fall within this modeling framework (Section 2.3). Section 3 reviews some statistical properties of
high frequency order flow in limit order markets: these properties highlight the complex nature of
the order flow and motivate the statistical assumptions used to derive the diffusion limit. Section 4
contains our main result: Theorem 2 shows that, in a limit order market where orders arrive at high
frequency, the bid and ask queues behaves like a Markov process in the positive quadrant which
diffuses inside the quadrant and jumps to the interior each time it hits the boundary. We provide
a complete description of this process, and use it to derive, in Section 4.3, a simple jump-diffusion
approximation for the joint dynamics of bid and ask queues, which is easier to study and simulate
than the initial queueing system.

In particular, we show that in this asymptotic regime the price process is characterized as a
piecewise constant process whose transition times correspond to hitting times of the axes by a two
dimensional Brownian motion in the positive orthant (Proposition 1). This result allows to study
analytically various quantities of interest, such as the distribution of the duration between price
moves and the probability of an increase in the price: this is discussed in Section 5.

2. A model for the dynamics of a limit order book

2.1. Reduced-form representation of a limit order book

Empirical studies of limit order markets suggest that the major component of the order flow occurs
at the (best) bid and ask price levels (see e.g. Biais et al. (1995)). All electronic trading venues also
allow to place limit orders pegged to the best available price (National Best Bid Offer, or NBBO);
market makers used these pegged orders to liquidate their inventories. Furthermore, studies on the
price impact of order book events show that the net effect of orders on the bid and ask queue
sizes is the main factor driving price variations (Cont et al. (2010a)). These observations, together
with the fact that queue sizes at the best bid and ask of the consolidated order book are more
easily obtainable (from records on trades and quotes) than information on deeper levels of the
order book, motivate a reduced-form modeling approach in which we represent the state of the
limit order book by
• the bid price sbt and the ask price sat
• the size of the bid queue qbt representing the outstanding limit buy orders at the bid, and
• the size of the ask queue qat representing the outstanding limit sell orders at the ask

Figure 3 summarizes this representation.
If the stock is traded in several venues, the quantities qb and qa represent the best bids and offers

in the consolidated order book, obtained by aggregating over all (visible) trading venues. At every
time t, qbt (resp. qat ) corresponds to all visible orders available at the bid price sbt (resp. sat ) across
all exchanges.

The state of the order book is modified by order book events: limit orders (at the bid or ask),
market orders and cancelations (see Cont et al. (2010b,a), Smith et al. (2003)). A limit buy (resp.
sell) order of size x increases the size of the bid (resp. ask) queue by x, while a market buy (resp.
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qa

qb

δ

Quantities

sb

Price

sa

Figure 3 Simplified representation of a limit order book.

sell) order decreases the corresponding queue size by x. Cancelation of x orders in a given queue
reduces the queue size by x. Given that we are interested in the queue sizes at the best bid/ask
levels, market orders and cancelations have the same effect on the queue sizes (qbt , q

a
t ).

The bid and ask prices are multiples of the tick size δ. When either the bid or ask queue is
depleted by market orders and cancelations, the price moves up or down to the next level of
the order book. The price processes sbt , s

a
t are thus piecewise constant processes whose transitions

correspond to hitting times of the axes {(0, y), y > 0}∪ {(x,0), x > 0} by the process qt = (qbt , q
a
t ).

If the order book contains no ‘gaps’ (empty levels), these price increments are equal to one tick:
• when the bid queue is depleted, the (bid) price decreases by one tick.
• when the ask queue is depleted, the (ask) price increases by one tick.

If there are gaps in the order book, this results in ’jumps’ (i.e. variations of more than one tick) in
the price dynamics. We will ignore this feature in what follows but it is not hard to generalize our
results to include it.

The quantity sat − sbt is the bid-ask spread, which may be one or several ticks. As shown in Table
3, for liquid stocks the bid-ask spread is equal to one tick for more than 98% of observations.

Bid-ask spread 1 tick 2 tick ≥ 3 tick
Citigroup 98.82 1.18 0
General Electric 98.80 1.18 0.02
General Motors 98.71 1.15 0.14

Table 3 Percentage of observations with a given bid-ask spread (June 26th, 2008).

When either the bid or ask queue is depleted, the bid-ask spread widens immediately to more
than one tick. Once the spread has increased, a flow of limit sell (resp. buy) orders quickly fills
the gap and the spread reduces again to one tick. When a limit order is placed inside the spread,
all the limit orders pegged to the NBBO price move in less than a millisecond to the price level
corresponding to this new order. Once this happens, both the bid price and the ask price have
increased (resp. decreased) by one tick.

The histograms in Figure 4 show that this ’closing’ of the spread takes place very quickly: as
shown in Figure 4 (left) the lifetime of a spread larger than one tick is of the order of a couple of
milliseconds, which is negligible compared to the lifetime of a spread equal to one tick (Figure 4 ,
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right). In our model we assume that the second step occurs infinitely fast: once the bid-ask spread
widens, it returns immediately to one tick. For the example of Dow Jones stocks (Figure 4 ), this is
a reasonable assumption since the widening of the spread lasts only a few milliseconds. This simply
means that we are not trying to describe/model how the orders flow inside the bid-ask spread at
the millisecond time scale and, when we describe the state of the order book after a price change
we have in mind the state of the order book after the bid-ask spread has returned to one tick.

Figure 4 Left: Average lifetime, in milliseconds of a spread larger than one tick for Dow Jones stocks. Right:
Average lifetime, in milliseconds of a spread equal to one tick.

Under this assumption, each time one of the queues is depleted, both the bid queue and the
ask queue move to a new position and the bid-ask spread remains equal to one tick after the
price change. Thus, under our assumptions the bid-ask spread is equal to one tick, i.e. sat = sbt + δ,
resulting in a further reduction of dimension in the model.

Once either the bid or the ask queue are depleted, the bid and ask queues assume new values.
Instead of keeping track of arrival, cancelation and execution of orders at all price levels (as in
Cont et al. (2010b), Smith et al. (2003)), we treat the queue sizes after a price change as a
stationary sequence of random variables whose distribution represents the depth of the order book
in a statistical sense. More specifically, we model the size of the bid and ask queues after a price
increase by a stationary sequence (Rk)k≥1 of random variables with values in N2. Similarly, the size
of the bid and ask queues after a price decrease is modeled by a stationary sequence (R̃k)k≥1 of
random variables with values in N2. The sequences (Rk)k≥1 and (R̃k)k≥1 summarize the interaction
of the queues at the best bid/ask levels with the rest of the order book, viewed here as a ’reservoir’
of limit orders.

The variables Rk (resp. R̃k) have a common distribution which represents the depth of the order
book after a price increase (resp. decrease): Figure 5 shows the (joint) empirical distribution of bid
and ask queue sizes after a price move for Citigroup stock on June 26th 2008.

The simplest specification could be to take (Rk)k≥1, (R̃k)k≥1 to be IID sequences; this approach,
used in Cont and de Larrard (2010), turns out to be good enough for many purposes. But this IID
assumption is not necessary; in the next section we will see more general specifications which allow
for serial dependence.

In summary, state of the limit order book is thus described by a continuous-time process
(sbt , q

b
t , q

a
t ) which takes values in the discrete state space δZ×N2, with piecewise constant sample

paths whose transitions correspond to the order book events. Denoting by (tai , i≥ 1) (resp. tbi) the
event times at the ask (resp. the bid), V a

i (resp. V b
i ) the corresponding change in ask (resp. bid)

queue size, and k(t) the number of price changes in [0, t], the above assumptions translate into the
following dynamics for (sbt , q

b
t , q

a
t ):
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Figure 5 Joint density of bid and ask queue sizes after a price move (Citigroup, June 26th 2008).

• If an order or cancelation of size V a
i arrives on the ask side at t= tai ,

— if qat−+V a
i ≥ 0, the order can be satisfied without changing the price;

— if qat−+V a
i < 0, the ask queue is depleted, the price increases by one ’tick’ of size δ, and the

queue sizes take new values Rk(t) = (Rb
k(t),R

a
k(t)),

(sbt , q
b
t , q

a
t ) = (sbt−, q

b
t−, q

a
t−+V a

i )1{qat−≥−V ai }+ (sbt−+ δ,Rb
k(t),R

a
k(t))1{qat−<−V ai }, (1)

• If an order or cancelation of size V b
i arrives on the bid side at t= tbi ,

— if qbt−+V b
i ≥ 0, the order can be satisfied without changing the price;

— if qbt−+ V b
i < 0, the bid queue gets depleted, the price decreases by one ’tick’ of size δ and

the queue sizes take new values R̃k(t) = (R̃b
k(t), R̃

a
k(t)):

(sbt , q
b
t , q

a
t ) = (sbt−, q

b
t−+V b

i , q
a
t−)1{qbt−≥−V bi }+ (sbt−− δ, R̃b

k(t), R̃
a
k(t))1{qbt−<−V bi }. (2)

2.2. The limit order book as a ’regulated’ process in the orthant

As in the case of reflected processes arising in queueing networks, the process qt = (qbt , q
a
t ) may be

constructed from the net order flow process

xt = (xbt , x
a
t ) =

 Nbt∑
i=1

V b
i ,

Nat∑
i=1

V a
i


where N b

t (resp. Na
t ) is the number of events (i.e. orders or cancelations) occurring at the bid (resp.

the ask) during [0, t]. xt = (xbt , x
a
t ) is analogous to the ’net input’ process in queuing systems Whitt

(2002): xbt (resp. xat ) represents the cumulative sum of all orders and cancelations at the bid (resp.
the ask) between 0 and t.
q = (qbt , q

a
t )t≥0 which takes values in the positive orthant, may be constructed from x by reini-

tializing its value to a a new position inside the positive orthant according to the rules (1)–(2)
each time one of the queues is depleted: every time (qt)t≥0 attempts to exit the positive orthant,
it jumps to a a new position inside the orthant, taken from the sequence (Rn, R̃n).

This construction may be done path by path, as follows:
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Definition 1. Let ω ∈D([0,∞),R2) be a right-continuous function with left limits (i.e. a cadlag
function), R= (Rn)n≥1 and R̃= (R̃n)n≥1 two sequences with values in R2

+. There exists a unique
cadlag function Ψ(ω,R, R̃)∈D([0,∞),R2

+) such that
• For t < τ1, let Ψ(ω,R, R̃)(t) = ω(t) where

τ1 = inf{t≥ 0, ω(t).(1,0)< 0 or ω(t).(0,1)< 0}.

is the first exit time of ω from the positive orthant.
• Ψ(ω,R, R̃)(τ1) = R1 if Ψ(ω,R, R̃)(τ1−).(0,1) < 0, and Ψ(ω,R, R̃)(τ1) = R̃1 if

Ψ(ω,R, R̃)(τ1−).(1,0)< 0.
• For k≥ 1,

Ψ(ω,R, R̃)(t+ τk) = Ψ(ω,R, R̃)(τk) +ω(t+ τk)−ω(τk) for 0≤ t < τk+1− τk, where

τk+1 = inf{t≥ τk−1, Ψ(ω,R, R̃)(τk) +ω(t+ τk)−ω(τk) /∈R2
+}

is the first exit time of (Ψ(ω,R, R̃)(t), t≥ τk) from the positive orthant.
• Ψ(ω,R, R̃)(τk) =Rk if Ψ(ω,R, R̃)(τk−).(0,1)<Ψ(ω,R, R̃)(τk−1).(1,0) and Ψ(ω,R, R̃)(τk) = R̃k

otherwise.

The path Ψ(ω,R, R̃) is obtained by ”regulating” the path ω with the sequences (R, R̃): in between
two exit times, the increments of Ψ(ω,R, R̃) follow those of ω and each time the process attempts
to exit the positive orthant by crossing the x-axis (resp. the y-axis), it jumps to a a new position
inside the orthant, taken from the sequence (Rn)n≥1 (resp. from the sequence (R̃n)n≥1).

Unlike the more familiar case of a continuous reflection at the boundary, which arises in heavy-
traffic limits of multiclass queueing systems (see Harrison (1978), Harrison and Nguyen (1993),
Whitt (2002), Ramanan and Reiman (2003) for examples), this construction introduces a disconti-
nuity by pushing the process into the interior of the positive orthant each time it attempts to exit
from the axes.

To study the continuity properties of this map, we endow D([0,∞),R2) with Skorokhod’s J1

topology Billingsley (1968), Lindvall (1973) and the set (R2
+)

N
with the topology induced by ’cylin-

drical’ semi-norms, defined as follows: for a sequence (Rn)n≥1 in (R2
+)

N

Rn n→∞→ R ∈ (R2
+)

N
⇐⇒

(
∀k≥ 1, sup{|Rn

1 −R1|, ..., |Rn
k −Rk|)

n→∞→ 0
)
.

D([0,∞),R2)× (R2
+)

N × (R2
+)

N
is then endowed with the corresponding product topology.

Theorem 1. Let R= (Rn)n≥1, R̃= (R̃n)n≥1 be sequences in ]0,∞[×]0,∞[ which do not have any
accumulation point on the axes. If ω ∈C0([0,∞),R2) is such that

(0,0) /∈Ψ(ω,R, R̃)([0,∞) ). (3)

Then the map

Ψ :D([0,∞),R2)× (R2
+)

N
× (R2

+)
N
→ D([0,∞),R2

+) (4)

is continuous at (ω,R, R̃).

Proof: See Section 6.2 in the Appendix.
This construction may be applied to any cadlag stochastic process: given a cadlag process X

with values in R2 and (random) sequences R= (Rn)n≥1 and R̃= (R̃n)n≥1 with values in R2
+, the

process Ψ(X,R, R̃) is a cadlag process with values in R2
+.

It is easy to see that the order book process qt = (qbt , q
a
t ) may be constructed by this procedure:
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Lemma 1. The queue size process q= (qbt , q
a
t )tgeq0 is related to the net order flow by

q= (qb, qa) = Ψ(x,R, R̃)

where
• xt = (xbt , x

a
t ) =

(∑Nbt
i=1 V

b
i ,
∑Nat

i=1 V
a
i

)
is the net order flow at the bid and the ask,

• R= (Rn)n≥1 is the sequence of queue sizes after a price increase, and
• R̃= (R̃n)n≥1 is the sequence of queue sizes after a price decrease.

One can thus build a statistical model for the limit order book by specifying the joint law of x
and of the regulating sequences (R, R̃). This approach simplifies the study of the (asymptotic)
properties of qt = (qbt , q

a
t ).

Example 1 (IID reinitializations). The simplest case is the case where the queue length after
each price change is independent from the history of the order book, as in Cont and de Larrard
(2010). R= (Rn)n≥1 and R̃= (R̃n)n≥1 are then IID sequences with values in ]0,∞[2. Figure 5 shows
an example of such a distribution for a liquidly traded stock (NYSE: CitiGroup).

The law of the process Q= Ψ(x,R, R̃) is then entirely determined by the law of the net order
flow x and the distributions of Rn, R̃n: it can be constructed from the concatenation of the laws
of (xt, τk ≤ t < τk+1) for k≥ 0 (where we define τ0 := 0).

Example 2 (Pegged limit orders). Most electronic trading platforms allow to place limit or-
ders which are pegged to the best quote: if the best quote moves to a new price level, a pegged limit
order moves along with it to the new price level. The presence of pegged orders leads to positive
autocorrelation and dependence in the queue size before/after a price change. The queue size after
a price change may be modeled as
• qτn =Rn = (εbn +βqbτn−, ε

a
n) if the price has increased, and

• qτn = R̃n = (ε̃bn, ε̃
a
n + β̃qaτn−) if the price has decreased

where εn = (εbn, ε
a
n), ε̃n = (ε̃bn, ε̃

a
n) are IID sequences. Empirically, one observes a correlation of ∼

10%− 20% between the queue lengths before and after a price change, which suggests an order
magnitude for the fraction of pegged orders.

As in the previous example, the law of of the process q= Ψ(x,R, R̃) is determined by the law of
the net order flow x, the coefficients β, β̃ and the distributions of ε,ε̃: it can be constructed from
the concatenation of the laws of (xt, τk ≤ t < τk+1) for k≥ 0.

More generally, one could consider other extensions where the queue size after a price move may
depend in a (nonlinear) way on the queue size before the price move and a random term εn
representing the inflow of new orders after the n-th price change:

qτn = g(qτn−, εn). (5)

The results given below hold for this general specification although the examples 1 and 2 above
are sufficiently general for most applications.

2.3. Examples

The framework described in Section 2.1 allows a wide class of specifications for the order flow
process, and contains as special cases various models proposed in the literature. Each model involves
a specification for the (random) sequences (tai , t

b
i , V

a
i , V

b
i )i≥1, R = (Rn)n≥1 and R̃ = (R̃n)n≥1 or,

equivalently, (T ai , T
b
i , V

a
i , V

b
i )i≥1, R = (Rn)n≥1 and R̃ = (R̃n)n≥1 where T ai = tai+1 − tai (resp. T bi =

tbi+1− tbi) are the durations between order book events on the ask (resp. the bid) side.
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2.3.1. Models based on Poisson point processes Cont and de Larrard (2010) study a
stylized model of a limit order market in which market orders, limit orders and cancelations arrive
at independent and exponential times with corresponding rates µ, λ and θ, the process q= (qb, qa)
becomes a Markov process. If we assume additionally that all orders have the same size, the
dynamics of the reduced limit order book is described by:
• The sequence (T ai )i≥0 is a sequence of independent random variables with exponential distri-

bution with parameter λ+ θ+µ,
• The sequence (T bi )i≥0 is a sequence of independent random variables with exponential distri-

bution with parameter λ+ θ+µ,
• The sequence (V a

i )i≥0 is a sequence of independent random variables with

P[V a
i = 1] =

λ

λ+µ+ θ
and P[V a

i =−1] =
µ+ θ

λ+µ+ θ
,

• The sequence (V b
i )i≥0 is a sequence of independent random variables with

P[V b
i = 1] =

λ

λ+µ+ θ
and P[V b

i =−1] =
µ+ θ

λ+µ+ θ
.

• All these sequences are independent.
It is readily verified that this model is a special case of the framework of Section 2.1: (qt)t≥0 may
be constructed as in Definition 1, where the unconstrained process xt is now a compound Poisson
process.

2.3.2. Self-exciting point processes Empirical studies of order durations highlight the de-
pendence in the sequence of order durations. This feature, which is not captured in models based
on Poisson processes, may be adequately represented by a multidimensional self-exciting point pro-
cess Andersen et al. (2010), Hautsch (2004), in which the arrival rate λi(t) of an order of type i
is represented as a stochastic process whose value depends on the recent history of the order flow:
each new order increases the rate of arrival for subsequent orders of the same type (self-exciting
property) and may also affect the rate of arrival of other order types (mutually exciting property):

λi(t) = θi +
J∑
j=1

δij

∫ t

0

e−κi(t−s)dNj(s)

Here δij measures the impact of events of type j on the rate of arrival of subsequent events of type
i: as each event of type j occurs, λi increases by δij. In between events, λi(t) decays exponentially
at rate κi. Maximum likelihood estimation of this model on TAQ data Andersen et al. (2010) shows
evidence of self-exciting and mutually exciting features in order flow: the coefficients δij are all
significantly different from zero and positive, with δii > δij for j 6= i.

2.3.3. Autoregressive conditional durations Models based on Poisson process fail to cap-
ture serial dependence in the sequence of durations, which manifests itself in the form of clustering
of order book events. One approach for incorporating serial dependence in event durations is to
represent the duration Ti between transactions i− 1 and i as

Ti =ψiεi,

where (εi)i≥1 is a sequence of independent positive random variables with common distribution
and E[εi] = 1 and the conditional duration ψi = E[Ti|ψi−j, Ti−j, j ≥ 1] is modeled as a function of
past history of the process:

ψi =G(ψi−1,ψi−2, ..., ..;Ti−1, Ti−2, ..., ..).
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Engle and Russell’s Autoregressive Conditional Duration model Engle and Russell (1998) propose
an ARMA(p, q) representation for G:

ψi = a0 +

p∑
i=1

akψi−k +

q∑
i=1

bqTj−k

where (a0, ..., ap) and (b1, ..., bq) are positive constants. The ACD-GARCH model Ghysels and
Jasiak (1998) combine this model with a GARCH model for the returns. Engle (2000) proposes
a GARCH-type model with random durations where the volatility of a price change may depend
on the previous durations. Variants and extensions are discussed in Hautsch (2004). Such models,
like ARMA or GARCH models defined on fixed time intervals, have likelihood functions which are
numerically computable. Although these references focus on transaction data, the framework can
be adapted to model the durations (T ai , i≥ 1) and (T bi , i≥ 1) between order book events with the
ACD framework (Hautsch 2004).

2.3.4. A limit order market with patient and impatient agents Another way of spec-
ifying a stochastic model for the order flow in a limit order market is to use an ’agent-based’
formulation where agent types are characterized in terms of the statistical properties of the order
flow they generate. Consider for example a market with three types of traders:
• impatient traders who only submit market orders:
• patient traders who use only limit orders: this is the case for example of traders who place

stop loss orders or engage in strategies such as mean-reversion arbitrage or pairs trading which are
only profitable with limit orders.
• other traders who use both limit and market orders; we will assume these traders submit a

proportion γ of their orders as limit orders and (1− γ) as market orders, where 0<γ < 1.
Denote by m (resp. l) the proportion of orders generated by impatient (resp. patient) traders:

∀i≥ 1, P[i− th trader uses only market orders] =m,

P[i− th trader uses only limit orders] = l,

P[ith trader uses both limit and market orders] = 1− l−m.

Assume that the sequence (Ti, i≥ 1) of duration between consecutive orders is a stationary ergodic
sequence of random variables with E[Ti] <∞, that each trader has an equal chance of being a
buyer or a seller and that the type of trader (buyer or seller) is independent from the past:

P[i− th trader is a buyer] = P[i− th trader is a seller] =
1

2

Trader i generates an order of size Vi, where (Vi, i≥ 1) is an IID sequence with:

P[(V b
i , V

a
i ) = (Vi,0)] = P[(V b

i , V
a
i ) = (0, Vi)] =

m

2
,

P[(V b
i , V

a
i ) = (−Vi,0)] = P[(V b

i , V
a
i ) = (0,−Vi)] =

l

2
,

P[(V b
i , V

a
i ) = (γVi,−(1− γ)Vi)] = P[(V b

i , V
a
i ) = (−(1− γ)Vi, γVi)] =

1− l−m
2

.

3. Statistical properties of high-frequency order flow

As described in Section 2.1, the sequence of order book events –the order flow– is characterized by
the sequences (T ai , i≥ 1) and (T bi , i≥ 1) of durations between orders and the sequences of order sizes
(V b

i , i≥ 1) and (V a
i , i≥ 1). In this section we illustrate the statistical properties of these sequences

using high-frequency quotes and trades for liquid US stocks –CitiGroup, General Electric, General
Motors– on June 26th, 2008.
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3.1. Order sizes

Empirical studies Bouchaud et al. (2002, 2008), Gopikrishnan et al. (2000), Maslov and Mills (2001)
have shown that order sizes are highly heterogeneous and exhibit heavy-tailed distributions, with
Pareto-type tails:

P(V a
i ≥ x)∼Cx−β

with tail exponent β > 0 between 2 and 3, which corresponds to a series with finite variance but
infinite moments of order ≥ 3. The tail exponent β > 0 is difficult to estimate precisely, but the
Hill estimator Resnick (2006) can be used to measure the heaviness of the tails. Table 4 gives the
Hill estimator of the tail coefficient of order sizes for our samples. This estimator is larger than 2
for both the bid and the ask; this means that the sequence of order sizes have a finite moment of
order two.

Bid side Ask side
Citigroup [0.42, 0.46] [0.29, 0.32]

General Electric [0.42, 0.45] [0.41, 0.46]
General Motors [0.36, 0.42] [0.44, 0.51]

Table 4 95-percent confidence interval of the Hill estimator of the sequence of order sizes. When the Hill
estimator is < 0.5, the estimated tail index is large than 2 and the distribution has finite variance.

The sequences of order sizes (V a
i , i≥ 1) and (V b

i , i≥ 1) exhibit insignificant autocorrelation, as
observed on Figure 6. However, they are far from being independent: the series of squared order
sizes ((V b

i )2, i≥ 1) and ((V a
i )2, i≥ 1) are positively autocorrelated, as shown in Figure 7.

Figure 6 Autocorrelogram of the sequence of order sizes. Order coming at the ask on the left and at the bid on
the right.

Finally, the sequences (V a
i , i ≥ 1) and (V b

i , i ≥ 1) may be negatively correlated. This stems from
the fact that a buyer can simultaneously use market orders on the ask side (which correspond to
negative values of V a

i ) and limit orders on the bid side (which correspond to positive values of V b
i );

the same argument holds for sellers (see Section 2.3.4).
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Figure 7 Autocorrelogram of the sequence of absolute order sizes. Order coming at the ask on the left and at the
bid on the right.

These properties of the sequence (V a
i , V

b
i )i≥1 may be modeled using a bivariate ARCH process:

V b
i = σbi z

b
i V a

i = σai z
a
i

(σbi )
2 = αb0 +αb1(V b

t−1)2, (σai )2 = αa0 +αa1(V a
t−1)2, where (zbi , z

a
i )i≥1

IID∼ N

(
0,

(
1 ρ
ρ 1

))
and (αb0, α

b
1, α

a
0, α

a
1) are positive coefficients satisfying

0<αb0 +αb1 < 1, and 0<αa0 +αa1 < 1. (6)

As shown by Bougerol and Picard (1992), under the assumption (6), the sequence of order sizes
(V b

i , V
a
i )i≥1 is then a well defined, stationary sequence of random variables with finite second-order

moments, satisfying the properties enumerated above.

3.2. Durations

The timing of order book events is describe by the sequence of durations (T bi , i ≥ 1) at the bid
and (T ai , i≥ 1) at the ask. These sequences have zero autocorrelation (see Figure 8) but are not
independence sequences: for example, as shown in Figure 9, the sequence of inverse durations
(1/T bi , i≥ 1) and (1/T bi , i≥ 1) has significant autocorrelations.

Figure 10 represents the empirical distribution functions P[T a > u] and P[T b > u] in logarithmic
scale. Both empirical distributions exhibit thin, exponential-type tails (which implies in particular
that T a and T b have finite expectation).
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Figure 8 Autocorrelogram of the sequence of durations for events at the ask (left) and the bid (right).

Figure 9 Autocorrelogram of the sequence of inverse durations for events at the ask (left) and the bid (right).

Figure 10 Logarithm of the empirical distribution function of durations for events at the ask (left) and the bid
(right).
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4. Heavy Traffic limit

At very high frequency, the limit order book is described by a two-dimensional piecewise constant
process qt = (qbt , q

a
t )t≥0, whose evolution is determined by the flow of orders. The complex nature

of this order flow –heterogeneity and serial dependence in order sizes, dependence between orders
coming at the ask and at the bid– described in section 3, makes it difficult to describe qt in an
analytically tractable manner which would allow the quantities of interest to be computed either in
closed form or numerically in real time applications. However, if one is interested in the evolution
of the order book over time scales much larger than the interval between individual order book
events, the (coarse-grained) dynamics of the queue sizes may be described in terms of a simpler
process Q, called the heavy traffic approximation of q. In this limit, the complex dynamics of the
discrete queueing system is approximated by a simpler system with a continuous state space, which
can be either described by a system of ordinary differential equations (in the ’fluid limit’, where
random fluctuations in queue sizes vanish) or a system of stochastic differential equations (in the
’diffusion limit’ where random fluctuations dominate). This idea has been widely used in queueing
theory to obtain useful analytical insights into the dynamics of queueing systems Harrison and
Nguyen (1993), Iglehart and Whitt (1970), Whitt (2002).

We argue that the heavy traffic limit is highly relevant for the study of limit order books in
liquid markets, and that the correct scaling limit for the liquid stocks examined in our data sets is
the ”diffusion” limit. This heavy traffic limit is then derived in Theorem 2 and described in Section
4.3.

4.1. Fluid limit or diffusion limit?

Let (V n,a
i , i ≥ 1) the sequence of order sizes, whose properties depend on the index n. One way

of viewing the heavy traffic limit is to view the limit order book at a lower time resolution, by
grouping together events in batches of size n. Since the inter-event durations are finite, this is
equivalent to rescaling time by n. The impact, on the net order flow, of a batch of n events at the
ask is

V n,a
1 +V n,a

2 +V n,a
3 + ...+V n,a

n√
n

=
(V n,a

1 −V n,a) + (V n,a
2 −V n,a) + ...+ (V n,a

n −V n,a)√
n

+
√
n V n,a,

where V n,a =E[V n,a
1 ]. Under appropriate assumptions (see next section), this sum behaves approx-

imately as a Gaussian random variable for large n:

V n,a
1 +V n,a

2 +V n,a
3 + ...+V n,a

n√
n

∼N(
√
n V n,a,Var(V n,a

1 )) as n→∞. (7)

Two regimes are possible, depending on the behavior of the ratio
√
n V n,a√

Var(V
n,a
1 )

as n grows:

• If
√
n V n,a√

Var(V
n,a
i )
→∞ as n→∞, the correct approximation is given by the fluid limit, which

describes the (deterministic) behavior of the average queue size.

• If limn→∞
√
n V n,a√

Var(V
n,a
i )

<∞, the rescaled queue sizes behave like a diffusion process.

The fluid limit corresponds to the regime of law of large numbers, where random fluctuations
average out and the limit is described by average queue size, whereas the diffusion limit corre-
sponds to the regime of the (functional) central limit theorem, where fluctuations in queue size are
asymptotically Gaussian.

Figure 11 displays the histogram of the ratio
√
n V n,a√

Var(V
n,a
i )

for stocks in the Dow Jones index,

where for each stock n is chosen to represent the average number of order book events in a 10
second interval (typically n∼ 100− 1000). This ratio is shown to be rather small at such intraday
time scales, showing that the diffusion approximation, rather than the fluid limit, is the relevant
approximation to use here.
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Figure 11 Empirical distribution of the ratio
√
n/V n,a

√
Var(V n,a1 ) showing the relative importance of average

change vs fluctuations in queue size, for stocks in the Dow-Jones index during June 08 (see Section
4.1). Low values of the ratio indicate that intraday changes in bid/ask queue size are dominated by
fluctuations, rather than the average motion of the queue. Left: bid side. Right: ask side.

Bid and ask queue sizes (qbt , q
a
t ) exhibit a diffusion-type behavior at such intraday time scales.

Figure 12 shows the path of the net order flow process

xt = (qb0, q
a
0) +

 Nbt∑
i=1

V b
i ,

Nat∑
i=1

V a
i

 (8)

sampled every second for CitiGroup stocks on a typical trading day. In this example, for which the
average time between consecutive orders is λ−1 ' 13 ms� 1 second, we observe that the process
X behaves like a diffusion in the orthant with negative drift: the randomness of queue sizes does
not average out at this time scale.

Figure 12 Evolution of the net order flow Xt = (Xb
t ,X

a
t ) given by Eq. (8) for CitiGroup shares over one trading

day (June 26, 2008). The starting point is taken to be (0,0) at the marke open. Note the irregular,
diffusive feature of the path of X and its negative drift.
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We will now show that this is a general result: under mild assumptions on the order flow process,
we will show that the (rescaled) queue size process

(Qn
t )t≥0 := (

qn,bnt√
n
,
qn,ant√
n

)t≥0 (9)

converges in distribution to a Markov process (Qt)t≥0 in the positive orthant, whose features we
will now describe in terms of the statistical properties of the order flow.

4.2. A functional central limit theorem for the limit order book

Consider now a sequence qn = (qnt )t≥0 of processes, where qn represents the dynamics of the bid and
ask queues in the limit order book at a time resolution corresponding to n events (see discussion
above). The dynamics of qn is characterized by the sequence of order sizes (V n,b

i , V n,a
i )i≥1, durations

(T n,bi , T n,ai )i≥1 between orders and the fact that, at each price change
• qnτk =Rn

k = g(qnτk−, ε
n
k) if the price has increased, and

• qnτk = R̃n
k = g(qnτk−, ε̃

n
k) if the price has decreased,

where (εnk , k ≥ 1) is an IID sequence with distribution fn, and (ε̃nk , k ≥ 1) is an IID sequence with
distribution f̃n. Note that this specification includes Examples 1 and 2 as special cases.

We make the following assumptions, which allow for an analytical study of the heavy traffic limit
and are sufficiently general to accommodate high frequency data sets of trades and quotes such as
the ones described in Section 3:

Assumption 1. (T n,ai , T n,bi )i≥1 is a stationary array of positive random variables whose common
distribution has a continuous density and satisfies

lim
n→∞

T n,a1 +T n,a2 + ...+T n,an

n
=

1

λa
<∞, lim

n→∞

T n,b1 +T n,b2 + ...+T n,bn

n
=

1

λb
<∞.

λa (resp. λb) represents the arrival rate of orders at the ask (resp. the bid).

Assumption 2. (V n,a
i , V n,b

i )i≥1 is a stationary, uniformly mixing array of random variables satis-
fying √

nE[V n,a
1 ]

n→∞→ V a,
√
nE[V n,b

1 ]
n→∞→ V b, (10)

lim
n→∞

E[(V n,a
i −V a)2] + 2

∞∑
i=2

cov(V n,a
1 , V n,a

i ) = v2
a <∞, and

lim
n→∞

E[(V n,b
i −V b)2] + 2

∞∑
i=2

cov(V n,b
1 , V n,b

i ) = v2
b <∞.

The assumption of uniform mixing (Billingsley 1968, Ch. 4) implies that the partial sums of order
sizes verify a central limit theorem, but allows for various types of serial dependence in order sizes.
The scaling assumptions on the first two moments corresponds to the properties of the empirical
data discussed in Section 4.1. Under Assumption 2, one can define

ρ := lim
n→∞

1

vavb

(
2max(λa, λb)cov(V n,a

1 , V n,b
1 ) + 2

∞∑
i=1

λacov(V n,a
1 , V n,b

i ) +λbcov(V n,b
1 , V n,a

i )

)
. (11)

ρ ∈ (−1,1) may be interpreted as a measure of ‘correlation’ between event sizes at the bid and
event sizes at the ask.

These assumptions hold for the examples of Section 2.3. In the case of the Hawkes model,
Assumption 1 was shown to hold in Bacry et al. (2010). Also, these assumptions are quite plausible
for high frequency quotes for liquid US stocks since, as argued in Section 3:



Cont, Larrard: Order book dynamics in liquid markets
20

• The tail index of order sizes is larger than two, so the sequences (V b
i , i ≥ 1) and (V a

i , i ≥ 1)
have a finite second moment.
• The sequence of order sizes is uncorrelated i.e. has statistically insignificant autocorrelation.

Therefore the sum of autocorrelations of order sizes is finite (zero, in fact).
• The sequence of inter-event durations has a finite empirical mean and is not autocorrelated.

These empirical observations support the plausibility of Assumptions 1 and 2 for the data sets
examined.

Assumption 2 has an intuitive interpretation: if orders are grouped in batches of n orders, then
Assumption 2 amounts to stating that the variance of batch sizes should scale linear with n. This
assumption can be checked empirically, using a variance ratio test for example: Figure 13 shows
that this linear relation is indeed verifies for the data sets examined in Section 3.

Figure 13 Variance of batch sizes of n orders, for General Electric shares, on June 26th, 2008. Left: ask side.
Right: bid side.

The following scaling assumption states that, when grouping orders in batches of n orders, a good
proportion of batches should have a size O(

√
n) (otherwise their impact will vanish in the limit

when n becomes large):

Assumption 3. There exist probability distributions F, F̃ on the interior (0,∞) × (0,∞) of the
positive orthant, such that

nfn(
√
n .)

n→∞⇒ F and nf̃n(
√
n .)

n→∞⇒ F̃ .

Assumption 4. g ∈C2(R2
+×R2

+, ]0,∞[2) and

∃α> 0,∀(x, y)∈R2
+×R2

+, ‖g(x, y)‖ ≥ αmin(y1, y2).

Finally, we add the following condition for the initial value of the queue sizes:(
qn,b0√
n
,
qn,a0√
n

)
n→∞→ (x0, y0)∈]0,∞[×]0,∞[ (12)

The following theorem, whose proof is given in the Appendix, describes the joint dynamics of the
bid and ask queues in this heavy traffic limit:
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Theorem 2 (Heavy traffic limit). Under Assumptions 3, 1, 2 and 4, the rescaled process

(Qn
t , t≥ 0) =

(
qnnt√
n
, t≥ 0

)
converges weakly, on the Skorokhod space (D(]0,∞[,R2

+), J1),

Qn n→∞⇒ Q

to a Markov process (Qt)t≥0 with values in R2
+, initial value Q0 = (x0, y0) given in (12) and in-

finitesimal generator G given, for x> 0, y > 0, by

Gh(x, y) = λaV a
∂h

∂y
+λbV b

∂h

∂x
+
λav2

a

2

∂2h

∂y2
+
λbv2

b

2

∂2h

∂x2
+ ρ
√
λaλbvavb

∂2h

∂x∂y
,(13)

Gh(x,0) =

∫
]0,∞[2

Gh(g((x,0), (u, v)))F (du,dv), Gh(0, y) =

∫
]0,∞[2

Gh(g((0, y), (u, v)))F̃ (du,dv),

and whose domain is the set dom(G) of functions h ∈ C2(]0,∞[×]0,∞[,R) ∩C0(R2
+,R) verifying

the Wentzell boundary conditions

∀x> 0, h(x,0) =

∫
R2
+

h(g((x,0), (u, v)))F (du,dv), (14)

∀y > 0, h(0, y) =

∫
R2
+

h(g((0, y), (u, v)))F̃ (du,dv).

We outline here the main steps of the proof. The technical details are given in the Appendix.
Define the counting processes

Na,n
t = sup{k≥ 0, T a,n1 + ...+T a,nk ≤ t} and N b,n

t = sup{k≥ 0, T b,n1 + ...+T b,nk ≤ t} (15)

which correspond to the number of events at the ask (resp. the bid), and the net order flow

Xn
t =

N
b,n
nt∑
i=1

V b,n
i√
n
,

N
a,n
nt∑
i=1

V a,n
i√
n


Then, as shown in Proposition 3 (see Appendix), Xn converges in distribution on (D([0,∞[,R2), J1)
to a two-dimensional Brownian motion with drift

(Xn
t )t≥0

n→∞⇒
(
Zt + t(λbV b, λaV a)

)
t≥0

where Z is a planar Brownian motion with covariance matrix(
λbv2

b ρ
√
λaλbvavb

ρ
√
λaλbvavb λav2

a

)
.

Under assumption 3, using the Skorokhod representation theorem, there exist IID sequences
((εnk , n≥ 1), (ε̃nk , n≥ 1), εk, ε̃k)k≥1 and a copy X of the process(

(x0, y0) +Zt + t(λbV b, λaV a)
)
t≥0

on some probability space (Ω0,B,Q) such that εnk ∼ fn, ε̃nk ∼ f̃n, εk ∼ F, ε̃k ∼ F̃ and

Q
(
Xn n→∞→ X ;∀k≥ 1,

εnk√
n

n→∞→ εk,
ε̃nk√
n

n→∞→ ε̃k

)
= 1.

Using the notations of Appendix 6.2, denote by
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• τn1 = τ(Xn) the first exit time of Xn from the positive orthant R2
+ and

• τnk the first exit time of Ψk−1(Xn,Qn
τn1
, ...,Qn

τn
k−1

) from R2
+.

We can now construct the process Q by an induction procedure. Let τ1 = τ(X) be the first exit
time of X from the orthant. Let Qt =Xt for t < τ1 and, by continuity of the first-passage time map
and the last-evaluation map at a first passage time (Whitt 2002, Sec. 13.6.3),

(τn1 ,Q
n
τn1 −

)
n→∞→ (τ1,Qτ1−) Q− a.s.

We now set
Qτ1 = g(Xτ1−, ε1)1Xτ1 .(0,1)<0 + g(Xτ1−, ε̃1)1Xτ1 .(1,0)<0.

Since X is a Brownian motion,

lim inf
r↓0

(Xτ1+r−Xτ1).(1,0)< 0

therefore P
(
1Xτ1 .(1,0)<0 = 1Xτ1 .(1,0)≤0

)
= 1 so we can also write

Qτ1 = g(Qτ1−, ε1)1Xτ1 .(0,1)≤0 + g(Qτ1−, ε̃1)1Xτ1 .(1,0)≤0.

X is a continuous process and the probability thats its path crosses the origin is zero, so by Lemma
2, X lies with probability 1 in the continuity set of the map G : ω→ 1ωτ(ω).(0,1)<0. So using the
continuity of g(., .), we can apply the continuous mapping theorem (Billingsley 1968, Theorem 5.1),
to conclude that

Qn
τn1

n→∞→ Qτ1 Q− a.s.

Let us now assume that we have defined Q on [0, τk−1] and shown that

(τn1 , .., τ
n
k−1,Q

n
τn1
, ...,Qn

τn
k−1

)
n→∞→ (τ1, .., τk−1,Qτ1 , ...,Qτk−1

) Q− a.s.

Since Q((0,0) /∈ Ψk(X,Qτ1 , ...,Qτk−1
)([0,∞)) ) = 1, Lemma 4 implies that (X,Qτ1 , ...,Qτk−1

) lies
with probability 1 in the continuity set of Ψk, so by the continuous mapping theorem

Ψk(X
n,Qn

τn1
, ...,Qn

τn
k−1

)
n→∞→ Ψk(X,Qτ1 , ...,Qτk−1

) Q− a.s.

Define now τk as the first exit time of Ψk(X,Qτ1 , ...,Q
n
τk−1

) from the positive orthant [0,∞[×[0,∞[.
As before, by continuity of the first-passage time map and the last-value map at a first passage
time (Whitt 2002, Sec. 13.6.3),

(τnk ,Q
n
τn
k
−)

n→∞→ (τk,Qτk−) Q− a.s.

We can now extend the definition of Q to [0, τk] by setting

Qt = Ψk(X,Qτ1 , ...,Qτk)(t) for t < τk, and

Qτk = g(Qτk−, εk)1Ψk(X,Qτ1 ,...,Qτk−1
).(0,1)<0 + g(Qτk−, ε̃k)1Ψk(X,Qτ1 ,...,Qτk−1

).(1,0)<0

As above, using the continuity properties of Ψk from Lemma 4 we conclude that Qn
τn
k
→Qτk a.s.

and using the Brownian property of X we can show that

Qτk = g(Qτk−, εk)1Ψk(X,Qτ1 ,...,Qτk−1
).(0,1)≤0 + g(Qτk−, ε̃k)1Ψk(X,Qτ1 ,...,Qτk−1

).(1,0)≤0 a.s.

So finally, we have shown that

∀k≥ 1, (τn1 , .., τ
n
k ,Q

n
τn1
, ...,Qn

τn
k

)
n→∞→ (τ1, .., τk,Qτ1 , ...,Qτk) Q− a.s.

We can now construct the sequences R, R̃ by setting
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• Rk =Qτk if Ψk(X,Qτ1 , ...,Qτk−1
)(τk−).(0,1)< 0,

• R̃k =Qτk if Ψk(X,Qτ1 , ...,Qτk−1
)(τk−).(1,0)< 0.

Then Q= Ψ(X,R, R̃) where Ψ is the map defined in Definition 1. Let us now show that (X,R, R̃)
lies with probability 1 in the J1−continuity set of Ψ, in order to apply the continuous mapping
theorem. X is a continuous process whose paths lie in C0([0,∞),R2−{(0,0)}) almost surely. Since
F and F̃ have zero mass on the axes, with probability 1 the sequences (εk)k≥1, (ε̃k)k≥1 do not have
any accumulation point on the axes. Assumption 4 then implies that the sequences (Rk)k≥1, (R̃k)k≥1

do not have any accumulation point on the axes. From the definition of Ψ (Definition 1), Q jumps
at each hitting time of the axes and, in between two jumps, its increments follow those of the
planar Brownian motion X. Since F, F̃ have no mass at the origin and planar Brownian paths have
a zero probability of hitting isolated points, with probability 1 the graph of Q= Ψ(X,R, R̃) does
not hit the origin :

Q
(

(0,0) /∈Ψ(X,R, R̃)([0,∞) )
)

= 1. (16)

So the triplet (X,R, R̃) satisfies the conditions of Theorem 1 almost-surely i.e. Ψ is continuous at
(X,R, R̃) with probability 1. We can therefore apply the continuous mapping theorem (Billingsley
1968, Theorem 5.1) and conclude that

Qn = (Xn,Rn, R̃n)
n→∞⇒ Q= Ψ(X,R, R̃).

The process Q = Ψ(X,R, R̃) can be explicitly constructed from the planar Brownian motion X
and the sequences R, R̃: Q follows the increments of X and is reinitialized to Rn or R̃n at each
hitting time of the axes. Lemma 5 in Appendix 6.4 uses this description to show that Q is a Markov
process whose infinitesimal generator is given by (13)- (14).

Remark 1 (Lévy process limits). The diffusion approximation inside the orthant fails when
order sizes do not have a finite second moment. For example, if the sequence (V a

i , V
b
i ) is regularly

varying with tail exponent α∈ (0,2) (see Resnick (2006) for definitions), the heavy-traffic approx-
imation Q is a pure-jump process in the positive orthant, constructed by applying the map Ψ to a
two-dimensional α-stable Lévy process L:

Q= Ψ(L,R, R̃),

i.e. by re-initializing it according to (5) at each attempted exit from the positive orthant. We do
not further develop this case here, but it may be of interest for the study of illiquid limit order
markets, or those where order flow is dominated by large block trades.

4.3. Jump-diffusion approximation for order book dynamics

Theorem 2 implies that, when examined over time scales much larger than the interval between
order book events, the queue sizes qb and qa are well described by a Markovian jump-diffusion
process (Qt)t≥0 in the positive orthant R2

+ which behaves like a a planar Brownian motion with
drift vector

(λbV b, λaV a) (17)

and covariance matrix (
λbv2

b ρ
√
λaλbvavb

ρ
√
λaλbvavb λav2

a

)
. (18)

in the interior ]0,∞[2 of the orthant and, at each hitting time τk of the axes, jumps to a new
position
• Qτk =Rk = g(Qτk−, εk) whenever Qa

τk−
= 0,
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• Qτk = R̃k = g(Qτk−, ε̃k) whenever Qb
τk−

= 0,

where the εk are IID with distribution F and the ε̃k are IID with distribution F̃ . We note that similar
processes in the orthant were studied byBaccelli and Fayolle (1987) with queueing applications in
mind, but not in the context of heavy traffic limits.

This process is analytically and computationally tractable and allows various quantities related
to intraday price behavior to be computed (see next section).

If γ0 = (E[T a1 ]+E[T b1 ])/2 is the average time between order book events, (γ0 ≤ 100 milliseconds),
and γ1� γ0 (typically, γ1 ∼ 10-100 seconds) then Theorem 2 leads to an approximation for the
distributional properties of the queue dynamics in terms of Qt:

qt 'd
√
N Qt/N where N =

γ1

γ0

So, under Assumptions 1, 2, 3 and 4 the queue sizes (qbt , q
a
t )t≥0 can be approximated at the time

scale γ1 by a Markov process which
• behaves like a two-dimensional Brownian motion with drift (µb, µa) and covariance matrix Λ

on {x> 0}∩ {y > 0} with

µa =
√
NλaV a, µb =

√
NλbV b, Λ =N

(
λbv2

b ρ
√
λaλbvavb

ρ
√
λaλbvavb λav2

a

)
(19)

and,
• jumps to a new value g(qt−,

√
Nεk) if qat− = 0,

• jumps to a new value g(qt−,
√
Nε̃k) if qbt− = 0,

where εk ∼ F , ε̃k ∼ F̃ are IID.
This gives a rigorous justification for modeling the queue sizes by a diffusion process at such

intraday time scales, as proposed in Avellaneda et al. (2011). The parameters involved in this
approximation are straightforward to estimate from empirical data: they involve estimating first
and second moments of durations and order sizes.

Example 3. Set for instance γ1 = 30 seconds and γ0 = (E[T a] + E[T b])/2. The following table
shows the parameters (19) estimated from high frequency records or order book events for three
liquid US stocks.

Std deviation of Std deviation of
Bid queue Ask queue µb µa ρ

Citigroup 6256 4457 -1033 -2467 0.07
General Electric 2156 2928 -334 -1291 0.03
General Motors 578 399 +78 -96 - 0.04

Table 5 Parameters for the heavy-traffic approximation of bid / ask queues over a 30-second time scale. The
unit is a number of orders per period of 30 seconds.

In particular we observe that the order of magnitude of the standard deviation of queue lengths
is an order of magnitude larger than their expected change.

Example 4. Theorem 2 may also be used to derive jump-diffusion approximations for the limit
order book in theoretical models such as the ones presented in Section 2.3. Let us illustrate this in
the case of the heterogeneous trader model of Section 2.3.4.

Let (Ti, i ≥ 1) be the sequence of duration between consecutive orders. We assume that this
sequence is a sequence of stationary random variables with E[T1]<∞. We also assume that every
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trader has an equal chance of being a buyer or a seller and that the type of trader (buyer or seller)
is independent from the past:

P[i− th trader is a buyer] = P[i− th trader is a seller] =
1

2

Finally the sequence of number of orders (Vi, i≥ 1) is a stationary sequence of orders traded by
the i-th trader with the property that E[V 2

1 ]<∞.
This order flow given by (Ti, i≥ 1), (Vi, i≥ 1), and the sequence of type (buyers or sellers, using

limit orders, market orders or both) generates a sequence of durations (T ai , i≥ 1), (T bi ; i≥ 1) and
order sizes (V a

i , i≥ 1) and (V b
i , i≥ 1) which satisfy assumptions 1 and 2.

The sequence of durations (T ai , i ≥ 1) and (T bi , i ≥ 1) are two stationary sequences of random
variables with finite mean:

∀i≥ 0, Ti = T ai = T bi . therefore E[Ti] =E[T ai ] =E[T bi ]<∞.

The sequence of order sizes ((V b
i , V

a
i ), i≥ 1) is a sequences of IID random variables with

P[(V b
i , V

a
i ) = (Vi,0)] = P[(V b

i , V
a
i ) = (0, Vi)] =

m

2
, (20)

P[(V b
i , V

a
i ) = (−Vi,0)] = P[(V b

i , V
a
i ) = (0,−Vi)] =

l

2
, (21)

P[(V b
i , V

a
i ) = (γVi,−(1− γ)Vi)] = P[(V b

i , V
a
i ) = (−(1− γ)Vi, γVi)] =

1− l−m
2

. (22)

Theorem 2 then shows that (Qb,Qa) is a Markov process which behaves like a two-dimensional
Brownian motion with drift (µb, µa) and covariance matrix Λ inside the positive orthant {x >
0}∩ {y > 0} where:

µb = µa =
V

2E[T1]
(2m+ 2γ(1− l−m)− 1) , Λ = v2

(
1 ρ
ρ 1

)
, where (23)

v2 =
E[T1]E[V 2

1 ]

4

(
m+ l+

γ2 + (1− γ)2

2
(1− l−m)

)
and ρ=− (1− l−m)2γ(1− γ)

1 + (1− l−m)(γ2− γ− 1/2)
< 0.

(24)
Figure 14 displays the value of the correlation ρ in different scenarios as a function of γ and the
proportion 1− (l+m) of traders submitting orders of both types.

5. Price dynamics

5.1. Price dynamics in the heavy traffic limit

Denote by (snt , t≥ 0) the (bid) price process corresponding to the limit order book process (qnt )t≥0.
As explained in Section 2, sn is a piecewise constant stochastic process which
• increases by one tick at each event (ta,ni , V a,n

i ) at the ask for which qa,n(ta,ni ) +V a,n
i < 0,

• decreases by one tick at each event (tb,ni , V b,n
i ) at the bid for which qb,n(tb,ni ) +V b,n

i < 0.
Due to the complex dependence structure in the sequence of order durations and sizes, properties
of the process sn are not easy to study, even in simple models such as those given in Section 2.3.
The following result shows that the price process converges to a simpler process in the heavy traffic
limit, which is entirely characterized by hitting times of the two dimensional Markov process Q:
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Figure 14 Correlation ρ between bid and ask queue sizes for different scenario. 1 - (l+m) represents the proportion
of traders using both market and limit orders, γ the proportion of limit orders and (1−γ) the proportion
of market orders.

Proposition 1. Under the assumptions of Theorem 2,

(snnt, t≥ 0)
n→∞⇒ S, on (D([0,∞[,R),M1), where

St = δ

( ∑
0≤s≤t

1Qas−=0−
∑

0≤s≤t

1Qbs−=0

)
. (25)

S is a piecewise constant cadlag process which
• increases by one tick at t if Qa

t− = 0 and
• decreases by one tick at t if Qb

t− = 0.

We refer the reader to Whitt (2002) or Whitt (1980) for a description of the M1 topology. The
price process sn (rescaled in time) can be expressed as

snnt =
∑
τn
k
≤t

1Ψk−1(Xn,Qn
τn1
,...,Qn

τn
k−1

)(τn
k

).(0,1)<0− 1Ψk−1(Xn,Qn
τn1
,...,Qn

τn
k−1

)(τn
k

).(1,0)<0.

where τnk ,Q
n
τn
k

are defined in the proof of Theorem 2, where it was shown that

∀k≥ 1, (Xn, τn1 , .., τ
n
k ,Q

n
τn1
, ...,Qn

τn
k

)
n→∞⇒ (X,τ1, .., τk,Qτ1 , ...,Qτk).

As shown in the proof of Theorem 2, (X,Qτ1 , ...,Qτk,...) lies, with probability 1, in the set of
continuity points of Ψk for each k≥ 1 so

Ψk(X
n,Qn

τn1
, ...,Qn

τn
k

)
n→∞⇒ Ψk(X,Qτ1 , ...,Qτk).

Applying Lemma 2 and the continuous mapping theorem (Billingsley 1968, Theorem 5.1) then
shows that

1Ψk−1(Xn,Qn
τn1
,...,Qn

τn
k−1

)(τn
k
−).(0,1)<0

n→∞⇒ 1Ψk−1(X,Qτ1 ,...,Qτk−1
)(τk−).(0,1)<0



Cont, Larrard: Order book dynamics in liquid markets
27

The sequences of processes
∑

τn
k
≤t 1Ψk−1(Xn,Qn

τn1
,...,Qn

τn
k−1

)(τn
k

).(0,1)<0 and∑
τn
k
≤t 1Ψk−1(Xn,Qn

τn1
,...,Qn

τn
k−1

)(τn
k

).(1,0)<0 belong to D↑([0,∞[,R+), the set of increasing cadlag

trajectories. The convergence for the M1 topology of sequences in D↑ reduces to the convergence
on a dense subset including zeros. Therefore∑

τn
k
≤t

1Ψk−1(Xn,Qn
τn1
,...,Qn

τn
k−1

)(τn
k

).(0,1)<0⇒
∑
τk≤t

1Ψk−1(X,Qτ1 ,...,Qτk−1
)(τk).(0,1)<0, and

∑
τn
k
≤t

1Ψk−1(Xn,Qn
τn1
,...,Qn

τn
k−1

)(τn
k

).(1,0)≤0⇒
∑
τk≤t

1Ψk−1(X,Qτ1 ,...,Qτk−1
)(τk).(1,0)≤0.

On the other hand, since the set of discontinuities of
∑

τk≤t
1Ψk(X,Qτ1 ,...,Qτk−1

)(τk).(0,1)<0 and∑
τk≤t

1Ψk(X,Qτ1 ,...,Qτk−1
)(τk).(1,0)<0 have an intersection which is almost surely void, one can apply

(Whitt 1980, Theorem 4.1) and (Whitt 2002, Theorem 12.7.1) and

(snnt, t≥ 0)
n→∞⇒ S. on (D([0,∞[,R+),M1).

S is thus the difference between the occupation time of the y axis and the occupation time of
the x axis by the Markov process Q. In particular, this result shows that, in a market where order
arrivals are frequent, distributional properties of the price process sn may be approximated using
the distributional properties of its limit S. We will now use this result to obtain some analytical
results on the distribution of durations between price changes and the transition probabilities of
the price.

5.2. Duration between price moves

Starting from an initial order book configuration Q0 = (x, y),
• the next price increase occurs at the first hitting time of the x-axis by (Qt−)t≥0:

τa=inf{t≥ 0,Qa
t− = 0}

• the next price decrease occurs at the first hitting time of the y-axis by (Qt−)t≥0:

τb=inf{t≥ 0, Qb
t− = 0}.

The duration τ until the next price changes is then given by

τ = τa ∧ τb,

which has the same law as the first exit time from the positive orthant of a two-dimensional
Brownian motion with drift. Using the results of Metzler (2010), Lipton (2001), Zhou (2001) we
obtain the following result which relates the distribution of this duration to the state of the order
book and the statistical features of the order flow process, for a balanced order flow where V a =
V b = 0.

Proposition 2 (Conditional distribution of duration between price changes). In the
case of balanced order flow where V a = V b = 0 the distribution of the duration τ until the next
price change, conditional on the current state of the bid and ask queues, is given by

P[τ > t|Qb
0 = x,Qa

0 = y] =

√
2U

πt
e
−
U

4t
∞∑
n=0

1

(2n+ 1)
sin

(2n+ 1)πθ0

α
(I(νn−1)/2(

U

4t
) + I(νn+1)/2(

U

4t
)),
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where νn = (2n+ 1)π/α, In is the nth Bessel function,

U =
( x
λav2a

)2 + ( y

λbv
2
b
)2− 2ρ xy

λaλbv
2
av

2
b

(1− ρ)
, and

α=



π+ tan−1(−
√

1− ρ2

ρ
) ρ> 0

π

2
ρ= 0

tan−1(−
√

1− ρ2

ρ
) ρ< 0

and θ0 =



π+ tan−1(−y
√

1− ρ2

x− ρy
) x< ρy

π

2
x= ρy

tan−1(−y
√

1− ρ2

x− ρy
) x> ρy

(26)

In particular, τ is regularly varying with tail index
π

2α
.

When V a = V b = 0, the process Q behaves like a two-dimensional Brownian motion Z with
covariance matrix given by (18) up to the first hitting time of the axes, so the distribution of the
duration τ has the same law as the first exit time of Z from the orthant:

τ
d
=inf{t≥ 0,Qa

t− < 0 or Qb
t− < 0}

Using the results of Iyengar (1985), corrected by Metzler (2010) for the distribution of the first
exit time of a two-dimensional Brownian motion from the orthant we obtain the result.

A result of Spitzer (1958) then shows that

E[τβ|Qb
0 = x,Qa

0 = y] =

∫ ∞
0

tβ−aP[τ > t|Qb
0 = x,Qa

0 = y]dt <∞

if and only if β < π/2α, where α is defined in (26). Therefore the tail index of τ is
π

2α
. This result

does not depend on the initial state (x, y).
• If ρ= 0, the two components of the Brownian Motion are independent and τ is a regularly-

varying random variable with tail index 1. This random variable does not have a moment of order
one.
• If ρ< 0,

π

2α
> 1 and τ has a finite moment of order one. In practice, ρ≈−0.7; this means that

if µa = 0 and µb = 0, the tail index of τ is around 2.

• When ρ> 0,
π

2α
< 1. The tail of τ is very heavy; τ does not have a finite moment of order one.

For all high frequency data sets examined, the estimates for µa, µb are negative (see Section 4.3);
the durations then have finite moments of all orders.

Remark 2. Using the results of (Lipton 2001, Eq.(12.87)) (see also Zhou (2001)) on the first exit
time of a two-dimensional Brownian motion with drift, one can generalize the above results to the
case where (V b, V a) 6= (0,0): we obtain in that case

P[τ > t|Qb
0 = x,Qa

0 = y] =
2ea1x+a2y+att−r20/2t

αt

∞∑
n=1

sin

(
nπθ0

α

)∫ α

0

sin
(nπ
α

)
gn(θ)dθ (27)

where θ0, α are defined as above, r0 =
√
U and

gn(θ) =

∫ ∞
0

re−r
2/2ted1r sin(θ−α)−d2r cos(θ−α)Inπ/α(

rr0

t
)dr,
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d1 =
(
a1

√
λava + ρa2vb

√
λb
)
, d2 =

(
ρa1

√
λava + a2vb

√
λb
)

(28)

a1 =−µa
√
λbvb +µbρva

√
λa

(1− ρ2)σ2
aλ

a
√
λbvb

, a2 =−ρµa
√
λbvb +µbva

√
λa

(1− ρ2)σ2
bλ

b
√
λava

, (29)

and at =

(
a1

λav2
a

2
+ a2

λbv2
b

2
+ 2ρa1

√
λaλbvaa2vb

)
− a1µa− a2µb. (30)

5.3. Probability of a price increase

A useful quantity for short-term prediction of intraday price moves is the probability pup1 (x, y) that
the price will increase at the next move given x orders at the bid and y orders at the ask; in our
setting this is equal to the probability that the ask queue gets depleted before the bid queue.

In the heavy traffic limit, this quantity may be represented as the probability that the two-
dimensional process (Qt, t ≥ 0), starting from an initial position (x, y), hits the horizontal axis
before hitting the vertical axis:

pup1 (x, y) = P[τa < τb|(Qb
0,Q

a
0) = (x, y)].

Since this quantity only involves the process Q up to its first hitting time of the boundary of the
orthant, it may be equivalently computed by replacing Q by a two-dimensional Brownian motion
with drift and covariance given by (17)–(18).

However, when V a = V b = 0, one has a simple analytical solution which only depends on the size
x of the bid queue, the size y of the ask queue and the correlation ρ between their increments:

Theorem 3. Assume V a + V b ≤ 0. Then pup1 : R2
+→ [0,1] is the unique bounded solution of the

Dirichlet problem

λav2
a

2

∂2pup1

∂y2
+
λbv2

b

2

∂2pup1

∂x2
+ 2ρ
√
λaλbσaσb

∂2pup1

∂x∂y
+λaV a

∂pup1

∂y
+λbV b

∂pup1

∂x
= 0 for x> 0, y > 0

(31)
with the boundary conditions

∀x> 0, pup1 (x,0) = 1 and ∀y > 0, pup1 (0, y) = 0. (32)

When V a = V b = 0, pup
1 (x, y) is given by

pup
1 (x, y) =

1

2
−

arctan(
√

1+ρ
1−ρ

y√
λava

− x√
λbvb

y√
λava

+ x√
λbvb

)

2arctan(
√

1+ρ
1−ρ)

, (33)

where λa, λb, va and vb are defined in Assumptions 1 and 2.

Using the results of Yoshida and Miyamoto (1999), the Dirichlet problem (31)–(32) has a
unique positive bounded solution u∈C2(]0,∞[2,R+)∩C0

b (R2
+,R+). Application of Ito’s formula to

Mt = u(Qb
t ,Q

a
t ) then shows that the process M τ stopped at τ is a martingale, and conditioning

with respect to (Qb
0,Q

a
0) = (x, y) gives u(x, y) = pup(x, y)

Assume now V a = V b = 0. Using a change of variable x 7→ x
√
λbvb and y 7→ y

√
λava, one only

needs to consider the case where
√
λbvb =

√
λava.

Up to the first hitting time of the axes, (Qt, t≥ 0) is identical in law to Q=AB where

A=

(
cos(β) sin(β)
sin(β) cos(β)

)
,
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with β satisfying ρ = sin(2β), β ≤ π/4 and B a standard planar Brownian Motion with identity
covariance. Using polar coordinates (x, y) = (r cosθ, r sinθ) we have

φ(r, θ) := pup1 (r A−1(cos(θ), sin(θ)) = pup1

(
r

cos2(β)− sin2(β)
(cos(β+ θ), sin(θ−β))

)
is a solution of the Dirichlet problem

1

r

∂

∂r
(r
∂φ

∂r
) +

1

r2

∂2φ

∂θ2
= 0 (34)

in the cone C = {(r, θ), r > 0, θ ∈]−β, π
2
−β[}, with the boundary conditions

∀r > 0, φ(r,−β) = 1 φ(r,
π

2
−β) = 0 (35)

A positive bounded solution, which in this case does not depend on r, is given by

φ(r, θ) =
1

π/2 + arcsinρ
(−θ+π/2 + arcsin(ρ)/2),

where ρ is the correlation coefficient between the bid and ask queues. By (Yoshida and Miyamoto
1999, Theorem 3.2), the Dirichlet problem (34)–(35) has a unique bounded solution, so finally

pup1 (x, y) =
1

π/2 + arcsinρ

(
π/2 + arcsin(ρ)/2− arctan(

sin(arctan(y/x)−β)

cos(β+ arctan(y/x))
)

)
.

Remark 3. When
√
λava =

√
λbvb, the probability pup1 (x, y) only depends on the ration y/x and

on the correlation ρ

pup
1 (x, y) =

1

2
−

arctan(
√

1+ρ
1−ρ

y−x
y+x

)

2arctan(
√

1+ρ
1−ρ)

, (36)

and when ρ= 0 (which is the case for some empirical examples, see Section 4.3),

pup1 (x, y) =
2

π
arctan(

y

x
).

Figure 15 displays the dependence of the uptick probability pup1 on the bid-ask imbalance variable
θ= arctan(y/x) for different values of ρ.
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Figure 15 pup1 as a function of the bid-ask imbalance variable θ = arctan(y/x) for ρ = 0 (blue line), ρ = −0.7
(green line) and ρ=−0.9 (red line).
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6. Appendix: Technical Proofs

6.1. A J1-continuity property

Lemma 2. Let τ :D([0,∞),R2) 7→ [0,∞[ be the first exit time from the positive orthant. The map

G : (D([0,∞),R2), J1) → R (37)

ω → 1ω(τ(ω)).(0,1)<0.

is continuous on the set {ω ∈C([0,∞),R2\{(0,0)}), τ(ω)<∞}.

When τ(ω)<∞, G(ω) = 1 indicates that ω first exits the orthant by crossing the x-axis. To prove
this property, first note that

C([0,∞),R2\{(0,0)}) =
⋃
n≥1

C0([0,∞),R2\B(0,1/n)).

Let ω0 ∈ C([0,∞),R2\{(0,0)}). There exists n ∈ N such that ω0 /∈ B(0,1/n). Let ε > 0 such that
ε+ ηω0(ε) + ηω0◦λ(ε)< 1/n, where ηω is the modulus of continuity of ω. Let ω′ ∈D([0,∞),R2) with
dJ1(ω0, ω

′)≤ ε. There exists λ : [0, T ]→ [0, T ] increasing such that

||ω0 ◦λ−ω||∞ ≤ ε and ||λ− e||∞ ≤ ε.

Without loss of generality, one can also assume, by J1-continuity of τ at ω0, that

|τ(ω0)− τ(ω)| ≤ ε.

Now, we will show that |ω0(τ(ω0))−ω′(τ(ω′))| ≤ ε+ ηω0(ε) + ηω0◦λ(ε):

|ω0(τ(ω0))−ω′(τ(ω′))|= |ω0(τ(ω0))−ω0◦λ(τ(ω′))+ω0◦λ(τ(ω′))−ω0◦λ(τ(ω0))+ω0◦λ(τ(ω0))−ω′(τ(ω′))|,

therefore

|ω0(τ(ω0))−ω′(τ(ω′))| ≤ ||ω0 ◦λ−ω′||∞+ |ω0 ◦λ(τ(ω′))−ω0 ◦λ(τ(ω0))|+ |ω0 ◦λ(τ(ω0))−ω0(τ(ω0))|
≤ ε+ ηω0(ε) + ηω0◦λ(ε).

Since ε+ ηω0(ε) + ηω0◦λ(ε) < 1/n and ω0 /∈ B(0,1, n), 1τ(ω0).(0,1)<0 = 1τ(ω′).(0,1)<0, which completes
the proof of the continuity of the map G on the space C([0,∞),R2\{(0,0)}).

6.2. Continuity of Ψ: proof of Theorem 1

To study the continuity of the map Ψ, we endow D([0,∞),R2) with Skorokhod’s J1 topology (see
Lindvall (1973), Whitt (1980)). Let ΛT the set of continuous, increasing functions λ : [0, T ]→ [0, T ]
and e the identical function on [0, T ]. Recall that the following metric

dJ1(ω1, ω2) = inf
λ∈Λ

(||ω2 ◦λ−ω1||∞+ ||λ− e||∞) .

defined for ω1, ω2 ∈ D([0, T ],R2), induces the J1 topology on D([0, T ],R2), and ωn → ω in
(D([0,∞),R2), J1) if for every continuity point T of ω, ωn→ ω in (D([0, T ],R2), J1).

The set (R2
+)

N
is endowed with the topology induced by ’cylindrical’ semi-norms, defined as

follows: for a sequence (Rn)n≥1 in (R2
+)

N

Rn n→∞→ R ⇐⇒ ∀k≥ 1, sup{|Rn
1 −R1|, ..., |Rn

k −Rk|)
n→∞→ 0.
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D([0,∞),R2)× (R2
+)

N× (R2
+)

N
is then endowed with the corresponding product topology. The goal

of this section is to characterize the continuity set of the map

Ψ :D([0,∞),R2)× (R2
+)

N
× (R2

+)
N
7→D([0,∞),R2

+)

introduced in Definition 1. Let us introduce C([0,∞),R2\{(0,0)}) be the space of continuous planar
paths avoiding the origin:

C([0,∞),R2\{(0,0)}) =
⋃
n≥1

C0([0, T ],R2\B(0,1/n)).

Lemma 3. Let ω ∈C([0,∞),R2\{(0,0)}). Then the map

Ψ1 :D([0,∞),R2)×R+×R+ → D([0,∞),R2) (38)

(ω,R1, R̃1) 7→ ω+ 1[τ(ω),∞)

(
1σb(ω)=τ(ω)(R1−ωτ(ω)) + 1σa(ω)=τ(ω)(R̃1−ωτ(ω))

)
,

where

σb(ω) = inf{t≥ 0, ωt.(0,1)< 0}, σa(ω) = inf{t≥ 0, ωt.(1,0)< 0} and τ(ω) = σb(ω)∧σa(ω).

is continuous at ω with respect to the following distance on (D([0,∞],R2)×R+×R+):

d((ω,R1, R̃1), (ω′,R′1, R̃
′
1)) = dJ1(ω,ω′) + |R1−R′1|+ |R̃1− R̃1|

Let (ω0,R1, R̃1) ∈ C([0,∞),R2\{(0,0)}) × R2
+, (ω′,R′1, R̃

′
1) ∈ D(0,R2) × R2

+. Since ω0 ∈
C([0,∞),R2\{(0,0)}), there exists n> 0 such that ω0 /∈B(0,1/n). Let 0< ε< 1/n such that

d((ω0,R1, R̃1), (ω′,R′1, R̃
′
1))< ε.

Since dJ1(ω0, ω
′)< ε, there exists λ : [0, T ]→ [0, T ], non-decreasing such that:

||λ− e||∞ < ε, and ||ω0 ◦λ−ω||∞ < ε.

By continuity of τ for the J1 topology Whitt (2002)[Theorem 13.6.4] at ω0 (since ω0 is continuous,
the J1 and M1 topologies are identical at this point), one can also assume, without loss of generality,
that

|τ(ω0 ◦λ)− τ(ω′)| ≤ ε.

Moreover, since the graph of ω0 does not intersect with B(0,1/n) and ε < 1/n, 1τ(ω0)=σa(ω0) =
1τ(ω′)=σa(ω′). Now define λε by

λε : [0, T ] → [0, T ] (39)

t 7→ τ(ω′)

τ(ω0 ◦λ)
λt.

Then

||λε− e||∞ = || τ(ω)

τ(ω0 ◦λ)
λ− e||∞ ≤ ||

τ(ω)

τ(ω0 ◦λ)
λ− τ(ω)

τ(ω0 ◦λ)
e||∞+ || τ(ω)

τ(ω0 ◦λ)
e− e||∞

≤ ε τ(ω)

τ(ω0 ◦λ)
+

ε

τ(ω0 ◦λ)
.
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On the other hand

||ω0 ◦λε−ω||∞ = ||ω0 ◦λε−ω0 ◦λ+ω0 ◦λ−ω||∞ ≤ ||ω0 ◦λε−ω0 ◦λ||∞+ ε≤ ηω0◦λ(ε) + ε,

where ηω0◦λ is the modulus of continuity modulus of ω0 ◦ λ. Therefore, since 1τ(ω0◦λε) = 1τ(ω′) by
definition of λε and

Ψ1(ω0,R1, R̃1) ◦λε−Ψ1(ω′,R′1, R̃
′
1)) = ω0 ◦λε−ω′

+ 1τ(ω0◦λε)

(
1τ(ω′)=σa(R′1−R1) + 1τ(ω′)=σb(R̃

′
1− R̃1)

)
.

Thus λε satisfies ||λε− e|| ≤ ε( τ(ω′)+1

τ(ω0◦λ)
) and

||Ψ1(ω0,R1, R̃1) ◦λε−Ψ1(ω′,R′1, R̃
′
1))||∞ ≤ ηω0◦λ(ε) + ε+ 2ε

which proves that (ω0,R1, R̃1) is a continuity point for Ψ1.
For k≥ 2, define recursively the maps

Ψk :D([0,∞),R2)×RN
+×RN

+ → D([0,∞),R2) (40)

(ω, (Ri, R̃i)i≥1) 7→ Ψ1(Ψk−1(ω, (Ri, R̃i)i=1..k−1),Rk, R̃k).

To simplify notation we will denote the argument of Ψk as (ω,R, R̃)(= (ω, (Ri, R̃i)i≥1) although it
is easily observed from (40) that Ψk only depends on the first k elements (Ri, R̃i)i=1..k) of R, R̃.

Lemma 4. If (ω,R, R̃)∈C([0,∞),R2\{(0,0)})×RN
+×RN

+ such that

(0,0) /∈Ψk(ω,R, R̃)([0,∞) ) (41)

then Ψk is continuous at (ω,R, R̃).

Let (Ri, R̃i)i≥1, (R′i, R̃
′
i)i≥1, two sequences of random variables on R2

+ and define

Ωk(R, R̃) =∩kj=0Ψj(C([0,∞),R2\{(0,0)}),R, R̃)

where we have set Ψ0 = Id. Consider ω0 ∈Ωk(R, R̃), and ω ∈D([0, T ],R2
+), such that:

dJ1(ω0, ω) + sup
i=1..k

|Ri−R′i|+ sup
i=1..k

|R̃i− R̃′i| ≤ ε.

An application of the triangle inequality yields

dJ1(Ψk(ω0, (Ri, R̃i)),Ψk(ω
′, (R′i, R̃

′
i)))

≤ dJ1(Ψk(ω0, (Ri, R̃i)),Ψk(ω
′, (Ri, R̃i))) + dJ1(Ψk(ω

′, (Ri, R̃i)),Ψk(ω
′, (R′i, R̃

′
i)))

where the last term converges to zero when ε goes to zero by continuity of Ψ1.
We can now prove Theorem 1.
Proof of Theorem 1. Since ω is continuous, the jumps of Ψ(ω,R, R̃) correspond to the first exit

times from the orthant of the paths Ψk(ω,R, R̃). Therefore, if (Rn)n≥1, (R̃n)n≥1 have no accumula-
tion points on the axes, the paths Ψ(ω,R, R̃) only has a finite number of discontinuities on [0, T ] for
any T > 0. So, for any T > 0, there exists k(T ) such that Ψ = Ψk(T ). Then thanks to Lemma 4, Ψ is
continuous on the set of continuous trajectories whose image has a finite number of discontinuities
and does not contain the origin.
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6.3. Functional central limit theorem for the net order flow

Proposition 3. Let (T a,ni , T b,ni )i≥1 and (V a,n
i , V b,n

i )i≥1 be stationary arrays of random variables
which satisfy Assumptions 1 and 2. Let (Na,n

t , t ≥ 0) and (N b,n
t , t ≥ 0) be the counting processes

defined in (15). ThenN
a,n
nt∑
i=1

V a,n
i√
n
,

N
b,n
nt∑
i=1

V b,n
i√
n


t≥0

J1⇒
n→∞

(
ΣBt + t(λaV a, λbV b)

)
t≥0

(42)

where B is a standard planar Brownian motion and

ΣtΣ =

(
λav2

a ρ
√
λaλbvavb

ρ
√
λaλbvavb λbv2

b

)
, (43)

Proof: First we will prove that the sequence of processes[λat]∑
i=1

V a,n
i√
n
,

[λbt]∑
i=1

V b,n
i√
n


t≥0

J1⇒
n→∞

(
ΣBt + t(λaV a, λbV b)

)
t≥0

weakly converges in the J1 topology. Using the Cramer-Wold device, it is sufficient to prove that
for (α,β)∈R2,α [λat]∑

i=1

V a,n
i√
n

+β

[λbt]∑
i=1

V b,n
i√
n


t≥0

⇒
n→∞

(αλaV a +βλbV b))t+

√
(α2λav2

a +β2λbv2
b + 2ραβvavb

√
λaλb)Bt

If λa ∈Q and λb ∈Q, it is possible to find λ such that λa/λ∈N and λb/λ∈N. Let for all (i, n)∈N2,

W n
i = α

(
V a,n

(λa/λ)(i−1)+1 +V a,n
2 + ...+V a,n

λai/λ

)
+β

(
V b,n

(λb/λ)(i−1)+1
+V b,n

2 + ...+V b,n

λbi/λ

)
,

then for all t > 0,

α

[λat]∑
i=1

V a,n
i√
n

+β

[λbt]∑
i=1

V b,n
i√
n

=

[λt]∑
i=1

W n
i√
n
.

For all n> 0, (W n
i , i≥ 1) is a sequence of stationary random variables. Therefore, thanks to (Jacod

and Shiryaev 2003, Chap.VIII, Thm 2.29, p.426), and the fact that

var(W n
1 ) + 2

∞∑
i=2

cov(W n
1 ,W

n
i )

n→∞→ σ2, (44)

the sequence of processes

(∑[λnt]

i=1

W n
i√
n
, t≥ 0

)
n≥1

converges weakly to a Brownian motion with

volatility
√
λσ. If (λa, λb) /∈Q2, there exists (λan, λ

b
n)n≥1 such that

λan, λ
b
n ∈Q and |λan−λa| ≤

1

n
, |λbn−λb| ≤

1

n
.

As above, one can define an integer λn such that λan
λn
∈Q and λbn

λn
∈Q. Let for all (i, n)∈N2,

W n
i = α

(
V a,n

(λan/λn)(i−1)+1 +V a,n
2 + ...+V a,n

λani/λn

)
+β

(
V b,n

(λbn/λn)(i−1)+1
+V b,n

2 + ...+V b,n

λbni/λn

)
,
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One has for all t > 0,

α

[λat]∑
i=1

V a,n
i√
n

+β

[λbt]∑
i=1

V b,n
i√
n

=

[λnt]∑
i=1

W n
i√
n

+α

[λat−λant]∑
i=1

V a,n
i√
n

+β

[λbt−λbnt]∑
i=1

V b,n
i√
n
.

Moreover α [λat−λant]∑
i=1

V a,n
i√
n

+β

[λbt−λbnt]∑
i=1

V b,n
i√
n


t≥0

⇒J1 0,

therefore the convergence above holds even if λa or λb are not rationals. On one hand,

var(W n
i ) = var

(
α(V a,n

(λan/λn)(i−1)+1 + ...+V a,n
λani/λn

) +β(V b,n

(λbn/λn)(i−1)+1
+V b,n

2 + ...+V b,n

λbni/λn
)
)

= α2var
(
V a,n

(λan/λn)(i−1)+1...+V a,n
λani/λn

)
)

+β2var
(
V b,n

(λbn/λn)(i−1)+1
...+V b,n

λbni/λn
)
)

+ 2αβcov
(
V a,n

(λan/λn)(i−1)+1...+V a,n
λani/λn

, V b,n

(λbn/λn)(i−1)+1
...+V b,n

λbni/λn
)
)
.

On the other hand, for all i≥ 2,

cov(W n
1 ,W

n
i ) = α2cov

(
V a,n

1 + ...+V a,n
(λan/λn), V

a,n
(λan/λn)(i−1)+1 + ...+V a,n

λani/λn

)
+ β2cov

(
V b,n

1 + ...+V b,n

(λbn/λn)
, V b,n

(λbn/λn)(i−1)+1
+ ...+V b,n

λbni/λn

)
+ αβcov

(
V a,n

1 + ...+V a,n
(λan/λn), V

b,n

(λbn/λn)(i−1)+1
+ ...+V b,n

λbni/λn

)
+ αβcov

(
V b,n

1 + ...+V b,n

(λbn/λn)
, V a,n

(λan/λn)(i−1)+1 + ...+V a,n
λani/λn

)
.

Therefore

var(W n
1 ) + 2

∞∑
i=2

cov(W n
1 ,W

n
i ) = var(V a,n

1 )
λan
λn

+ 2
∞∑
i=2

cov(V a,n
1 , V a,n

i )
λan
λn

+ var(V b,n
1 )

λbn
λn

+ 2
∞∑
i=2

cov(V b,n
1 , V b,n

i )
λbn
λn

+ 2αβcov
(
V a,n

1 ...+V a,n
λan/λn

, V b,n
1 ...+V b,n

λbn/λn

)
+ 2αβ

∞∑
i=2

cov
(
V a,n

1 ...+V a,n
λan/λn

, V b,n

(λbn/λn)(i−1)+1
+ ...+V b,n

λbni/λn

)
+ 2αβ

∞∑
i=2

cov
(
V b,n

1 ...+V b,n

λbn/λn
, V a,n

(λan/λn)(i−1)+1 + ...+V a,n
λani/λn

)
A simple calculation shows that

2αβcov
(
V a,n

1 ...+V a,n
λan/λn

, V b,n
1 ...+V b,n

λbn/λn

)
+ 2αβ

∞∑
i=2

cov
(
V a,n

1 ...+V a,n
λan/λn

, V b,n

(λbn/λn)(i−1)+1
+ ...+V b,n

λbni/λn

)
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+ 2αβ
∞∑
i=2

cov
(
V b,n

1 ...+V b,n

λbn/λn
, V a,n

(λan/λn)(i−1)+1 + ...+V a,n
λani/λn

)
= 2αβmax(

λan
λn
,
λbn
λn

)cov(V a,n
1 , V b,n

1 )+ 2αβ
∞∑
i=2

λan
λn

cov(V a,n
1 , V b,n

i ) +
λbn
λn

cov(V b,n
1 , V a,n

i ).

Therefore

lim
n 7→∞

var(W n
1 ) + 2

∞∑
i=2

cov(W n
1 ,W

n
i ) = α

λa

λ
v2
a +β

λb

λ
v2
b + 2ρ

√
αβ

√
λaλb

λ
vavb,

where ρ is given in (11) and

lim
n 7→∞

E[W n
i ] = α

λa

λ
V a +β

λb

λ
V b,

which completes the proof of the convergence in (44). The law of large numbers for renewal processes
implies that the following sequence of processes converges to zero in the J1 topology Iglehart and
Whitt (1971):

(Na,n
nt )t≥0

n→∞⇒ ([λat])t≥0, and (N b,n
nt )t≥0

n→∞⇒ ([λbt])t≥0, N
a,n
nt∑

i=[λat]

V a,n
i√
i
,

N
b,n
nt∑

i=[λbt]

V b,n
i√
i


t≥0

⇒ 0 in the J1 topology.

6.4. Identification of the heavy traffic limit

Lemma 5. The process Q is a Markov process with values in R2
+ and infinitesimal generator

(G,dom(G)) given by (13) and

dom(G) = {h∈C2(]0,∞[×]0,∞[,R)∩C0(R2
+,R), ∀x> 0, ∀y > 0,

h(x,0) =

∫
]0,∞[2

h(g((x,0), (u, v)))F (du,dv), h(0, y) =
∫

]0,∞[2
h(g((0, y), (u, v)))F̃ (du,dv)}

To identify the infinitesimal generator of the process, we note that h∈ C0(R2
+) is in the domain

of the infinitesimal generator if for all (x, y)∈R2
+

lim
t→0

E[h(Qt)−h(Q0)|Q0 = (x, y)]

t
<∞.

For x> 0, and y > 0, a classical computation shows that if h∈ C2(]0,∞[×]0,∞[),

E[h(Qt)|Q0 = (x, y)] = h(x, y)+t

(
λaV a

∂h

∂x
+λbV b

∂h

∂y
+
λav2

a

2

∂2h

∂x2
+
λbv2

b

2

∂2h

∂y2
+ 2ρ
√
λaλbvavb

∂2h

∂x∂y

)
+o(t),

which leads to equation (13). To examine whether the operator G is closable on R2
+ we note that,

for h∈C2(]0,∞[×]0,∞[)∩C0([0,∞),R2) and (x, y)∈R2
+,

E[h(Qt)|Q0 = (x,0)] =

∫
]0,∞[2

E[h(Qt)|Q0+ = g((x,0), (u, v))]F (du,dv)

=

∫
]0,∞[2

(E[h(Qt)|Q0+ = g((x,0), (u, v))]−h(g((x,0), (u, v))) +h(g((x,0), (u, v))))F (du,dv)

=

∫
R2
+

(tGh(g((x,0), (u, v))) +h(g((x,0), (u, v))))F (du,dv) + o(t).
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E[h(Qt)|Q0 = (0, y)] =

∫
]0,∞[2

E[h(Qt)|Q0+ = g((0, y), (u, v))]F̃ (du,dv)

=

∫
]0,∞[2

(E[h(Qt)|Q0+ = g((0, y), (u, v))]−h(g((0, y), (u, v))) +h(g((0, y), (u, v)))) F̃ (du,dv)

=

∫
]0,∞[2

(tGh(g((0, y), (u, v))) +h(g((0, y), (u, v)))) F̃ (du,dv) + o(t).

so as t→ 0, we have

E[h(Qt)|Q0 = (x,0)]−h(x,0)

t
=

∫
]0,∞[2

Gh(g((x,0), (u, v)))F (du,dv)

+
1

t

∫
]0,∞[2

(h(g((x,0), (u, v)))−h(x,0))F (du,dv) + o(1).

E[h(Qt)|Q0 = (0, y)]−h(0, y)

t
=

∫
]0,∞[2

Gh(g((0, y), (u, v)))F̃ (du,dv)

+
1

t

∫
]0,∞[2

(h(g((0, y), (u, v)))−h(0, y)) F̃ (du,dv) + o(1).

Thus the limit t→ 0 is well defined only if h verifies, for x> 0, y > 0,

h(x,0) =

∫
]0,∞[2

h(g((x,0), (u, v)))F (du,dv), h(0, y) =

∫
]0,∞[2

h(g((0, y), (u, v)))F̃ (du,dv), (45)

This is a Wentzell boundary condition (Taira 1991) which corresponds to a jump to the interior
whenever the process reaches the boundary of the quadrant. G is thus closable on the set

dom(G) = {h∈ C2(]0,∞[×]0,∞[)∩C0(R2
+), h verifies (14)}

and, for h∈ dom(G) we have

Gh(x,0) =

∫
]0,∞[2

Gh(g((x,0), (u, v)))F (du,dv), Gh(0, y) =

∫
]0,∞[2

Gh(g((0, y), (u, v)))F̃ (du,dv).

The elliptic operator defined by the Laplacian on (0,∞)2 with Wentzell boundary conditions
(45) thus admits a closure (G,dom(G)) on R2

+ and verifies the assumptions of Galakhov and
Skubachevskii (2001)[Theorem 3.1]. Galakhov and Skubachevskii (2001)[Theorem 3.1] then im-
plies the existence of a R2

+–valued Feller process Q, unique in law, whose infinitesimal generator
(G,dom(G)). The limit process Q is thus a R2

+–valued Markov process associated with this semi-
group.
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