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Summary: Let W = supg<;<o. (X () — 6t), where X is a spectrally positive Lévy process with
expectation zero and 0 < 3 < co. One of the main results of the paper says that for such a process X
there exists a sequence of M/GI/1 queues for which stationary waiting times converge in distribution
to W. The second result shows that condition (III) of Proposition 2 in the paper is not implied by
all other conditions.
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1 Introduction

Let X be a Lévy process with expectation zero and let W = supg<;..(X(t) — 5t),
where 0 < < co. The random variable W appears in many areas of applied proba-

bility, such as queueing theory, risk theory (see e.g. S. Asmussen [1] or P. Embrechts
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et al. [2]). The Laplace-Stielties transform (LST) of W was considered by many au-
thors (see among others G. Baxter and M.D. Donsker [3] and N.H. Bingham [5]). In
the case when X is a centered Poisson process that distribution was given by R. Pyke
[14]. In a more general case, i.e. for a spectrally positive Lévy process the LST of W
was given for the first time by V.M. Zolotarev [22| and afterwards several different
proofs of his theorem were formulated (see e.g. L. Takacs, [19], N.H. Bingham [5],
J.M. Harrison [9], O. Kella and W. Whitt [10] and others).

In the queueing theory the random variable W appears as a limit of appropriately
normalized stationary waiting times in heavy traffic for some queues. This fact was
shown several times with use of different techniques, approaches and assumptions (see
e.g. Yu. V. Prokhorov [13], W. Whitt [20] and [21], S. Resnick and G. Samorodnitsky
[15], W. Szczotka and W.A. Woyczynski [17] and [18], M. Czystotowski and W. Szc-
zotka |7]). The form of the LST of W in the context of GI/GI/1 queues was given by
O.J. Boxma and J.W. Cohen [4] for the cases with X being stable spectrally positive
or spectrally negative Lévy processes.

A representation of stationary waiting time w for G/G/1 queues given by w =
SUP o< <00 (Z (t) — ﬁ(t)), where Z is a process based on sums of differences of service
times and inter-arrival times with sample paths in D[0, co) and 3(t) is a function from
DI0, 00), suggests a natural way of studying weak convergence w;,, = supg<; o, (Xn(t)—
Bn(t)) 2w Namely, the method is based on interchanging the limit operation with
supremum operation. This exchange is justified if: (I) X, 2 X in D0, 00) with
Skorokhod J; topology and X is stochastically continuous; (II)  ,(t) — gt for
each t > 0; and (IITA) lim,,_o limsup,, ., P(sup;s,,(Xn(t) — Bu(t)) > ) = 0 for
each € > 0. This idea was first used by Yu. V. Prokhorov [13] to show convergence

wy 2 W for GI/GI/1 queues in heavy traffic with X being a Wiener process. It
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was also formulated by Asmussen [1] as an universal method of showing convergence
SUP o< o0 (Xn (t) = Bn(t)) 5 SUPg<t<oo (X (t) —Bt) With general processes X, and X and
next used by S. Resnick and G. Samorodnitsky [15] to study convergence w, 2w
with X being a Lévy process. W. Szczotka in (1990) and next in (1999) studying
convergence wy, 2W for queues with dependencies, replaced condition (IITA) by
condition (III): {w,} is tight. Notice that condition (III) is necessary for weak con-
vergence of w,, and in some queueing situations it may be easier to check (III) than
(IIIA) (see proofs of Lemmas 2 and 3 in [7]). The method of proving w, = W by ver-
ifying conditions (I), (II) and (III) was called by W. Szczotka and W. A. Woyczynski
[17] the Heavy Traffic Invariance Principle (HTIP) (cf. Proposition 2).

The aim of the present paper is the following. Firstly, for a given Lévy measure
v concentrated on (0,00) such that [ zv(dz) < co construct a suitable sequence of
M/GI/1 queueing systems in heavy traffic such that w, L W with Lévy process X
having measure v. The construction of that sequence is given in Theorem 1. This
theorem is necessary to formulate Theorem 2 and Corollary 2. However, it is also
useful to give another derivation of W when X is a centered Poisson process, what is
illustrated in Section: Application of Theorem 1.
As a consequence of Theorem 1 we get the fact that in the set of limiting distributions
of stationary waiting times in heavy traffic are not only exponential distributions and
Mittag-Leffler distributions, but also some convolutions of Mittag-LefHler distributions
or distributions of suprema of: Poisson processes, Compound Poisson processes or
Gamma processes with negative trends (cf. Remark 1).

The second aim of the paper is to answer the question whether condition (III)
for GI/GI/1 queues is implied by conditions (I) and (II). The particular case of this

question, i.e. when X is a Wiener process, was communicated to W. Szczotka by
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W. Whitt. The negative answer is given in Theorem 2 and Corollary 2.

All theorems are based on a stronger version of Lemma 2 from [7], which we
formulate here as Proposition 3. Essentially, the proposition extends the range of
applications of Lemma 2 from [7], so may be treated as a new result.

The structure of the paper is as follows: Section 2 serves as a reminder of Lévy
processes theory and queueing theory; Section 3 contains only novel results of the
paper; finally, Appendix contains some technical facts needed in the paper and the

proof of Proposition 3.

2 Preliminaries

2.1 Lévy Process

The terminology dealing with Lévy processes, which is used here, comes from [16] and
we assume below that a Lévy process has sample paths in the space D[0,00). Any
Lévy process Y can be obtained as a limit in distribution of the following processes
Y, (t) = Zgnzt]l Cnjs t >0, n > 1, where for each n > 1, the random variables
Cnks k > 1, are mutually independent with distribution functions F,, j, respectively,
which satisfy conditions (3.35a)—(3.35d) given by Yu. V. Prokhorov in [12], p. 197. If
for each n > 1, F, , = F,, then condition (3.35b) is implied by all others. Further on
we consider only the last case and only spectrally positive Lévy processes. Recall that
Lévy process Y = {Y (t),t > 0} is spectrally positive if its LST, E exp ( - sY(t)) =
exp(tq/)(s)>, s > 0, is such that

(1) @D(S) _ —Sbr + 520‘2/2 + /Ooo (6—51’ — 1+ Sx]_{xgr}($)>l/(d$)
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where b, € R, 02 > 0 and v is a Lévy measure concentrated on (0, 00); or equivalently,
is a Lévy process with nonnegative jumps. The mentioned Prokhorov’s result from

[12], p. 197, adapted to spectrally positive Lévy processes has the following form.

Proposition 1. Let Y be a spectrally positive Lévy process given by (b., 02, v) and
let processes Y,, be defined above for the case F,, = F,. Then 'Y, 2y in DI0, 00)
equipped with Skorokhod Jy topology if and only if {F,} satisfies conditions

Pl  nF,(y) = v(—o0,y) =0 and n(l — Fn(x)) — v(x,00), asn — oo,

for all continuity points y < 0 and x > 0 of the Lévy measure v,
P3 b, & limnﬂoonf‘l,‘gr xdF,(x) and |b.| < oo, for some 0 < r < oo,
P4 there exists o® such that 0 < 0 < oo and

limlimsupn/ll v?*dF,(z) = limliminfn/ r*dF,(r) = 0%
z|<e r|<e

e—0 nooco e—0 n—oo
If E]Y(t)] < oo, then EY (1) = b, + [, zv(dz), so in case EY(t) = 0, we have

P5 b, = —/ xv(dz).
|z|>r

In original formulation of Prokhorov’s Theorem there was one extra condition,
which in our context is not necessary. To be consistent with paper [7|, where we use
notation P1-P5 as well as P2 denoting that assumption, we do not change enumera-

tion of conditions P3-P5.

2.2 Stationary waiting times in heavy traffic

Consider a sequence of GI/GI/1 queues with FIFO discipline of service. Let the

n-th queue be generated by independent sequences {v, g,k > 1}, {up, k > 1} of

bt
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iid random variables with finite means. For generic random variables v, ; and wu,, 1,
denote by v,, and u,, their means, by B, and A, their distribution functions, and by
Ff and F;;‘ the distribution functions of v,; — v, and u,; — 4., respectively. We
interpret v, 5 as the service time of the k-th unit in the n-th queue, and w, as the
inter-arrival time between the k-th and (k + 1)-st units in the n-th queue.

If a, 4 Uy — Uy < 0, then w, 4 SUPg> Z?Zl(vw — Uy, ;) is finite with probability
one and is called a stationary waiting time. We will assume below that a,, < 0 for all
n and a, T 0, i.e. the systems we consider act in heavy traffic regime. Observe that

(2) wn = sup (Xn(t) = [an|[nt]),

0<t<oo
where X,,(t) = Zgit]l(vw — Upj — Up + Uy), t > 0.
Now, we recall Heavy Traffic Invariance Principle from [17] for GI/GI/1 queues
in a suitable form in which, for a convenience, the scaling constants ¢, from [17] are

included in random variables v,, ; and u,, x.

Proposition 2 (see [17], Theorem 1, Heavy Traffic Invariance Principle). Let the
following conditions hold

(I X, L X in DI[0,00) equipped with Skorokhod Jy topology, where X is a Lévy
process,

(IT) B, :=nla,] — B, 0 < (< 0,

(III) the sequence {wy,} is tight.

Then w, — SUP o<« o0 (X () — B1).

The main results of the paper use Proposition 3 formulated below, which is a
strengthened version of Lemma 2 from [7]. Roughly speaking, it states that for
M/GI/1 queues tightness condition (III) is implied by conditions (I), (IT), whenever

condition P5 is true and {nv?} is convergent to a finite limit. It also gives the LST

6
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of the limiting distribution of w,. For the sake of readability the proof is postponed
to the Appendix.

Proposition 3. Let the sequence {FP} defined for {B,} in M/GI/1 queues satisfy
conditions P1 with v, P38 with b, and P4 with o%. Furthermore, let 3, — 5, 0 <

B < oo and nv? — c?, 0<c* < oo. Then

3) Bexp(—swn) — (14 () = (o),
where
(4) @D(S) = —sb, + 52(02 + 02)/2 + /OOO (6—55‘? — 14 Sil{xgr}(x))y(dx)'

Moreover, if condition P5 holds, then U is the LST of some nonnegative random

variable.

Remark. Specifications of the exponential distributions of inter-arrival times are
expressed by the assumption 5, — ( and 0 < < oo. Of course, it does not give
precisely the parameters of these distributions, but it determines their asymptotic
behavior, hence also behavior of partial sums processes built upon corresponding
random variables. More precisely, if for a sequence of M/GI/1 queues the following

convergences hold:
D _
Xf—>XB, ni: —ct, 0<c?<oo, fB,—fB 0<3<oo,

where XB(t) = an:t]o(vmk —0,), t >0, and X2 is a Lévy process then X,, 2 X =
XB — W, where X, (t) = ngn:t]o(vn,k — Upp — Uy + Up), t > 0, and W is a Wiener

process.

Remark. Under the assumptions of Proposition 3, we have w,, EA SUpP;> (X (t)— ﬁt),

where X is a Lévy process characterized by parameters given in conditions P1, P3

7
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and P4 (see e.g. [7]). One of the main drawbacks of Lemma 2 from [7] is that the
most common process, i.e. Wiener process, is excluded. Now, we assume only that a

limiting spectrally positive Lévy process has finite mean.
From Proposition 3 we get the following corollary.

Corollary 1. Let the sequence {FP} defined for {B,} in M/GI/1 queues satisfy
conditions P1 and P3-P5. Furthermore, let 3, = nla,| — £, 0 < § < oo, and

nv? — ¢, 0 < ¢® < oo. Then the sequence {w,} is tight.

3 Main results

3.1 Relation between Lévy processes and M /G /1 queues.

Let X be a fixed spectrally positive Lévy process with mean zero, a Gaussian com-
ponent 02 and a Lévy measure v. Hence, by Remark 2 (cf. Appendix), the measure v
satisfies [° v(z, 00)dz < 0o. Moreover, let us fix 3 > 0. Below, we define a sequence
of M/GI/1 queues in heavy traffic, such that w, > SUPg<too (X (t) — Bt) = W. To
do this we define distribution functions B, and A,. First, we specify B, and then
upon this specification we assume that A,, are exponential distribution functions with
means 4, = v, + [/n, respectively. The distribution functions B,,n > 1, are defined
separately in pure Poissonian case (i.e. 0% = 0), pure Gaussian case (i.e. v = 0) and
in a general case (i.e. when both parameters are arbitrary).

In the first case (pure Poissonian case) let B,,, n > 1, be equal to

0, for x < x,,,
(5) B.@)=1{
1 — -v(x,00), forz>xy,,
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where {x, } is a sequence of nonnegative numbers chosen for an infinite Lévy measure v

in such a way that

(6) zn, 10, nx, — oo and %V(xn,oo) <1
while for a finite measure v x,, is chosen as 0 for n > (0, co).

Generally, a choice of {x,} is not unique. For finite v the sequence {x,} could be
chosen in the same way as for the infinite one. However, as we will see at the end of
this section, the option x,, = 0 simplifies computation leading to the distribution of
W. Notice also that, simplicity of considerations is govern by a suitable definition of
{z,,}, because the definition of B,, depends mainly on the sequence.

Observe that

o0

Uy = /OOO (1 — Bn(x)>dx =z, + = v(x,00)dx.

n Jzy,

Lemma 1. If B,, n > 1, are defined by (5), then v, are finite and nv> — 0, as

n — OoQ.

Proof. In the case of finite v we have

1 1 oo
U, < —v(0,00) + —/ v(x,00)dr < o0.
n nJ1i

If v(0,00) = oo, then (6) implies z,, > 0, for sufficiently large n, but without loss of

generality we assume that it holds for all n. Hence we have

Up < Xy +

1 1 )
/ xv(x,00)dx + —/ v(x, 00)dr < 0.
Ny Jn, nJi

By assertion (i) of Remark 2 in Appendix we have limsup, [ zv(z,00)dz < oo,

which implies v,, — 0.
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Below, for simplicity, denote v, = v, and 14 = 1(A), where A is an event.

Notice that for every ¢ > 0 we have
0 < B(v2 —2u,T, +72)1(v, <€) < E(v?)1(v, <€) — T2 + 20, Ev,1(v,, > e).
Therefore
nt2 < nE(w?)1(v, <€) + 2nv,Ev,1(v, > ¢).
But
nE(w?)1(v, <€) :n/ 2%dB,(z) = n/ 22dB, ()

" 0 Tn
= —c*v(e, 00) + 22v(y, 00) + 2/ av(x, 00)dx.
Now applying Remark 2 from Appendix we get

lim lim (—621/(6, o) + 22v(x,,, 00) + 2 /6 zv(z, oo)dx) =0,

e—0n—0
which gives lim. ¢ limsup,,_,. nE(v?)1(v, <€) = 0.

Furthermore, for sufficiently large n the following holds
nEv,1(v, > €) = / zv(dz),

so 2nT, Ev,1(v, > €) — 0 as n — oo. This, in view of the above, completes the proof

of the Lemma. O

In the pure Gaussian case B,,,n > 1, are defined as the exponential distribution

functions with means @, = o/v/2n, respectively, i.e.

(7) B,(z) =1 —exp(—zv2n/o), x>0, n>1.
Finally, for arbitrary processes B,, are defined as

(8) B, = Bp1% Bpa, n>1,

where By, are defined by (5) and B,,, by (7).

10
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Theorem 1. The following implications hold.

(i) (Pure Poissonian case). If B, are defined by (5), then {FP} satisfies condi-
tions P1-P5 with Lévy measure v and 0% = 0;

(ii) (Pure Gaussian case). If B, are defined by (7), then { FP} satisfies conditions
P1-P5, with Lévy measure v =0 and Gaussian component o2 /2;

(iii) (General case). If B, are defined by (8), then {EFP} satisfies conditions
P1-P5, with Lévy measure v and Gaussian component o2 /2;

() If wy,n > 1, are defined for M/GI/1 queues with B,, defined as in either (i)
or (1) or (ii1) and A,, are exponential distribution functions with means u, = v,+/3/n,

respectively, then
9) wn 2 sup (X(t) = Bt) =W,

where X s a spectrally positive Lévy process with mean zero, Gaussian component
o2, Lévy measure v and the LST of W is given by (3) and (4) with appropriate v, o

and b, = — [ -, zv(dz).

z|>r
Proof. (i) To prove P1 notice that, by Lemma 1 for any = > 0 there exists ng

such that x — v, > x,, for all n > ng. Then for any x > 0 being a continuity point of

the measure v we have
n(l - Ff(z)) = n(l — Bu(x + T)n)> =v(z + Uy, 00) — v(x,00).

Obviously nEF2(z) — 0, for all z < 0.
To prove that {FP} satisfies P3 notice that for sufficiently large n such that

—r+17v, <0 and r + v, > z, we have

n/{|x|<r} rdFB(z) = — n/{|x|>r’} rdFB(z) = —n/ (x — 0,)dBy ()

{|z—on|>r}

=— zv(dx) +no, (1 — B, (r +9,,) ).
ey P07 (1= Bu(r 4 70)

11
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Hence
(10) limn/ rdF5(z) = —/ xv(dz).
" {l=[<r} r
Furthermore, b, in P3 equals to b, = — [ zv(dx), so condition P5 is satisfied.

To show P4 notice that for sufficiently large n we have

n/a 22dFB(x) = n/ai 22dB,(x + vy,)

—€

= —ne’ (1= Bu(e + ) + 1) +2 ) wn (1= Bu(x +0,))dx

_fDn

— —e%v(e, 00) + 2/E xv(x,00)dr = /6 2?v(dr), asn — oo.
0 0

Hence

lim limsupn/ 2?dF5(r) = 0.

e—0 n —€

This completes the proof of part (i) of the Theorem.

(ii) By point (i) of Remark 3 in Appendix the sequence { F’} satisfies conditions
P1-P4 with v = 0 and 0%/2, so also P5. In the considered case nv> — o2/2. This

completes the proof of point (ii) of the Theorem.

(i1i) By point (i) of the Theorem the sequence {F } satisfies conditions P1-
P5 with Lévy measure v and Gaussian component o2 = 0 and by point (ii) of the
Theorem the sequence {Ffz} satisfies conditions P1-P5 with Lévy measure v = 0 and
Gaussian component 02 /2. Since B, is the convolution of B, 1 and B, 5, the sequence
{FB} satisfies conditions P1-P5 with Lévy measure v and Gaussian component o2 /2.
This completes the proof of point (iii) of the Theorem.

(iv) The sequence {FP} satisfies conditions P1-P5 in all cases (i)-(iii), so by
[n]

Proposition 1 we have convergence ijl(vn,j — Up) L xB , where X? is a spectrally

positive Lévy process with mean zero, Lévy measure v and Gaussian component equal

12
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to zero (in point (i)) or 02/2 (in points (ii) and (iii)). It can be easily verified, that
{FA} satisfies P1-P5 as well, so Zg-z}l(uw —Up,) L X4 where X4 is a Wiener process,
degenerated in point (i) (i.e. equal to zero) and with variance 02?/2 in the remaining
points (cf. Remark 3 in Appendix). Since X“ and X? are independent and 3, — 3,
by Proposition 3 and HTIP we get convergence (9). Now using Proposition 3 once
again we get that the LST of W is given by (3) and (4). This completes the proof of
the Theorem. [

Application of Theorem 1. The first observation is that Proposition 3 jointly
with Theorem 1 give another proof of the famous Zolotarev’s theorem from [22]. The
second observation is that immediately from Theorem 1 it follows that the class of
limiting distributions of w,, for M/GI/1 queues in heavy traffic contains distributions
of W with X being a centered Poisson process, Compound Poisson process or Gamma
process. Also the limiting distributions of w,, may be the convolutions of some Mittag-
Leffler distributions, what may be especially interesting from a queueing-theoretic
point of view. The third observation is that Theorem 1 jointly with HTIP can help
us to find distribution of W. Its usefulness is based on two points. The first one is the
formula for the stationary waiting time in M/GI/1 queue, i.e.

sk _

) Pl <a)==p) (5 [ (= Bw)ay) . where = 22

n

which for the case B(0+) = 0 is given in [6], page 255 formula (4.82) and for the
general case B(0+) > 0 it is given in the proof of Proposition 3. The second point is
a proper choice of simple queues for which w, L W and for which we are able to find
the limiting distribution of w,,. Below we demonstrate this way of getting distribution

of W for X(t) = Y(t) — At, where Y (¢) is a Poisson process with intensity A. In this

13
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case the LST of WV is of the form

(b— s
bs + Ae—s —1)’

Eexp(—sW) = s >0, where b =3+ A.

Instead of reversing this LST we find distribution of W using convergence w, 2w
Namely, using formula (11) and convergence w, 2w for special M/GI/1 queues we

show that

[]
(12) PW <z)=Plw, <z)= Z_: (j — o) p]exp{ p(j—:c)}.

1
il
This distribution was obtained by R. Pyke [14] and here we give its queueing deriva-
tion. Notice that the Lévy measure corresponding to Poisson process Y and process
X is v(z,00) = A for 0 <z <1 and v(x,00) =0 for z > 1, so it is finite. Therefore
taking x,, = 0 in the definition of B, we have B, (z) =1 — A/n for 0 < z < 1 and
B,(x) =1for x > 1 and p, = \/(A+ ) = p. This implies that the residual distribu-
tions % Iy (1 — Bn(y))dy for each n are equal to the uniform distribution on [0, 1].
According to formula (9.5) from Section 1.9 in Feller [8], for the k-th convolution of

uniform distributions on [0, 1], we have

(%/@x (1—Bn(y))dy)*k = kii ( ) (x =)k

where x; = max(0, z). This and the above give the following formula

Plw,<z)=(1-p ipklz j(

where the right-hand side of the above does not depend on n, so D(z) = P(W < x).

14
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Notice that

D) =10 33 (e - i

J=0k=j
o
1 1 b

~(—1) x—jmzp’”(k il =)k

<
I
o
%.I

| —

(1) (= j)Lp’ exp {pla — j) |

<
[l
o
<.

= ( 0 — 2y p exp { = p(i — o)},

—
|

=
~—

<.

I

o

Q|}—‘

which coincides with formula (12).

The following remark shows that convolutions of some distributions of type W

are also of type W. Its proof is omitted.

Remark 1. Let nonnegative numbers p; and a , J 2 0, be such that 3272, p; = 1,

‘]’Ooa]p] T 52 < 5o and let vj, § > 0, be Lévy measures concentrated on (0, 00)

such that [7° zvj(dx) < oo, sup;sq fo° min(1l, 2*)v;(dr) < oo and let v g 20 DV
Furthermore, let W; and ¢; be defined by (3) and (4), for v; and o7 respectively. Then

we have the following:

(i) If X is a spectrally positive Lévy process with Lévy measure v and Gaussian

component o2 then the LST of the random variable W is

(13) E exp(—sW) < Zpﬂbj )

(i1) If 0 = 0 and s7'1(8)a(s) = 3(s), s >0, then U1(s)Wy(s) is LST of W with

X being a spectrally positive Lévy process with finite mean.

15
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From Remark 1 it follows that if G; i = 1,2, are the Mittag-Leffler distributions
with LSTs equal to (1+\; ®s")~1 s >0, where 0 < x; < 1 are such that s, +xy < 1
and \;" = [7'o;'(—q;), with 1 < «a; < 2 and the function T is the analytical
extension to R\ {0, —1,—2, ...} of the gamma function T'(y) = [ 2¥~ e *dz, y > 0,
(cf. N. N. Lebedev [11]) then convolution G * Gy is the distribution of W with LST
of the form ¥(s) = (1 + A NS s )\1”1)\2”25“1+“2>1, s> 0.

3.2 Non sufficiency of conditions I and IT in HTIP.

One can raise a question whether conditions (I) and (II) in HTIP imply condition
(III), i.e. the tightness of {w,}. A similar question was communicated privately to W.

Szczotka by W. Whitt. Namely, W. Whitt asked if the convergence in distribution to

[nt]
7j=1

a Wiener process with a negative trend of the processes X,,(t) = .21 (v j —Up i), t >
0,n > 1, for GI/GI/1 queues in the heavy traffic, implies tightness of {w,}. An
answer to this question give Theorem 2 and Corollary 2 formulated below. They state
that for any spectrally positive Lévy process X with the Lévy measure v satisfying
J7° xv(dr) < oo, there exists a sequence of M/GI/1 queues for which conditions (I)
and (II) hold, but (III) does not.

Let us consider a sequence of M/GI/1 queues with B,, defined as

1—gq,, for0<z<b,,
(14) B, (x) =
1, for x > b,,

where 0 < b, T 00, ¢,b, | 0 (monotonically) and nb,q, — d, 0 < d < oo; A,,n > 1,

being exponential distribution functions with means v, + #/n,n > 1, respectively.

Theorem 2. The sequence {FB} induced by B, defined in (14) satisfies conditions
P1-Pj and B, — B3, but {w,} is not tight.

16
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Proof. Let x > 0, then for n such that b, > =+ 0,, we have n(l - Ff(x)) = ng,.
From the assumption nb,q, — d, 0 < d < co and b, T oo we get that {F?} satisfies
P1 with v =0, i.e. v(z,00) = v(—00, —x) = 0 for all x > 0.

Notice that

lim n/ll eFB5(r) = lim —nv,(1 — ¢,) = —d,
x|<r

n—oo n—~0o0

so P3 is satisfied with b, = —d. Similarly

lim n/ 2?FP(z) = lim no2(1 —¢q,) =0,
n—oo ICC|<€ n—oo
which shows that P4 holds with o2 = 0.
Hence by Prokhorov’s result (Proposition 1) we obtain X7 L, _de, where e(t) =

t,t > 0. Moreover, P5 does not hold. Because of 3, = 3 and nv?> — 0, as n — o0,

and next by Proposition 3 we get

1

E(eisw”) — 71 N d/ﬂ’

as n — OoQ.

But 1/(1+d/f3) is not LST of any probability measure, so {w,} is not tight. This
completes the proof. [

The most crucial point of the previous construction and assertion of the theorem
is that the first moments of the approximating sequence do not converge to the cor-
responding moment of the limiting process. The fact that the weak limit in Theorem

2 is degenerated can be easily removed, which shows the following corollary:

Corollary 2. For any spectrally positive Lévy process X with finite mean, Lévy mea-
sure v and Gaussian component o® there erists a sequence of M/GI/1 queues, such

that X,, 2 X, B, — B, but {w,} is not tight.

17
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Proof. Let us define a sequence of M/GI/1 queues by defining B,, and A,, in the
following way: B, = B\ x B@ | where B(") are defined by (8) for the Lévy measure
v and B by (14) while A,,, n >1 are exponential distribution functions with means
U, = U, + 3/n, respectively. Since FB(z) = FBY « FB (1), by Proposition 3 and
Theorem 2, we get X, = X — de, with e(t) = t. Because of ni?> — ¢2/2, as n — 0o,

and (3, = 3, and next by Proposition 3, we have

E(e™*n) — (1 +d/B+ s20%)2 + /0 h (e7 =1+ sa)v(d)) /(sﬁ)) 71,

as n — 0o. However, the right-hand side of the above is not LST of any probability

measure, so {w,} is not tight. This completes the proof. [J

4 Appendix

4.1 Auxiliary results

Here we give auxiliary technical facts which we used in Section 3.

Remark 2. (i) Ifv is a Lévy measure such that [ 2°v(dx) < oo for some 1 < a <
oo and & > 1, then for any r, 0 <r < a < oo, we have

(15) /a 2’ v(dz) = r’v(r, a) + 5/; 2" u(x, a)dz.

r

(i) If v is a Lévy measure, then

1
(16) lime’v(e,al < oo and lim [ zv(z,aldr < oo, where 1 < a < oo,

e—0 e—0 J¢

Proof. The assertion (i) in case v(r,a] = 0 is trivial. To prove it for v(r,a] > 0

first recall that every Lévy measure is finite on any interval (z,00), > 0 and then

18
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define the distribution function F' by F(x) =0 for x < r; F(z) =1 for x > a and

a
, forr <z <a,

where v(x, 00| = v(z, 00).

Notice that for 0 < r < a we have

/Ta fg’/(d@ = v(r,al /Ta $5F(dx) = —v(r,a /ra gg5d(1 _ F@))
=t (= (1= @) 48 171 Fla)c)

_ 5 o saviz,a )_ 5 ¢ o1
—I/('/’,CL](’/’ +6/T x V(r,a]dx =r V(r,a]—l—é/r 2° " v(z, aldx.

This completes the proof of point (i).

To prove assertion (ii) we use assertion (i), i.e. (15) with r = ¢, a = 1 and
§ = 2. Then (15) jointly with lim._q [ 22v(dz) = [y 2*v(dz) < co imply (16) and
this completes the proof of assertion (ii) and the Remark. [

The following remark gives conditions under which the distribution functions
of exponentially distributed random variables centered by their expectations satisfy

conditions P1-P4.

Remark 3. Let G, (z) =1 —exp(=\,x), forz >0 and F¢(x) = G(x + 1/\,).

(i) If \n/v/1— X\, 0 < X < oo, then {FY} satisfies conditions P1-Pj with v = 0,b, =
0,02 =1/\%

(ii) If \p/+/1 — oo, then {FS} satisfies conditions P1-P4 with v = 0,b, = 0,02 = 0.
(iii) If \p/mn — X\,0 < X\ < oo, then {FY} satisfies conditions P1-Pj with v = 0,
b, = 0,02 =0.

Proof. Let {n,k > 1} be a sequence of iid nonnegative random variables,

exponentially distributed with parameter 1 and for each n > 1 let {n,x, k > 1}

19
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be a sequence of iid nonnegative random variables with distribution function G,,
being exponential with parameter \,,. Then 7, , — En, Z (g — 1)/ . Let XC(t) =
Zg"tll(nn] En, ;) and Z,(t) = ngll(n] 1). Then we have relation X¢ L2 7./

and convergence ﬁZn EA W, where W is a standard Wiener process. Hence and by

relations

1 1 nt
—Zu() \F Z —1) and X927/,

and next by Proposition 1 we get assertions (i) and (ii) of the Remark.
In case (iii) we have y-= L Z[m] (n; —1) 2 0. Hence by the same argumentation as

before we get assertion (iii). This completes the proof. [

4.2 Proof of Proposition 3

Formula (4.82) in [6], p. 252, gives the distribution function of the stationary waiting
time w for M/GI/1 queues in the case when the distribution function B of the service

times is such that B(0+) = 0. Namely, it has the form

(17) P(w < ) Z ( / (1- B(s))d3>*j’ x>0,

where p = v/u and H* is the j-th fold convolution of a distribution function H.
However, this formula is also true for the case 0 < B(0+) < 1 and 0 < p < 1. To see
it, let us take a sequence of M/GI/1 queues with distribution function B® of service
times in the k-th queue, such that B®(z) = pé,, (z) + (1 — p)B(z), B(0+) = 0
and zp | 0, where 6., (x) = 0 for x < z; and d,,(x) = 1 for x > x;. Whereas,
A®)s (distribution functions of the inter-arrival times) do not depend on k. Then

B®(0+) =0, 0 < p® < 1. Therefore, for any = > 0 the distribution function of the

20
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stationary waiting time w®) for the k-th queue has the form

08 P 0= (1) 3 () (5 [ (- B

*j

But B® = BO = pgy+(1—p)B and w® 2 wO where w® is the stationary waiting
time for the M/GI/1 queue with B(?) being the distribution function of service times.
Since the right-hand side and the left-hand side of (18) converge, for each = > 0 we

have

(19) Pw® <x)=(1-p) i_oj (0©)’ (% /Om (1- B(O)(S))d3> :

This completes the proof that (17) is also valid for B such that 0 < B(0+) < 1.
Later on we assume that the distribution function B in (17) may be such that
0 < B(0+) < 1 and the sequence of distribution functions B, can be written as
follows:
B,(x) =pp+ (1 — pn)Dp(z), x>0,

where 0 < p, < 1 and distribution functions D,, are such that D, (04+) = 0. Then

D

n

the expectations of B,, and D,, are denoted by v, and v, respectively, and v, =

(1 — p,)v2. Furthermore, notice that

Bpo(z) £ L (1= Bu(x))dz = ! Ox (1= Dy(x))da.

Uy, Jo op

From formula (17), for this general case, the LST of w, has the following form:

1— Pn Pn A -
FEexp(—sw, :—A:<1+ 1 —B,o(s )
( ) 1 — pnBno(s) 1- p”< ! )>

-1
Pn 1 o —SsT
- (1 +1o o 550 Jo (e =1+ sx)an(x)> :

21
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where Bn,(] is the LST of the distribution function B, and p, = ¥,/u,. By the
relation
Pn 1 - 1— Pn
1_pn@7?_ |anl ’

we get
-1

1-— 1 o0
Eexp(—swy,) = (1 4 —Pn 2 n/ (e =1+ s:c)an(:c)>
s Jo

nlay|

By the definition of B,, we finally obtain

-1

1 o)
Eexp(—swy) = ( + 7”/ (e7* =14 sw)dB,(x ))
SPn
Putting 1, = [;*(e™** — 1 + sx)dB,(x), and
La=[" (@ -1t B @), L= [ (0 - ) + 55,)aB, (@)
~n 0

we get I, = I,,1 + I, 2. But for € > 0 we have
(20) In,l = Cn71(€) + Cmg(E) + Cn73 + Cn74,
where

Caale) = [ (7 =14 su)dFP(a),

—Un

Crale) = /:( st _ 1 4 s0)dFB (),
Cn,S = /Too(esx - l)anB(x)a

Cha=Ss /oo rdFP(z).

r

By the assumption nv? — ¢?, 0 < ¢® < oo, we have v, — 0. Therefore, for any € > 0

there exists sufficiently large n such that v, < e. Hence for such n we have

nCh1(€) = n/| | (e — 1+ sx)dEP ()
z|<e
2 ko k
- —n/ 22 dFB (2 +n/ ﬂdFB( ).
|z|<e

lz[<e ;—3

22
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But

/ —dFB( )| < s3n/ lz]2eflldFB (z) < s3ene“/ |z|2dF5 ().
lz[<e .3 |z|<e

|z|<e

Hence by P4 we get

—

(21) hmo lim Sup nCh(€) = lim0 lim inf nCp(e) = s*0?/2.
Now notice that

nChpo(€) = — /T(e"”c -1+ sa:)dn(l — Ff(x))

€

Therefore, by P1 and then by the continuity and boundedness of the function e™** —
1+ sz on (0,7) we get

(22) lim lim nC, 2(€) = /Or( 5T 1+ sz)vP(dr).

e—0

Now notice that by P1 and continuity and boundedness of the function e™** — 1 on

(r,00) we get

(23) hn% limnC, 3 = / (e — 1B (dw).
Finally notice that for sufficiently large n we have [*xzdFP(z) = — [" xdFP(x),

which jointly with P3 imply
(24) lim lim nCy 4 = —shmn/ rdF5(x) = —sb,.
|z|<r

e—0 n

Hence by (20) we get

e—0

(25) limlimnl,; = —sb, + s20?/2 + /OOO (e‘sx -1+ sxl{‘x‘gr}(x))l/B(dx).
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Now we show that nl,s — s 02/2 To do this notice that
Lo = /OOO (1 —sw+ (s2)%/2 — 1+ s(x — 0,) — s°(z — 0,)%/2 + s@n)dBn(z)
[ !
—3/ (20, — 2 /2)dB,(z / o (z, 8)dB, ()

—81)2/2—|—/ W (x,8)dB, (),

* (2% = (x = ©)")dBy(2)

where

Now notice that
R, (x,s) = (e_” — 14 sz - (3$)2/2)
( —sle=on) _ 4 g(z —1,) — Xz — @n)Q/Q)
e
(e ) 1)

==Y s"E/k — (e —1)(e7* — 1+ sx) +stskvk/k;'
= k=2

Hence
Lo =s252/2— 3 s /K1 — (e — 1)/°°( =% 1 4 s2)dBy(z)
_ 0

+ 50, »_ sF0k /K

k=2
= s%02/2 — Z sOF /K4 50, Y s* 0k JkL— (¥ — 1)1,.

This and the relation I,, = I,, ; + I, 2 give

(26)  e*"nl,o =n(l— ), +$°n02 /2 —n Y s* 0Lkl + snv, Y "0k kL
= k=2
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But, by the convergence nv? — ¢?, 0 < ¢ < oo, we get the following:

(27) 0<n i(s@n)k/k!

o0
< %ol > (s0,)" 7/ (k — 3)! = s*nude™ — 0, asn — oo
k=3

(28) 0 < sv,n i(sﬂn)k/k!

k=2

o
< P Y (s0,)F 7/ (k —2)! = $nvde’™ — 0,  asn — oo,
k=2

which, in view of (26), gives the convergence nl,, — s°c?/2. Hence and from (25)
and (20) we get the first assertion of Proposition 3.

To prove the second assertion of the proposition we need to show that W5(s)
is continuous at s = 0, i.e. lim,_o¥?(s) = 1, which is equivalent to ¥?(s)/s — 0
as s — 0. But the last holds because of condition P5 and equality lim, .q¢?(s)/s
= —bB — [* zvP(dx). This gives the second assertion of the proposition and completes
its proof.
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