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Non-binary Decoder Diversity for Dense or

Locally-Dense Parity-Check Codes

David DeclercgMember, IEEE

Abstract

In this paper, a new and promising framework, called “namaby decoder diversity”, is presented
based on the observation that different non-binary Tanmeplg of the same binary code, decoded
with a non-binary belief-propagation decoder, can havéntisconvergence behaviors and fixed points.
The goal of this work is to propose a decoder with linear caxipy in the blocklength, and with
performance close to maximume-likelihood decoding. Thisrfework is especially interesting for binary
codes which are dense or locally-dense, and for which thalusinary iterative decoders perform far
from the optimum curves. By using the diversity brought bgabting distinct Tanner graphs of the same
code, the proposed technique has very good decoding penfimenfor three very different test cases
which are known to be complex decoding problerfis:near maximume-likelihood decoding (MLD) of
BCH codes on the BPSK-AWGN channéii) performance results which outperform bounded distance
decoding of BCH codes over a binary symmetric channel (B&aY, finally (iii) decoding performance
better than the BCJR-based turbo-decoder for paralleltdn@ry turbo-codes.

Index terms non-binary Tanner graphs, non-binary belief-propagatiterative decoding of block codes,

near MLD decoders.

I. INTRODUCTION

Iterative decoders have completely changed the use of-eoroecting codes in modern digital com-
munications. The famous paper describing an iterative dactmddecode the parallel concatenation of
interleaved convolutional codes [1] has led to new and oedisred code families (mainly Turbo-Codes
and Low-Density Parity-Check codes) with capacity-appnaag performance, all of them decoded with
an instance of the iterative Belief propagation (BP) algonit[2], [3].

Part of this work has been presented at the ISTC, Lausanne, 2008
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Earlier introduced by Gallager [4] and used since then in roiegentific fields, BP-based decoders
can be interpreted as dynamical systems, with possibleticHaghavior [6]. For such iterative decoding
process, it is convenient to make use of a graphical reptasem of the code. The representation of
the code is usually referred to as Tanner graph (TG) [5], otdfagraph when the code is not defined
entirely from parity-check constraints [2].

The BP-based decoders are very efficient on Turbo-Codes and LDiRES because their factor graph
representation is very sparse, in that they have a small euwfbconnections between the nodes. Note
that the nodes in an LDPC code are meant as parity-check nodesyarbol nodes while in a Turbo-
code, the factor graph also contains state nodesgsef2] for examples). The sparseness of the graphs
ensures that the optimal Bayesian update rule which is pagd locally,i.e., only with the knowledge
of the closest neighborhood, does not suffer from coreatiropagation effects due to the presence of
small cycles in the graph. It is well known that iterative déers lose their attractiveness when the graph
becomes too dense, and especially, no efficient iterativeddechas been proposed yet for dense block
codes such as BCH or Reed-Solomon codes.

The question of whether there exists a practical iteratioeder which can approach or reach maximum-
likelihood decoding (MLD) performance for dense —or everalbcdense— error-correcting codes is still
an open problem. Towards this objective, one can think of different but compliant approaches. The
first one consists in taking into account the correlation efrtiessages in the local Bayesian computations
by using more elaborate equations than the BP dreesusing generalized BP decoders [13]. The second
approach is to modify the structure of the Tanner graph withdhanging the code space, in order to
get a sparser representation or to adapt the Tanner grapte tooise realization [7], [8], [14]. In the
current literature, the methods based on graph transf@amase a binary version of BP, and the proposed
decoders do not exhibit very good performance when the cederbes too long typically more than

N=100 coded bits.

In this paper, we will consider the second approach, thayimbking use of Tanner graph transfor-
mations, but with a non-binary BP decoder. In our work, wd wile message passing decoders which
operate in a finite set of high order> 2, typically defined by binary vectors of size= log,(q). By
doing so, we could represent a binary code with a non-binamynér graph, which itself represents a
non-binary parity-check code defined in the finite grdtyp= F5. Our main motivation is that, although
more complex than the binary BP, a non-binary BP decodertilha Bnear complexity in the codeword

length and has been shown to perform close to MLD and is in as batter than binary BP decoders for
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short block codes [12]. Furthermore, there are many possibies of modifying the non-binary Tanner
graph of the same code, with very different topological eirtips (edge density and cycle distribution).
The non-binary framework has then more degrees of freedomtti@binary one.

By changing the non-binary Tanner graph representation git’en code, we have observed that the
convergence behavior of the non-binary BP decoder can ferefit from one Tanner graph to another,
when the decoders are initialized with the same noise edadiz. Based on this observation, we conjecture
that —for a given noise realization— among the huge numberoofbinary Tanner Graphs representing
the same code, there exists a specific graph which is well mattl this noise realization and such
that the non-binary BP decoder converges to the ML codewsritling the best Tanner graph might be
as complex as using an ML decoder, and, as a first step, we priestis paper a related framework
calleddecoder diversitylnstead of looking for an optimum Tanner-graph we build Bection of d > 1
different Tanner graphs of the same code, and capitalizéherdiversity of thed decoder convergence

behaviors to improve the error-correction performance.

The paper is organized as follows. In section Il, we briefly Heit@ necessary bases of the proposed
approach, that is how to define non-binary code&jnand how to deduce them from a binary parity-
check code. We also recall the update equations of a nomyoBfadecoder. In section I, we present the
concept of non-binary decoder diversity (NB-DD), and jiysthe usefulness of the approach. In section
IV, we present in detail three different cases for which tba-binary decoder diversity has shown to be
useful. In particular, we present performance resultsectosMLD for the decoding of BCH codes on
the BPSK-AWGN channel, performance results which outperfalgebraic decoding of BCH codes over
a BSC, and finally decoding results better than the BCJR based-tecoder for parallel duo-binary

turbo-codes.

Il. BACKGROUND ONNON-BINARY PARITY CHECK CODES AND RELATED NON-BINARY DECODER
A. Non-binary Parity Check Constraints formed from Binary tvex

In this paper, we restrict the study to codes built from pachecks defined in the same finite set,
of the typeF, = FF%. In other words, the different symbols of the finite gely, a1, ..., a,—1}, with
ap = 0, have a binary vector representation of gizeits. Let{c;};—o...ny—1 be the codeword non-binary
symbols. For the — th parity-check equation of the code, of degrgewe denote by(k;};—o..4.—1 the

symbol indices which contribute to the parity-check equatiA general parity-check equation iy, is
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expressed as:
d.—1
> fij(er,) =0 inTF, (1)
§=0

where f;;(.) is any linear function fronit, to IF,.

The equation (1) can be seen as a generalization of a paegkdtefined in a Galois field, and it has
been shown that fast implementation of the BP decoder is plsigeneralization of the BP decoder for
classical codes in Galois fields [12]. The existence of a pralctdecoder for general LDPC codes on
IF,, denoted in the following\B-BP decoderallows to consider a wider class of parity-check classes

compared to codes defined in a field, in particular:

« for parity-checks in field€7F'(¢), the functionsf;;(.) are bijections which perform cyclic permuta-
tions (or rotations) of the symbolg,, and correspond to the multiplication with a non-zero eleime
hi; € GF(q). So there are onlyq — 1) possible choices for the functions,

o for parity-checks in group&,, any function fromlF, to IF, (linear or non-linear, bijection or not)
can be used in equation (1), which raises the number of desiibctions tog? — 1,

 a subset of codes of particular interest is the linear cédms,i$ whenf;;(.) has a binary matrix
representation of sizé x p), which is the case we will consider in the rest of the papers Thaise
is more general than the field case since the total number dlitpesunctions in this subcase is

qg? — 1. We show some examples of such functions in the next section.

B. Binary Representations and Bit Clustering

We restrict the class of codes to the binary vector space Ease IF5 since the goal of this paper is
to decode binary parity-check codes with a non-binary decdtb this aim, it is necessary to consider
parity-check equations following equation (1), which can fepresented in a binary vector form. Let
us discuss first the structure of the binary vector repreentaf a single parity-check equation. Let
{bx,[i]}i=1.., be the set of bits representing the symbgpl, and group those bits in a vector denoted
by,. The binary representation of a linear functign(.) from IF, to I, is a (p x p) binary matrix that
we denotedH;;. Note that in the field case, the matri¥;; is defined as the power of the companion
matrix of the primitive element of the field [10]. With thesetations, the binary representation of a

parity-check equation (1) is, in vector form:

d.—1
S Hyby, =0, ©)
j=0
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with 0, being the all zero vector of size

The binary representation of such a parity-check equatitieis a matrix of sizép x d.p) which forms

a local component code. This code can be locally treated asaaybtode and decoded optimally using a
BCJR decoder on its time-varying trellis, or treated as glsiparity-check in a finite non-binary group,

and decoded optimally with BP equations.

The operation of computing a non-binary representation ofnarp code is obtained through a bit
clustering operation, which is essentially the same as tigedescribed in [12]. Let a binary linear code
be defined by its parity-check matrif,. Every adjacent non-overlapping square matrix of gjze& p)
in H, is transformed during the clustering process into a lineaction fromIF, to IF,, which is used
in the NB-BP decoder, defined in the next section. The parametercalled the clustering order. In
general, the size of the parity-check matrix is not necdgsam integer multiple ofp. In order to allow
any clustering order, one can add redundant rows and al-@@umns toH;, so that the matrix can be
divided in clusters of sizép x p) without changing the code space. It has been shown in [12]ttiea
NB-BP decoder of a clustered binary code is very similar toFad&coder on field&/F'(27), and that
dealing with the more general functioifs(.) is quite easy, as explained in the next section.

A cluster is defined as a sub-matt¥;; of size (p x p) in H,. For any non-zero cluster, we associate
an edge in the Tanner graph which connects the correspomglong of rows and group of columns.
Linked to this edge, a linear functiofi;(.) is associated, which haH;; as matrix representation. A
clustering example is plotted in section lll.

In order to fully understand the different types of funcaiat we get from the clustering process,
we have depicted in Fig. 1 two clusters of sizex 4) with their associated function, one for the full
rank case, and the other one for the rank deficient case. Thédnrmrresponding to exampl@) is
a bijection which implements a permutation of the symbold tve clusterH;; is full rank, while the
function corresponding to examp(e) is an injective function (only half of the symbol values aeached
through £;;(.)), and the cluster?;; has rank3. When clustering a general linear block code, with the
technique explained in detail in section I, the clusteosrbt have the regular structure of a companion
matrix of a Galois field element. That is to say, a clusteredrgitade defines a non-binary code on
IF,, the vector space of size= log,(¢q) binary vectors, but does not define a code on the Galois field
GF(q). The update equations of the message passing decoder haketthé structure of the clusters
into account, and we explain in the next section how to dedl thiese particular functions in the NB-BP

decoder.
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C. Non-binary Belief Propagation Decoder dn,

The Tanner graph obtained by clustering a binary code itk p) clusters defines a code on the
finite groupF, of the orderq = 2. We will refer to the non-binary belief-propagation decode I,
as NB-BP decoder. The NB-BP decoder is very similar in natham tregular BP on finite fields. The
only difference is that the non-zero values of a parity-&hequation are replaced with more general
linear functions fromlF, to IF,, defined by the binary matrices which form the clusters. Irtipaar,
is is shown in [12] that NB-BP can be implemented in the Faudi@main with a reasonable decoding

complexity.

We briefly review the main steps of the NB-BP decoder and itdiggdjpn to the non-binary Tanner
Graph. For a more detailed presentation of belief-propagatecoder over non-binary sets, seg.[9].
The non-binary Tanner graph of a parity-check code @vgrs depicted in Fig. 2, in which we indicated
the notations we use for the vector messagés,,, Uy, Uy, Uy, }. Additionally to the classical variable
and check nodes, we add function nodes to represent the effébe linear transformations induced
from the clusters as explained in the previous section.

The NB-BP decoder has four main steps which gsbmensional probability messages:

e Data node updatefor each edge connected to a symbol node, the ouput extrimsssage is equal
to the term by term product of all input messages and the eldikelihood message, excluding
the message carried on the same branch of the Tanner graph.

e Function node updatethe messages are updated through the function ngdes. This message
update is reduced to a cyclic permutation in the case of a el code, but in the case of a more

general linear function front', to IF, denoteds = f;;(«), the update operation is:
UPCWJ’] :Zva[ai] j=0...q—1, 5j :fz'j ()

the summation is performed over all valugswhich have images; through the linear functiorf;;.
e Check node updatehis step is identical to BP decoder over finite fields and can fiieiemtly
implemented using a Fast Fourier Transform. 8ag[9], [12] for more details.
¢ Inverse function node updateith the use of the functiorf;;(.) backwardsj.e., by identifying the

valuesa; which have the imagg;, the update equation is:
Violai] = Vep 5] Vos € Fy 2 B = fij (i)

These four steps define one decoding iteration of a generayméweck code on a finite group. Note
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that, both in the finite field case and when the cluster defininguhetion f;;(.) is full rank, the function
node update is simply a re-ordering of the values. When thste@l has deficient rank < p, which is
often the case when clustering a binary block code, @filgntries of the messadé,. are filled and the

remaining entries are set to zero.

The purpose of this work is to show that with an iterative démggrocedure, it is possible to get
close to the ML decoding performance of dense or locallysdelinear block codes. Therefore, we
will not particularly focus on studying practical constra such as decoding latency or implementation
complexity. However, we still want our approach to be impéenable if one accepts to increase the
decoder complexity in order to get better error-correct@sults. For this reason, we will only consider the
non-binary decoder in reasonable group orders, sudisaslFsss or F515 at most. Although non-binary
decoders have a much higher computational complexity aoragt complexity than binary decoders, a
lot of work has been published recently that introduce spiiir@al non-binary decoders with complexity
close to binary decoders (see [11] and the references Withive extended min-sum (EMS) algorithm
studied in [11] has both computational complexity and gjereequirements close to binary min-sum
decoders, and with a performance loss within 0.1dB-0.5dBnfithe full-complexity non-binary BP
decoder. This shows that the non-binary decoder diversitmémwork proposed in this paper, combined

with a practical sub-optimal decoder could indeed be implet&d in hardware.

IIl. NOTION OF NON-BINARY DECODERDIVERSITY
A. Preprocessing and Tanner graph Diversity

Now that we have introduced all the necessary bases of ounagp we present in this section the
main objective of this research, which relies on the divgrsf behaviors of the NB-BP decoding when
it is applied to different non-binary Tanner graphs repnésg the same code.

Let a block code be defined by a binary parity-check mafix of size (M x N). Any linear
transformationA on the rows and any column permutatibhapplied to H, does not change the code
spacé, but changes the topology of the clustered Tanner graph. fipkcation of A andIl is called pre-
processing, and let us denote the pre-processed binaty-phgck matrix byH; = P (H,) = A Hy I1.

In order to be able to usél; in the decoder when a codeword corresponding taH, is sent, it

is necessary to re-order the received noisy codeword aiogptd the inverse permutatioi—!. Indeed,

'Only the binary mapping of the codewords change. The codes obtaitiethese transformations are equivalent codes, and

we will refer to “equivalent representation of tlkame codkin the rest of the paper.
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sinceH; (II"'m) = AH,II (II"'m) = AH, m = 0, if y is the output of a noisy memoryless channel
with m as input, theny’ = II-!'y should be used to compute the channel likelihoods thatlizé a
decoder based of;.

The concept ofNB-BP decoder diversityNB-DD) relies on the fact that the NB-BP decoder is a
dynamical system with sensitivity to initial conditionssA consequence, if two representations of the
same code are used in a NB-BP decoder, the dynamics of thaiviterdecoder applied to the two
representations might be different and the convergenaggalso might be distinct. Please note that re-
ordering of the columns and rows implies different dynantitthe decoder only if clustering is used, or
equivalently if anon-binarymessage-passing decoder is considered. The re-orderihgdw4 114, would
have no impact on the decoder behavior if a binary decodeseésl.u_et us illustrate this phenomenon

through a small example.

As an example, we depict in Fig. 3 a binary random block codé wliistering ordep = 2, and the
associated Tanner graph. We did not represent the lineatidmmodes associated with the linear functions
fi;(.) in the graph for sake of simplicity. By applying a permutatiof the columns, or equivalently of
the bit positions in the codeword, one can see that the negulanner graph has a completely different
structure. In particular, the upper matrix has more albzeusters, and the Tanner graph has therefore
fewer edges and fewer small cycles. We do not claim here thatoase is necessarily a better graph
representation for the NB-BP decoder than the other casih. s example, we only point out that the
same code could have very different non-binary Tanner graptesentations, which can possibly result
in some diversity behavior in the decoder convergence.

In order to verify that the NB-BP decoder can exploit Tanrap diversity, we have computed on the
two graphs of figure 3 with 10000 AWGN noise vectors(a},/Ny)qs = 0dB the following statistics:

» 5019 cases where both decoders converge to the right codewor

« 384 cases where both decoders fail to converge after 5Qidtesa

« 589 cases where both decoders converge to a wrong codeword,

« 1213 cases where one decoder fails to converge, and theatharonverges to the right codeword,

« 1041 cases where one decoder fails to converge, and thetharonverges to a wrong codeword,

« 1754 cases where one decoder converges to a wrong codewdrtheaother one converges to the

right codeword.

Of course this is a basic example which corresponds to a veajl €ode, but this shows quite clearly

that all the possible decoder behaviors could happen whendeeoders are used to decode the same
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noisy codeword, and with the possibility of correcting up2@67 extra cases, for which at least one
decoder has converged to the right codeword.

The NB-DD approach presented in this paper relies on thewollp conjecture. We assume that -for
a given noise realization- among the huge number of nonspimanner Graphs representing the same
code, there exists a specific one which is well matched to thiserrealization and such that the NB-BP
decoder converges to the ML codeword.

This assumption is obviously true if there is no constraintrencomplexity of the non-binary decoder.
For any code, there exist a pre-processing funcfiband a sufficiently large clustering ordgrsuch
that the non-binary Tanner graph is a tree and the decodggtial (for all noise realizations). The
guestion of whether a well matched Tanner graph exists ftustaring ordep small enough for practical
implementation (namely < 10) is more complicated and requires further research. Inghjger, as a
first step illustrating this conjecture, we will show by simtibns that for dense or locally-dense block
codes, if one uses several different representations ofdhee code, one can significantly improve the

error-correction performance as compared to existing cggires.

B. Non-binary Decoder Diversity Sets

Let a block code be defined by a binary parity-check makHixwith size (M x N). Let A®) be a
binary matrix of full rank corresponding to a change of basisthe code, and I€i(?) be a permutation
of the columns ofH,, or equivalently a permutation of the bits in the codewoig.applying the pre-
processingHéi) = PO (H,) = AW H, 1) we get another valid binary parity check matrix of the same
code. Now, let us denote ng) the non-binary Tanner graph obtained from the clusterirgyaton of
orderp; on H,Si). The Tanner grap@éf) is composed ofV/p; symbol nodes)M /p; general parity-check
nodes, and a certain number of edges associated with thearorclusters. In general, the size of the
parity-check matrix is not necessarily an integer multipfep;. In order to allow any clustering order,
one can add redundant rows and all-zero column&j®o that the matrix can be divided in clusters of

size (p; x p;) without changing the code space.
Definition

A diversity setgG is defined as a collection af distinct non-binary Tanner graphs associated with the

same code and obtained through pre-procesgi and clustering of ordep;, i = 1,.. ., d:
g={agh.....a,....6} ©)
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This definition is very general and we give hereafter some Bpaeoiamples.

« Clustering diversity only
for all i, we chooseA”) = I, and I = Iy, wherely is the identity matrix of dimension
(N x N). In other words, we do not apply any pre-processing, and pmgries in the definition of
the diversity set. For examph{Q%”, - ,gé,g)} is a diversity set withi = 9 Tanner graphs obtained
from auniquebinary parity-check matrix{,. Note thatg{l) is the usual binary Tanner graph. This
shows that since the diversity is defined in terms of graph® fetustered matrices, we can define
a diversity set even without changing the binary parityethmatrix of the code.

« Diversity with constant clustering order and common codsida
for all i, we choosed® = IT{” and 11® = T1{", that is we consider only a re-ordering of the
rows and columns off,. Furthermore, with the same clustering orgefor all Tanner graphs,
{g},”, o ,g},‘”} is a diversity set such that all the graphs have the same nuohilb®des, and the
same basis is used for all the code representations. Thispdsaidiversity set has the property that
the binary density oiHlfi) remains the same since no linear transformation other teamytations
are used (which is useful if the initiall, has low density). However, the different Tanner graphs
could have different densities as shown in Fig. 3. Note thatctice ofp = 1 does not bring any
diversity since all the graphs would have the exact samelaggo

« Diversity set with binary Tanner graphs
with the choice ofp = 1 (no clustering) and botbi() andII) can be general, the diversity set
{gP,...,g@} defines a collection of binary Tanner graphs of the same cag@esented in
different basis. This special case has been recently stuitiee literature [16], where the authors
have conducted a performance/complexity comparison whétiple bases of a block code are used.
Note that using different binary basis is also very similarthe methods proposed in [7], [8], in
which the authors propose to extend the binary representafithe code by introducing redundant
rows, with the goal of breaking the correlation effects vithzan prevent the binary BP decoder
from converging to a fixed point.

These few examples show that there are many possible waysfioindea diversity set and we

emphasize here that in our opinion, the choice of the dityessit is very important in order to effectively
have a gain in terms of error-correction. For each of theetlsieulation studies that we performed (see

section 1V) a specific diversity set has been carefully chpadapted to each case.
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C. Merging Strategies

We discuss now the different strategies that we conducteddar to capitalize on the NB-DD. There
are various possible merging methods that one can think ofder to use the outputs of each decoder,
with associated performance complexity tradeoffs. Asidenfthe two natural merging strategies depicted
below, one can think of more elaborate choices.
e Serial merging
the d decoders are potentially used in a sequential manner. Asguthat we check the value
of the syndrome at each iteration, when a decoder fails twerge to a codeword after a given
number of iterations, we switch to another decoder. That rigtheer Tanner graph is computed
with a different pre-processing and we restart the decawen cratch with the new graph and the
permuted likelihood. The process stops when one decodeergewto a codeword (either the sent
codeword or another one). This strategy is different fromahe proposed in [8] where the authors
iterate the message-passing decoder iteratively betwifemedt sets of redundant nodes. In our
case, when we switch to another decoder, the messages irwhgraph are reset to zero and we
start the next decoder from scratch.
e Parallel merging
thed decoders are used in parallel and a MLD decision is taken artiengnes that have converged
to a codeword. If2b < d decoders have converged to a codeword in less than the maximmber
of iterations, thenb associated likelihoods are computed and the one with thenmuawx likelihood
is selected. Note that theb candidate codewords are not necessarily distinct. A sinmiarging
strategy with different binary bases has been proposedéh [1

e Lower boundon merging strategies:
in order to study thgotentialof the NB-DD approach regardless of the merging strategyl&ime
the following lower bound. Among thd decoders in the diversity set, we check if at least one
decoder converges to the right codeword. A decoder failsirdecided if alld decoders have not
converged to the right codeword after the maximum numbetaraiions. Note that this method
does not exhibit any undetected error. This is called a loveemd on merging strategies, because
it assumes that if there exists at least one Tanner grapthvdoiaverges to the right codeword, one
can think of a smart procedure to select this graph. This isafse not always possible, especially
if the codeword sent is different than the codeword decodid MLD, and the lower bound can

therefore be better than the MLD itself. This lower bound is éesv useful since it allows to have
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a possibly tight estimation on the parallel merging casé¢haut having to simulate all decoders.

The extra complexity induced by the serial merging is neplaisince the diversity is to be used
only when the first decoder fails to converge. That is, at a FEBRZ for the first decoder, the decoder
diversity will be used only0.1% of the time. The parallel merging is much more complex sinagsés
d times more computations than a single decoder, but evéyniealds to better performance.

Note that in this paper, the choice of a particular mergingosstudied. Only the use of several binary
representations is defended. However, it should be mesdidhat the merging strategy is linked to the
additional complexity of the NB-DD approach compared to tise of only one decoder. The parallel
merging will not be used in simulations, and we will only caam the serial merging and the lower
bound, which correspond to the extreme situation for a aystsing NB-DD.

Finally, let us point out that an interesting development Mdae to combine the approach presented
in this paper with the idea of extending the graph represientavith redundant rows, as proposed in
[8], and run a message-passing decoder on the global graphamvell chosen scheduling. This is
although a non-trivial generalisation since there is nopsémvay to capitalize on the decoding output of
a particular graph in the diversity set and propagate a rgestaanother graph representation. Indeed,
since we consider binary pre-processing functions on tharpiparity-ckeck matrices of the code, one
would need to marginalize the non-binary messages at tlaryblavel and then re-combine them in the
correct non-binary symbols before the decoder can starhathar part of the graph. This strategy did
not work at all in our simulations, at least when random meeessing functions were considered. It
appears that running a BP-based decoder on a redundantenejaitéean of the code, and therefore on a

denser Tanner graph, seems to work better for binary degdben for non-binary decoders.

IV. SIMULATION RESULTS FORVARIOUS EXAMPLES

In this section, we present in detail three examples for whiee NB-DD technique has shown its
advantage. The three examples are very different, both w#peact to the transmission model (channel,
code families), and with respect to the chosen diversity set

Before studying the different cases, it should be noted t@atperformance gain brought by NB-DD
must be fairly compared to the performance obtained withnglsi decoder. The fair comparison is
ensured when NB-DD witli = 1 corresponds to a single decoder with reasonable perfomnamorder
to do so, and in all the examples in this section, we have alyethosen the diversity sets such that

all decoders in the set have comparable average perfornmanceore importantly, they have each very
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good performance when used separately. This particularignsi¢hat the observed performance gains

are indeed due to the diversity of the NB-DD approach.

A. BCH codes on the BI-AWGN Channel

1) Diversity Set:In this section, we consider BCH codes sent over the BSPK-AWGahel. For
such a case, it has been shown that it is necessary to adapatityecheck matrix so that an iterative
decoder has acceptable performance. The method develogéd]irs to change adaptively the binary
Tanner graph such that the least reliable bits are connexidto one check node, and therefore do
not propagate much noise in one decoding iteration. The fiegt at this method is to sort the channel
likelihoods (ora posteriori probabilities after the first iteration) in ascending orded aiagonalize the
binary parity-check matrix in such a way that one obtains pghety-check matrix represented in its
most reliable basis (MRB). This method is computationaltgmsive since it usually requires a Gaussian
elimination at each and every decoding iteration. It hamlreeently proposed in [15] to perform the
Gaussian elimination and obtain the MRB only at the initiafion of the decoder, which is sufficient to
get good performance if the block length is not too large < 64 bits). This latter algorithm is called
modified adaptive BP (m-ABP).

In this section, we define the diversity set with the knowledf¢ghe MRB. We first perform a MRB
Gaussian elimination based on the channel likelihood wlaed store the transformation matrices rp
andIl,;rp. Therefore, the binary matrid,; rp Hy Iy rp is diagonalized in its MRB. Then, we wish
to build a diversity set such that for all candidate Tannaipgs,(i) the bit indices which form the MRB
basis are localized in the same part of the codew(ifdthe least reliable symbols are connected only
to one check node of the non-binary Tanner graph, that is oné/non-zero cluster in the first part of
the parity-check matri>Hl§i) is allowed.

The most general pre-processing which follows these cdntris of the type:
H(Ei) =P () = (A(i) AMRB) Hy (HMRB Hu)) (4)

where A rp andIl rp are obtained from the MRB Gaussian elimination, and theeefoe the same

May 17, 2010 DRAFT



for all pre-processing in the diversity set. The other trarmshtions have the following structure:

al” 0 0
i)
A0 | VR no - [ ?J
0 0 II
(i)
0 0 aym

That is A®) is block diagonal with full rank clusters,(f) of size (p x p), andII)) permutes only the
K = N — M most reliable bits. In the diversity set(?) andII(Y) are generated at random.

Using a diversity set based on these pre-processing sgatemsures that all the decoders have
comparable average performance. This is also a very speséalofithe NB-DD approach since the
diversity sets differ from one noise realization to anaotiecause of the MRB Gaussian elimination. We
will see in the next examples more natural uses of NB-DD, fhicW the diversity set is built regardless
of the noise realization.

2) Frame Error Rate ResultsiWe consider the following codes as case studies: eBCH 128, K =
92, Dppin = 12), BCH(N = 127, K = 71, Dy, = 19) and eBCHN = 256, K = 131, D,i,, = 38).

In Fig. 4, we plot the NB-DD results using the proposed divgrset and a maximum diversity order
d = 200, with two clustering orderp = 6 andp = 9. The maximum number of decoding iterations
was set to 100. The performance of the m-ABP of [15] is shownthadangential sphere bound (TSB)
computed with the code distance spectrum is used as maxiikalimood decoding (MLD) lower bound.

There are several important comments to make based on thig:figur

« First, the proposed NB-DD approach has the potential to ré#db performance on this code since
the lower bound with parametefp = 9,d = 200) sticks to the TSB curve. This shows that with
a diversity order ofd = 200 Tanner graphs, there exist at least one of these graphs fich e
NB-BP would converge to the ML codeword. We verified that fdrralisy codewords, there is no
dominant graph and that the use of the diversity set is thexaiecessary to be able to reach these
results. Indeed, the graphs in the diversity set which cayevéor a particular noise realisation are
not the same as those which converge for a different noidsagan.

« The performance obtained with the serial merging, whichesgonds to the minimum complexity
NB-DD scheme, is only.35dB away from the TSB at & FR = 10~° which is still the best
performance that we have observed in the literature wittatitee decoders on block codes with
comparable length and rates. For instance, the binary m-ABfal.4dB loss compared to the

TSB at FER = 107°. Note that although close to the lower bound, the performdoss of the
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serial merging is relatively big, and this is due to the poanimum distance of this BCH code,
which result in an large number of undetected errors.

« The diversity gain in this case is not really great since we dess than one decade by using a
maximum ofd = 200 decoders instead of a single one (remember that the 200 elecack seldom
used in the decoding process). This is due to the fact that tRB KBaussian elimination adapts the
graph to the channel statistics. In this sense, the grapésted in the diversity set are already well
matched to the noise realization, and the NB-DD gain is ngir@ssive. The fact that the lower
bound sticks to the TSB curve shows however that NB-DD couldgoa non-negligible performance
gain with a proper merging strategy or a proper pre-prongsshoice.

« Finally, we can see that with a smaller clustering orget 6, the results are close to the= 9
results, which shows that reducing the complexity of the BB-decoders can result in a interesting
complexity/performance tradeoff.

The same remarks can be made about the BCH- 127, K = 71, D,,;, = 19) code, for which we
plot the same set of curves in Fig. 5. The clustering orderswieatonsidered for this code afe= 4
andp = 8. This code has almost the same length as the eBCH 128, K = 92, D,,;,, = 12), but has
a larger minimum distance and a rate closetfte= 0.5. For this code, the lower bound of NB-DD is
very close to the TSB, which we think is a very promising resttta FER = 10~°, the lower bound
on NB-DD is 1.9dB better than the m-ABP solution of [15], aniihathe serial merging the gain is still
important (1.2 dB better).

Although not shown in the figure, we have studied the perfoomeavolution with increasing values
of the diversity orderd for the BCHN = 127, K = 71, D,,,;, = 19) code. For the serial merging, the
same performance can be obtained with a lot smaller diyeosder, as we observed only a negligible
gain fromd = 80 to d = 200. However, when considering the lower bound on merging exjias, the
performance are still improving beyormt= 80. A number ofd = 200 decoders was the smallest number
such that the NB-DD reaches the TSB bound. For example, NB-DB avi= 200 has a FER roughly
twice better than withi = 100 and four times better than witih = 50.

Finally, we plot in Fig. 6 the performance of NB-DD on the eBQH= 256, K = 131, D,,;,, = 38)
code which is a very challenging code for which no decodeh wgasonable complexity approaches the
performance of MLD. We can see that the gap between NB-DD aedI'8B is approximately 1.4dB
which means that MLD performance for this code is for the manwen of the reach of NB-DD. Our
method has however a gain of about 1.8dB compared to binaABR-Note that in this case, the gap

between the lower bound NB-DD and the serial merging is vemglls and this is due to the fact that
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the large minimum distance of the code limits the number afetected errors in the NB-BP.

B. BCH codes on the BSC Channel

1) Diversity Set:In this section, we consider BCH codes sent over the binanynsstric channel.
For this channel where the errors are flipped bits, there isassipility of having a well chosen matrix
representation, matched to the channel outputs, as we didthhe MRB Gaussian elimination in the
previous section.

This is a good example which shows the great advantage of NBSixe there is no possibility to
choosea priori a good Tanner graph for a particular noise realization, Wi @a the possibility that
amongd distinct graphs, there exist one graph which is best mattbetie noise. In order to show
that this is indeed the case, we will only simulate the penfimce of NB-DD with the lower bound on
merging strategies approach, which means that we only foounding a Tanner graph among the
candidates, such that the NB-BP decoder converges to theaigleword.

The only thing we can do to help the decoding process is to dalg® the parity-check matrix (in
any basis), in order to maximize the number of all-zero elissin the non-binary Tanner graph. Let us
considerHy, the binary parity check matrix of a BCH code in its system&birm. The diversity set is

composed of the pre-processing functions of the type:

1y =P (1) = Agp Hy (19 Tar) (5)
WhereHE\’}), generated at random, is used to permuteNheolumns ofH;, and(Agg, llgE) are obtained
from the Gaussian elimination. Once more, all the candgatethe diversity set have similar average
performance.
2) Frame Error Rate ResultsiWe plot the frame error rate with respect to a normalizedadigmnoise

ratio (Ey/No)ap = 10 log,(Ey/Ny) from which the probability of errop.,, for the BSC is computed

with,
1 By
perr = erfc ( R No) (6)

where erfc is the complementary error function, dhthe rate of the code. This representation has the
advantage that we can measure the performance loss duedtddw@sion before decoding in a Gaussian
channel.

In Fig. 7 and Fig. 8, we plot only the lower bound of NB-DD, thattie best performance we can
expect from our method, and compared it to the bounded distdecoding performance, that is assuming

an algebraic decoder which corrects all noise patterns afifdiag weight less tham%} We used
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a clustering ordep = 9 for the eBCHN = 128, K = 92, D,,,;, = 12) code and a clustering order of
p = 8 for the BCHN = 127, K = 71, D,;n, = 19) code.

We can see on both figures that using one decoder is by far rfmtisof to have good error-correction,
since the performance is outperformed by a simple boundsthrdie decoder. However, the NB-DD
approach shows an impressive performance gain, espeaidllgh £,/ Ny. Indeed, at £, /Ny) 4, = 6.5dB
in Fig. 7, using a diversity order af = 2000 allows a gain of almost 5 decades compared to a single
decoder. Moreover, the NB-DD ikdB better than a bounded distance decoder for all frame ertes ra
below 10—, which is a very important gain for this problem, that is ddiog dense block codes over
the BSC.

These good performance results are even enhanced for th¢ BEHI127, K = 71, D,,;,, = 19) code
in Fig. 8. One can see also that for this case, the NB-DD is fudlgd even with a large diversity order

since there is an important gap between a diversity o#der200 and a diversity orded = 2000.

C. Turbo-codes on the BI-AWGN Channel

1) Diversity Set:In this last example, we consider the problem of decodinglaotgode on a BPSK-
AWGN channel with a NB-BP decoder, as introduced in [17].

Binary parity-check matrices of convolutional codes amgdglly concentrated on the diagonal of the
matrix and are obtained through algebraic arguments [18ht T8) the parity-check matrix is sparse,
but locally dense, which is a good configuration for using wattNB-BP decoder on the clustered
matrix. Of course, when considering turbo-codes, we stli gpme locally dense parts in the binary
parity-check matrix of the code, except for the parts whiolrespond to the turbo interleaver. In [17],
the authors have proposed a pre-processing function spexificho-codes optimized in order to have
the most concentrated diagonal in the parity-check matvixich is also equivalent to minimizing the
number of non-zero clusters that will be created on the diabafter the clustering process. The binary
representation that is obtained with the technique prapas¢l7] has the structure depicted in Fig. 9.

Binary representations such as the one in Fig. 9 are suppodeel & good choice since the clusters
on the diagonal are the more dense in the Tanner graph, araksuened to participate the most to the
performance degradation of the BP decoder when these dusbatribute to cycles. Indeed, we have
verified by simulations on several turbo-codes that the numbeaon-zero clusters of a given size is
minimized when we perform a pre-processing resulting in reayi representation similar to figure 9.
Note that by properly choosing the columns to be permutegktrakrepresentations of this type could

be created. In this paper we will considér= 5 such parity-check matrices which form the diversity set.
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Contrary to the two previous examples, here the diversiteis very small, but each Tanner graph is
supposed to exhibit very good performance under NB-BP degagince they are very sparse.

2) Frame Error Rate ResultsiWe present in this section simulation results for the duby turbo-
codes of the DVB-RCS standard, which were first presenteddp Mhe considered code parameters are
R = 0.5 and sizeN = {3008} coded bits, with tail-biting trellis termination. The minimm distance of
this code isD,,;, = 19.

The NB-DD results are plotted in Fig. 10. If we focus on the maximperformance gain that one
can hope for by looking at the lower bound curves, it is cléat ising several decoders can improve
significantly the performance, both in the waterfall regiamd &he error floor region. Using NB-BP
decoding with decoder diversity can gain between 0.25dB4dB compared to the turbo-decoder using
BCJR component decoders, which was up to now consideree &&tt decoder proposed for turbo-codes.
This result shows in particular that it is possible to consitkerative decoders which are more powerful,
and therefore which are closer to the maximume-likelihoododier, than the classical turbo-decoder. This
claim was known from asymptotic density evolution resuitg, to the best of our knowledge, our decoder
is the first that could practically, that is with complexityasmnable enough to be implemented on a chip,
beat the turbo-decoder.

Interestingly, the serial merging which is the more simplerging strategy, achieves full decoder
diversity gain in the waterfall regioni,e., above FER: 1073. This is particularly useful for wireless
standards which use ARQ based transmission and therefouly maquire error-correction below FER
1073, In the error floor region though, we can see in Fig. 10 that miaigoeate merging solutions should

be used to achieve full diversity gain and obtain a substhgtin compared with turbo decoder.

V. CONCLUSION

In this paper, we have presented a new framework, called-lmoary decoder diversity” based on
the observation that different non-binary Tanner graphshef same code, decoded with a non-binary
BP decoder can have distinct convergence behaviors and fiegdsp This framework is especially
interesting for binary codes which are dense or locallysgerand for which the usual binary iterative
decoders perform far from the optimum curves. We focusedstuaty on deriving an adapted strategy
for three very different test cases which are known to be dexngecoding problems, and in all cases,
the proposed approach showed promising results, eithee a¢tmthe theoretical bound or outperforming
existing decoders.

The results presented in this paper show the potential of dihebinary decoder diversity approach to
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get close to MLD performance. This is however the first initi@psand further work will be dedicated
to the characterization and the optimization of the norahyiritanner graph, in order to match the graph

to a particular noise realization.
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Fig. 5. Performance of NB-DD for the BGW = 127, K = 71, Dy = 19) code on the BPSK-AWGN channel
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BCH (N=256,K=131,Dmin=38) over the BPSK-AWGN channel
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Fig. 6. Performance of NB-DD for the eBQW = 256, K = 131, Diin = 38) code on the BPSK-AWGN channel
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Fig. 8. Performance of NB-DD for the BQWW = 127, K = 71, Dy,;n = 19) code on the BSC
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Fig. 9. Optimized binary representation of a parallel Turbo-code

May 17, 2010

DRAFT



Fig. 10. Performance of decoder diversity applied to the (R=0.5008Bduobinary Turbo Code.
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