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David Declercq,Member, IEEE

Abstract

In this paper, a new and promising framework, called “non-binary decoder diversity”, is presented

based on the observation that different non-binary Tanner graphs of the same binary code, decoded

with a non-binary belief-propagation decoder, can have distinct convergence behaviors and fixed points.

The goal of this work is to propose a decoder with linear complexity in the blocklength, and with

performance close to maximum-likelihood decoding. This framework is especially interesting for binary

codes which are dense or locally-dense, and for which the usual binary iterative decoders perform far

from the optimum curves. By using the diversity brought by decoding distinct Tanner graphs of the same

code, the proposed technique has very good decoding performance for three very different test cases

which are known to be complex decoding problems:(i) near maximum-likelihood decoding (MLD) of

BCH codes on the BPSK-AWGN channel,(ii) performance results which outperform bounded distance

decoding of BCH codes over a binary symmetric channel (BSC),and finally (iii) decoding performance

better than the BCJR-based turbo-decoder for parallel duo-binary turbo-codes.

Index terms- non-binary Tanner graphs, non-binary belief-propagation, iterative decoding of block codes,

near MLD decoders.

I. I NTRODUCTION

Iterative decoders have completely changed the use of error-correcting codes in modern digital com-

munications. The famous paper describing an iterative decoder to decode the parallel concatenation of

interleaved convolutional codes [1] has led to new and rediscovered code families (mainly Turbo-Codes

and Low-Density Parity-Check codes) with capacity-approaching performance, all of them decoded with

an instance of the iterative Belief propagation (BP) algorithm [2], [3].

Part of this work has been presented at the ISTC, Lausanne, 2008
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Earlier introduced by Gallager [4] and used since then in other scientific fields, BP-based decoders

can be interpreted as dynamical systems, with possible chaotic behavior [6]. For such iterative decoding

process, it is convenient to make use of a graphical representation of the code. The representation of

the code is usually referred to as Tanner graph (TG) [5], or Factor graph when the code is not defined

entirely from parity-check constraints [2].

The BP-based decoders are very efficient on Turbo-Codes and LDPC codes because their factor graph

representation is very sparse, in that they have a small number of connections between the nodes. Note

that the nodes in an LDPC code are meant as parity-check nodes and symbol nodes while in a Turbo-

code, the factor graph also contains state nodes (seee.g. [2] for examples). The sparseness of the graphs

ensures that the optimal Bayesian update rule which is performed locally,i.e., only with the knowledge

of the closest neighborhood, does not suffer from correlation propagation effects due to the presence of

small cycles in the graph. It is well known that iterative decoders lose their attractiveness when the graph

becomes too dense, and especially, no efficient iterative decoder has been proposed yet for dense block

codes such as BCH or Reed-Solomon codes.

The question of whether there exists a practical iterative decoder which can approach or reach maximum-

likelihood decoding (MLD) performance for dense —or even locally dense— error-correcting codes is still

an open problem. Towards this objective, one can think of twodifferent but compliant approaches. The

first one consists in taking into account the correlation of the messages in the local Bayesian computations

by using more elaborate equations than the BP ones,i.e., using generalized BP decoders [13]. The second

approach is to modify the structure of the Tanner graph without changing the code space, in order to

get a sparser representation or to adapt the Tanner graph to the noise realization [7], [8], [14]. In the

current literature, the methods based on graph transformation use a binary version of BP, and the proposed

decoders do not exhibit very good performance when the code becomes too long typically more than

N=100 coded bits.

In this paper, we will consider the second approach, that is by making use of Tanner graph transfor-

mations, but with a non-binary BP decoder. In our work, we will use message passing decoders which

operate in a finite set of high orderq ≫ 2, typically defined by binary vectors of sizep = log2(q). By

doing so, we could represent a binary code with a non-binary Tanner graph, which itself represents a

non-binary parity-check code defined in the finite groupFq = F
p
2. Our main motivation is that, although

more complex than the binary BP, a non-binary BP decoder has still a linear complexity in the codeword

length and has been shown to perform close to MLD and is in any case better than binary BP decoders for
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short block codes [12]. Furthermore, there are many possibleways of modifying the non-binary Tanner

graph of the same code, with very different topological properties (edge density and cycle distribution).

The non-binary framework has then more degrees of freedom than the binary one.

By changing the non-binary Tanner graph representation of agiven code, we have observed that the

convergence behavior of the non-binary BP decoder can be different from one Tanner graph to another,

when the decoders are initialized with the same noise realization. Based on this observation, we conjecture

that —for a given noise realization— among the huge number ofnon-binary Tanner Graphs representing

the same code, there exists a specific graph which is well matched to this noise realization and such

that the non-binary BP decoder converges to the ML codeword.Finding the best Tanner graph might be

as complex as using an ML decoder, and, as a first step, we present in this paper a related framework

calleddecoder diversity. Instead of looking for an optimum Tanner-graph we build a collection of d ≫ 1

different Tanner graphs of the same code, and capitalize on the diversity of thed decoder convergence

behaviors to improve the error-correction performance.

The paper is organized as follows. In section II, we briefly recall the necessary bases of the proposed

approach, that is how to define non-binary codes inFq and how to deduce them from a binary parity-

check code. We also recall the update equations of a non-binary BP decoder. In section III, we present the

concept of non-binary decoder diversity (NB-DD), and justify the usefulness of the approach. In section

IV, we present in detail three different cases for which the non-binary decoder diversity has shown to be

useful. In particular, we present performance results close to MLD for the decoding of BCH codes on

the BPSK-AWGN channel, performance results which outperformalgebraic decoding of BCH codes over

a BSC, and finally decoding results better than the BCJR based turbo-decoder for parallel duo-binary

turbo-codes.

II. BACKGROUND ON NON-BINARY PARITY CHECK CODES AND RELATED NON-BINARY DECODER

A. Non-binary Parity Check Constraints formed from Binary Vectors

In this paper, we restrict the study to codes built from parity-checks defined in the same finite set,

of the typeFq = F
p
2. In other words, the different symbols of the finite set{α0, α1, . . . , αq−1}, with

α0 = 0, have a binary vector representation of sizep bits. Let{cj}j=0...N−1 be the codeword non-binary

symbols. For thei− th parity-check equation of the code, of degreedc, we denote by{kj}j=0...dc−1 the

symbol indices which contribute to the parity-check equation. A general parity-check equation inFq is
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expressed as:
dc−1
∑

j=0

fij

(

ckj

)

= 0 in Fq (1)

wherefij(.) is any linear function fromFq to Fq.

The equation (1) can be seen as a generalization of a parity-check defined in a Galois field, and it has

been shown that fast implementation of the BP decoder is a simple generalization of the BP decoder for

classical codes in Galois fields [12]. The existence of a practical decoder for general LDPC codes on

Fq, denoted in the followingNB-BP decoder, allows to consider a wider class of parity-check classes

compared to codes defined in a field, in particular:

• for parity-checks in fieldsGF (q), the functionsfij(.) are bijections which perform cyclic permuta-

tions (or rotations) of the symbolsαk, and correspond to the multiplication with a non-zero element

hij ∈ GF (q). So there are only(q − 1) possible choices for the functions,

• for parity-checks in groupsFq, any function fromFq to Fq (linear or non-linear, bijection or not)

can be used in equation (1), which raises the number of possible functions toqq − 1,

• a subset of codes of particular interest is the linear case, that is whenfij(.) has a binary matrix

representation of size(p× p), which is the case we will consider in the rest of the paper. This case

is more general than the field case since the total number of possible functions in this subcase is

qp − 1. We show some examples of such functions in the next section.

B. Binary Representations and Bit Clustering

We restrict the class of codes to the binary vector space caseFq = F
p
2 since the goal of this paper is

to decode binary parity-check codes with a non-binary decoder. To this aim, it is necessary to consider

parity-check equations following equation (1), which can be represented in a binary vector form. Let

us discuss first the structure of the binary vector representation of a single parity-check equation. Let

{bkj
[i]}i=1...p be the set of bits representing the symbolckj

, and group those bits in a vector denoted

bkj
. The binary representation of a linear functionfij(.) from Fq to Fq is a (p × p) binary matrix that

we denotedHij . Note that in the field case, the matrixHij is defined as the power of the companion

matrix of the primitive element of the field [10]. With these notations, the binary representation of a

parity-check equation (1) is, in vector form:

dc−1
∑

j=0

Hij bkj
= 0p (2)
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with 0p being the all zero vector of sizep.

The binary representation of such a parity-check equation isthen a matrix of size(p×dcp) which forms

a local component code. This code can be locally treated as a binary code and decoded optimally using a

BCJR decoder on its time-varying trellis, or treated as a single parity-check in a finite non-binary group,

and decoded optimally with BP equations.

The operation of computing a non-binary representation of a binary code is obtained through a bit

clustering operation, which is essentially the same as the one described in [12]. Let a binary linear code

be defined by its parity-check matrixHb. Every adjacent non-overlapping square matrix of size(p × p)

in Hb is transformed during the clustering process into a linear function fromFq to Fq, which is used

in the NB-BP decoder, defined in the next section. The parameterp is called the clustering order. In

general, the size of the parity-check matrix is not necessarily an integer multiple ofp. In order to allow

any clustering order, one can add redundant rows and all-zero columns toHb so that the matrix can be

divided in clusters of size(p × p) without changing the code space. It has been shown in [12] that the

NB-BP decoder of a clustered binary code is very similar to a BP decoder on fieldsGF (2p), and that

dealing with the more general functionsfij(.) is quite easy, as explained in the next section.

A cluster is defined as a sub-matrixHij of size(p× p) in Hb. For any non-zero cluster, we associate

an edge in the Tanner graph which connects the correspondinggroup of rows and group of columns.

Linked to this edge, a linear functionfij(.) is associated, which hasHij as matrix representation. A

clustering example is plotted in section III.

In order to fully understand the different types of functions that we get from the clustering process,

we have depicted in Fig. 1 two clusters of size(4 × 4) with their associated function, one for the full

rank case, and the other one for the rank deficient case. The function corresponding to example(a) is

a bijection which implements a permutation of the symbols and the clusterHij is full rank, while the

function corresponding to example(b) is an injective function (only half of the symbol values are reached

throughfij(.)), and the clusterHij has rank3. When clustering a general linear block code, with the

technique explained in detail in section III, the clusters do not have the regular structure of a companion

matrix of a Galois field element. That is to say, a clustered binary code defines a non-binary code on

Fq, the vector space of sizep = log2(q) binary vectors, but does not define a code on the Galois field

GF(q). The update equations of the message passing decoder have to take the structure of the clusters

into account, and we explain in the next section how to deal with these particular functions in the NB-BP

decoder.
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C. Non-binary Belief Propagation Decoder onFq

The Tanner graph obtained by clustering a binary code with(p × p) clusters defines a code on the

finite groupFq of the orderq = 2p. We will refer to the non-binary belief-propagation decoder on Fq

as NB-BP decoder. The NB-BP decoder is very similar in nature than regular BP on finite fields. The

only difference is that the non-zero values of a parity-check equation are replaced with more general

linear functions fromFq to Fq, defined by the binary matrices which form the clusters. In particular,

is is shown in [12] that NB-BP can be implemented in the Fourier domain with a reasonable decoding

complexity.

We briefly review the main steps of the NB-BP decoder and its application to the non-binary Tanner

Graph. For a more detailed presentation of belief-propagation decoder over non-binary sets, seee.g. [9].

The non-binary Tanner graph of a parity-check code overFq is depicted in Fig. 2, in which we indicated

the notations we use for the vector messages,{Uvp, Upc, Ucp, Upv}. Additionally to the classical variable

and check nodes, we add function nodes to represent the effect of the linear transformations induced

from the clusters as explained in the previous section.

The NB-BP decoder has four main steps which useq-dimensional probability messages:

• Data node update:for each edge connected to a symbol node, the ouput extrinsicmessage is equal

to the term by term product of all input messages and the channel likelihood message, excluding

the message carried on the same branch of the Tanner graph.

• Function node update:the messages are updated through the function nodesfij(.). This message

update is reduced to a cyclic permutation in the case of a finitefield code, but in the case of a more

general linear function fromFq to Fq denotedβ = fij(α), the update operation is:

Upc[βj ] =
∑

i

Uvp[αi] j = 0 . . . q − 1, βj = fij (αi)

the summation is performed over all valuesαi which have imageβj through the linear functionfij .

• Check node update:this step is identical to BP decoder over finite fields and can be efficiently

implemented using a Fast Fourier Transform. Seee.g. [9], [12] for more details.

• Inverse function node update:with the use of the functionfij(.) backwards,i.e., by identifying the

valuesαi which have the imageβj , the update equation is:

Vpv[αi] = Vcp[βj ] ∀αi ∈ Fq : βj = fij (αi)

These four steps define one decoding iteration of a general parity-check code on a finite group. Note
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that, both in the finite field case and when the cluster defining thefunctionfij(.) is full rank, the function

node update is simply a re-ordering of the values. When the cluster has deficient rankr < p, which is

often the case when clustering a binary block code, only2r entries of the messageUpc are filled and the

remaining entries are set to zero.

The purpose of this work is to show that with an iterative decoding procedure, it is possible to get

close to the ML decoding performance of dense or locally-dense linear block codes. Therefore, we

will not particularly focus on studying practical constraints such as decoding latency or implementation

complexity. However, we still want our approach to be implementable if one accepts to increase the

decoder complexity in order to get better error-correctionresults. For this reason, we will only consider the

non-binary decoder in reasonable group orders, such asF64, F256 or F512 at most. Although non-binary

decoders have a much higher computational complexity and storage complexity than binary decoders, a

lot of work has been published recently that introduce sub-optimal non-binary decoders with complexity

close to binary decoders (see [11] and the references within). The extended min-sum (EMS) algorithm

studied in [11] has both computational complexity and storage requirements close to binary min-sum

decoders, and with a performance loss within 0.1dB-0.5dB from the full-complexity non-binary BP

decoder. This shows that the non-binary decoder diversity framework proposed in this paper, combined

with a practical sub-optimal decoder could indeed be implemented in hardware.

III. N OTION OF NON-BINARY DECODERDIVERSITY

A. Preprocessing and Tanner graph Diversity

Now that we have introduced all the necessary bases of our approach, we present in this section the

main objective of this research, which relies on the diversity of behaviors of the NB-BP decoding when

it is applied to different non-binary Tanner graphs representing the same code.

Let a block code be defined by a binary parity-check matrixHb of size (M × N). Any linear

transformationA on the rows and any column permutationΠ applied toHb does not change the code

space1, but changes the topology of the clustered Tanner graph. The application ofA andΠ is called pre-

processing, and let us denote the pre-processed binary parity-check matrix byH ′

b = P (Hb) = A Hb Π.

In order to be able to useH ′

b in the decoder when a codewordm corresponding toHb is sent, it

is necessary to re-order the received noisy codeword according to the inverse permutationΠ−1. Indeed,

1Only the binary mapping of the codewords change. The codes obtained with these transformations are equivalent codes, and

we will refer to “equivalent representation of thesame code” in the rest of the paper.
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sinceH ′

b

(

Π−1 m
)

= A Hb Π
(

Π−1 m
)

= A Hb m = 0, if y is the output of a noisy memoryless channel

with m as input, theny′ = Π−1 y should be used to compute the channel likelihoods that initialize a

decoder based onH ′

b.

The concept ofNB-BP decoder diversity(NB-DD) relies on the fact that the NB-BP decoder is a

dynamical system with sensitivity to initial conditions. As a consequence, if two representations of the

same code are used in a NB-BP decoder, the dynamics of the iterative decoder applied to the two

representations might be different and the convergence points also might be distinct. Please note that re-

ordering of the columns and rows implies different dynamicsof the decoder only if clustering is used, or

equivalently if anon-binarymessage-passing decoder is considered. The re-ordering, with A = ΠA, would

have no impact on the decoder behavior if a binary decoder is used. Let us illustrate this phenomenon

through a small example.

As an example, we depict in Fig. 3 a binary random block code with clustering orderp = 2, and the

associated Tanner graph. We did not represent the linear function nodes associated with the linear functions

fij(.) in the graph for sake of simplicity. By applying a permutation of the columns, or equivalently of

the bit positions in the codeword, one can see that the resulting Tanner graph has a completely different

structure. In particular, the upper matrix has more all-zero clusters, and the Tanner graph has therefore

fewer edges and fewer small cycles. We do not claim here that one case is necessarily a better graph

representation for the NB-BP decoder than the other case. With this example, we only point out that the

same code could have very different non-binary Tanner graphrepresentations, which can possibly result

in some diversity behavior in the decoder convergence.

In order to verify that the NB-BP decoder can exploit Tanner graph diversity, we have computed on the

two graphs of figure 3 with 10000 AWGN noise vectors at(Eb/N0)dB = 0dB the following statistics:

• 5019 cases where both decoders converge to the right codeword,

• 384 cases where both decoders fail to converge after 50 iterations,

• 589 cases where both decoders converge to a wrong codeword,

• 1213 cases where one decoder fails to converge, and the otherone converges to the right codeword,

• 1041 cases where one decoder fails to converge, and the otherone converges to a wrong codeword,

• 1754 cases where one decoder converges to a wrong codeword, and the other one converges to the

right codeword.

Of course this is a basic example which corresponds to a very small code, but this shows quite clearly

that all the possible decoder behaviors could happen when two decoders are used to decode the same
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noisy codeword, and with the possibility of correcting up to2967 extra cases, for which at least one

decoder has converged to the right codeword.

The NB-DD approach presented in this paper relies on the following conjecture. We assume that -for

a given noise realization- among the huge number of non-binary Tanner Graphs representing the same

code, there exists a specific one which is well matched to this noise realization and such that the NB-BP

decoder converges to the ML codeword.

This assumption is obviously true if there is no constraint onthe complexity of the non-binary decoder.

For any code, there exist a pre-processing functionP and a sufficiently large clustering orderp such

that the non-binary Tanner graph is a tree and the decoder is optimal (for all noise realizations). The

question of whether a well matched Tanner graph exists for a clustering orderp small enough for practical

implementation (namelyp ≤ 10) is more complicated and requires further research. In thispaper, as a

first step illustrating this conjecture, we will show by simulations that for dense or locally-dense block

codes, if one uses several different representations of thesame code, one can significantly improve the

error-correction performance as compared to existing approaches.

B. Non-binary Decoder Diversity Sets

Let a block code be defined by a binary parity-check matrixHb with size (M × N). Let A(i) be a

binary matrix of full rank corresponding to a change of basison the code, and letΠ(i) be a permutation

of the columns ofHb, or equivalently a permutation of the bits in the codewords.By applying the pre-

processingH(i)
b = P(i) (Hb) = A(i) Hb Π(i) we get another valid binary parity check matrix of the same

code. Now, let us denote byG(i)
pi

the non-binary Tanner graph obtained from the clustering operation of

orderpi on H
(i)
b . The Tanner graphG(i)

pi
is composed ofN/pi symbol nodes,M/pi general parity-check

nodes, and a certain number of edges associated with the non-zero clusters. In general, the size of the

parity-check matrix is not necessarily an integer multipleof pi. In order to allow any clustering order,

one can add redundant rows and all-zero columns toHb so that the matrix can be divided in clusters of

size (pi × pi) without changing the code space.

Definition

A diversity setG is defined as a collection ofd distinct non-binary Tanner graphs associated with the

same code and obtained through pre-processingP(i) and clustering of orderpi, i = 1, . . . , d:

G =
{

G(1)
p1

, . . . ,G(i)
pi

, . . . ,G(d)
pd

}

(3)
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This definition is very general and we give hereafter some specific examples.

• Clustering diversity only:

for all i, we chooseA(i) = IM and Π(i) = IN , where IN is the identity matrix of dimension

(N ×N). In other words, we do not apply any pre-processing, and onlyp varies in the definition of

the diversity set. For example,
{

G
(1)
1 , . . . ,G

(9)
9

}

is a diversity set withd = 9 Tanner graphs obtained

from a uniquebinary parity-check matrixHb. Note thatG(1)
1 is the usual binary Tanner graph. This

shows that since the diversity is defined in terms of graphs from clustered matrices, we can define

a diversity set even without changing the binary parity-check matrix of the code.

• Diversity with constant clustering order and common code basis:

for all i, we chooseA(i) = Π
(i)
1 and Π(i) = Π

(i)
2 , that is we consider only a re-ordering of the

rows and columns ofHb. Furthermore, with the same clustering orderp for all Tanner graphs,
{

G
(1)
p , . . . ,G

(d)
p

}

is a diversity set such that all the graphs have the same number of nodes, and the

same basis is used for all the code representations. This example of diversity set has the property that

the binary density ofH(i)
b remains the same since no linear transformation other than permutations

are used (which is useful if the initialHb has low density). However, the different Tanner graphs

could have different densities as shown in Fig. 3. Note that the choice ofp = 1 does not bring any

diversity since all the graphs would have the exact same topology.

• Diversity set with binary Tanner graphs:

with the choice ofp = 1 (no clustering) and bothA(i) and Π(i) can be general, the diversity set
{

G
(1)
1 , . . . ,G

(d)
1

}

defines a collection of binary Tanner graphs of the same code, represented in

different basis. This special case has been recently studiedin the literature [16], where the authors

have conducted a performance/complexity comparison when multiple bases of a block code are used.

Note that using different binary basis is also very similar to the methods proposed in [7], [8], in

which the authors propose to extend the binary representation of the code by introducing redundant

rows, with the goal of breaking the correlation effects which can prevent the binary BP decoder

from converging to a fixed point.

These few examples show that there are many possible ways of defining a diversity set and we

emphasize here that in our opinion, the choice of the diversity set is very important in order to effectively

have a gain in terms of error-correction. For each of the three simulation studies that we performed (see

section IV) a specific diversity set has been carefully chosen, adapted to each case.
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C. Merging Strategies

We discuss now the different strategies that we conducted inorder to capitalize on the NB-DD. There

are various possible merging methods that one can think of inorder to use the outputs of each decoder,

with associated performance complexity tradeoffs. Aside from the two natural merging strategies depicted

below, one can think of more elaborate choices.

• Serial merging:

the d decoders are potentially used in a sequential manner. Assuming that we check the value

of the syndrome at each iteration, when a decoder fails to converge to a codeword after a given

number of iterations, we switch to another decoder. That is, another Tanner graph is computed

with a different pre-processing and we restart the decoder from scratch with the new graph and the

permuted likelihood. The process stops when one decoder converges to a codeword (either the sent

codeword or another one). This strategy is different from theone proposed in [8] where the authors

iterate the message-passing decoder iteratively between different sets of redundant nodes. In our

case, when we switch to another decoder, the messages in the new graph are reset to zero and we

start the next decoder from scratch.

• Parallel merging:

thed decoders are used in parallel and a MLD decision is taken amongthe ones that have converged

to a codeword. Ifnb ≤ d decoders have converged to a codeword in less than the maximum number

of iterations, thenb associated likelihoods are computed and the one with the maximum likelihood

is selected. Note that thenb candidate codewords are not necessarily distinct. A similar merging

strategy with different binary bases has been proposed in [16].

• Lower boundon merging strategies:

in order to study thepotentialof the NB-DD approach regardless of the merging strategy, wedefine

the following lower bound. Among thed decoders in the diversity set, we check if at least one

decoder converges to the right codeword. A decoder failure is decided if alld decoders have not

converged to the right codeword after the maximum number of iterations. Note that this method

does not exhibit any undetected error. This is called a lower bound on merging strategies, because

it assumes that if there exists at least one Tanner graph which converges to the right codeword, one

can think of a smart procedure to select this graph. This is of course not always possible, especially

if the codeword sent is different than the codeword decoded with MLD, and the lower bound can

therefore be better than the MLD itself. This lower bound is however useful since it allows to have
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a possibly tight estimation on the parallel merging case, without having to simulate alld decoders.

The extra complexity induced by the serial merging is negligible since the diversity is to be used

only when the first decoder fails to converge. That is, at a FER=10−3 for the first decoder, the decoder

diversity will be used only0.1% of the time. The parallel merging is much more complex since ituses

d times more computations than a single decoder, but eventually leads to better performance.

Note that in this paper, the choice of a particular merging isnot studied. Only the use of several binary

representations is defended. However, it should be mentioned that the merging strategy is linked to the

additional complexity of the NB-DD approach compared to theuse of only one decoder. The parallel

merging will not be used in simulations, and we will only compare the serial merging and the lower

bound, which correspond to the extreme situation for a system using NB-DD.

Finally, let us point out that an interesting development would be to combine the approach presented

in this paper with the idea of extending the graph representation with redundant rows, as proposed in

[8], and run a message-passing decoder on the global graph with a well chosen scheduling. This is

although a non-trivial generalisation since there is no simple way to capitalize on the decoding output of

a particular graph in the diversity set and propagate a message to another graph representation. Indeed,

since we consider binary pre-processing functions on the binary parity-ckeck matrices of the code, one

would need to marginalize the non-binary messages at the binary level and then re-combine them in the

correct non-binary symbols before the decoder can start in another part of the graph. This strategy did

not work at all in our simulations, at least when random pre-processing functions were considered. It

appears that running a BP-based decoder on a redundant representation of the code, and therefore on a

denser Tanner graph, seems to work better for binary decoders than for non-binary decoders.

IV. SIMULATION RESULTS FORVARIOUS EXAMPLES

In this section, we present in detail three examples for which the NB-DD technique has shown its

advantage. The three examples are very different, both with respect to the transmission model (channel,

code families), and with respect to the chosen diversity set.

Before studying the different cases, it should be noted thatthe performance gain brought by NB-DD

must be fairly compared to the performance obtained with a single decoder. The fair comparison is

ensured when NB-DD withd = 1 corresponds to a single decoder with reasonable performance. In order

to do so, and in all the examples in this section, we have carefully chosen the diversity sets such that

all decoders in the set have comparable average performancebut more importantly, they have each very
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good performance when used separately. This particularly means that the observed performance gains

are indeed due to the diversity of the NB-DD approach.

A. BCH codes on the BI-AWGN Channel

1) Diversity Set: In this section, we consider BCH codes sent over the BSPK-AWGN channel. For

such a case, it has been shown that it is necessary to adapt theparity-check matrix so that an iterative

decoder has acceptable performance. The method developed in[14] is to change adaptively the binary

Tanner graph such that the least reliable bits are connectedonly to one check node, and therefore do

not propagate much noise in one decoding iteration. The first step of this method is to sort the channel

likelihoods (ora posteriori probabilities after the first iteration) in ascending order and diagonalize the

binary parity-check matrix in such a way that one obtains theparity-check matrix represented in its

most reliable basis (MRB). This method is computationally intensive since it usually requires a Gaussian

elimination at each and every decoding iteration. It has been recently proposed in [15] to perform the

Gaussian elimination and obtain the MRB only at the initialization of the decoder, which is sufficient to

get good performance if the block length is not too large (N ≤ 64 bits). This latter algorithm is called

modified adaptive BP (m-ABP).

In this section, we define the diversity set with the knowledgeof the MRB. We first perform a MRB

Gaussian elimination based on the channel likelihood values, and store the transformation matricesAMRB

andΠMRB. Therefore, the binary matrixAMRB Hb ΠMRB is diagonalized in its MRB. Then, we wish

to build a diversity set such that for all candidate Tanner graphs,(i) the bit indices which form the MRB

basis are localized in the same part of the codeword,(ii) the least reliable symbols are connected only

to one check node of the non-binary Tanner graph, that is onlyone non-zero cluster in the first part of

the parity-check matrixH(i)
b is allowed.

The most general pre-processing which follows these constraints is of the type:

H
(i)
b = P(i) (Hb) =

(

A(i) AMRB

)

Hb

(

ΠMRB Π(i)
)

(4)

whereAMRB andΠMRB are obtained from the MRB Gaussian elimination, and therefore are the same
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for all pre-processing in the diversity set. The other transformations have the following structure:

A(i) =

















a
(i)
1 0 . . . 0

0 a
(i)
2 . . .

...
...

... ... 0

0 . . . 0 a
(i)
M/p

















Π(i) =





IM 0

0 Π
(i)
K





That isA(i) is block diagonal with full rank clustersa(i)
k of size (p × p), andΠ(i) permutes only the

K = N − M most reliable bits. In the diversity set,A(i) andΠ(i) are generated at random.

Using a diversity set based on these pre-processing strategies ensures that all the decoders have

comparable average performance. This is also a very special use of the NB-DD approach since the

diversity sets differ from one noise realization to another, because of the MRB Gaussian elimination. We

will see in the next examples more natural uses of NB-DD, for which the diversity set is built regardless

of the noise realization.

2) Frame Error Rate Results:We consider the following codes as case studies: eBCH(N = 128, K =

92, Dmin = 12), BCH(N = 127, K = 71, Dmin = 19) and eBCH(N = 256, K = 131, Dmin = 38).

In Fig. 4, we plot the NB-DD results using the proposed diversity set and a maximum diversity order

d = 200, with two clustering ordersp = 6 and p = 9. The maximum number of decoding iterations

was set to 100. The performance of the m-ABP of [15] is shown andthe tangential sphere bound (TSB)

computed with the code distance spectrum is used as maximum-likelihood decoding (MLD) lower bound.

There are several important comments to make based on this figure:

• First, the proposed NB-DD approach has the potential to reachMLD performance on this code since

the lower bound with parameters(p = 9, d = 200) sticks to the TSB curve. This shows that with

a diversity order ofd = 200 Tanner graphs, there exist at least one of these graphs for which the

NB-BP would converge to the ML codeword. We verified that for all noisy codewords, there is no

dominant graph and that the use of the diversity set is therefore necessary to be able to reach these

results. Indeed, the graphs in the diversity set which converge for a particular noise realisation are

not the same as those which converge for a different noise realisation.

• The performance obtained with the serial merging, which corresponds to the minimum complexity

NB-DD scheme, is only0.35dB away from the TSB at aFER = 10−5 which is still the best

performance that we have observed in the literature with iterative decoders on block codes with

comparable length and rates. For instance, the binary m-ABPhas a1.4dB loss compared to the

TSB at FER = 10−5. Note that although close to the lower bound, the performance loss of the
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serial merging is relatively big, and this is due to the poor minimum distance of this BCH code,

which result in an large number of undetected errors.

• The diversity gain in this case is not really great since we gain less than one decade by using a

maximum ofd = 200 decoders instead of a single one (remember that the 200 decoders are seldom

used in the decoding process). This is due to the fact that the MRB Gaussian elimination adapts the

graph to the channel statistics. In this sense, the graphs selected in the diversity set are already well

matched to the noise realization, and the NB-DD gain is not impressive. The fact that the lower

bound sticks to the TSB curve shows however that NB-DD could bring a non-negligible performance

gain with a proper merging strategy or a proper pre-processing choice.

• Finally, we can see that with a smaller clustering orderp = 6, the results are close to thep = 9

results, which shows that reducing the complexity of the NB-BP decoders can result in a interesting

complexity/performance tradeoff.

The same remarks can be made about the BCH(N = 127, K = 71, Dmin = 19) code, for which we

plot the same set of curves in Fig. 5. The clustering orders thatwe considered for this code arep = 4

andp = 8. This code has almost the same length as the eBCH(N = 128, K = 92, Dmin = 12), but has

a larger minimum distance and a rate closer toR = 0.5. For this code, the lower bound of NB-DD is

very close to the TSB, which we think is a very promising result.At a FER = 10−5, the lower bound

on NB-DD is 1.9dB better than the m-ABP solution of [15], and with the serial merging the gain is still

important (1.2 dB better).

Although not shown in the figure, we have studied the performance evolution with increasing values

of the diversity orderd for the BCH(N = 127, K = 71, Dmin = 19) code. For the serial merging, the

same performance can be obtained with a lot smaller diversity order, as we observed only a negligible

gain from d = 80 to d = 200. However, when considering the lower bound on merging strategies, the

performance are still improving beyondd = 80. A number ofd = 200 decoders was the smallest number

such that the NB-DD reaches the TSB bound. For example, NB-DD with d = 200 has a FER roughly

twice better than withd = 100 and four times better than withd = 50.

Finally, we plot in Fig. 6 the performance of NB-DD on the eBCH(N = 256, K = 131, Dmin = 38)

code which is a very challenging code for which no decoder with reasonable complexity approaches the

performance of MLD. We can see that the gap between NB-DD and the TSB is approximately 1.4dB

which means that MLD performance for this code is for the moment out of the reach of NB-DD. Our

method has however a gain of about 1.8dB compared to binary m-ABP. Note that in this case, the gap

between the lower bound NB-DD and the serial merging is very small, and this is due to the fact that
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the large minimum distance of the code limits the number of undetected errors in the NB-BP.

B. BCH codes on the BSC Channel

1) Diversity Set: In this section, we consider BCH codes sent over the binary symmetric channel.

For this channel where the errors are flipped bits, there is no possibility of having a well chosen matrix

representation, matched to the channel outputs, as we did with the MRB Gaussian elimination in the

previous section.

This is a good example which shows the great advantage of NB-DD. Since there is no possibility to

choosea priori a good Tanner graph for a particular noise realization, we rely on the possibility that

amongd distinct graphs, there exist one graph which is best matchedto the noise. In order to show

that this is indeed the case, we will only simulate the performance of NB-DD with the lower bound on

merging strategies approach, which means that we only focuson finding a Tanner graph among thed

candidates, such that the NB-BP decoder converges to the right codeword.

The only thing we can do to help the decoding process is to diagonalize the parity-check matrix (in

any basis), in order to maximize the number of all-zero clusters in the non-binary Tanner graph. Let us

considerHb, the binary parity check matrix of a BCH code in its systematic form. The diversity set is

composed of the pre-processing functions of the type:

H
(i)
b = P(i) (Hb) = AGE Hb

(

Π
(i)
N ΠGE

)

(5)

whereΠ
(i)
N , generated at random, is used to permute theN columns ofHb, and(AGE , ΠGE) are obtained

from the Gaussian elimination. Once more, all the candidates in the diversity set have similar average

performance.

2) Frame Error Rate Results:We plot the frame error rate with respect to a normalized signal to noise

ratio (Eb/N0)dB = 10 log10(Eb/N0) from which the probability of errorperr for the BSC is computed

with,

perr =
1

2
erfc

(

√

R
Eb

N0

)

(6)

where erfc is the complementary error function, andR the rate of the code. This representation has the

advantage that we can measure the performance loss due to hard decision before decoding in a Gaussian

channel.

In Fig. 7 and Fig. 8, we plot only the lower bound of NB-DD, that isthe best performance we can

expect from our method, and compared it to the bounded distance decoding performance, that is assuming

an algebraic decoder which corrects all noise patterns of Hamming weight less than⌊Dmin−1
2 ⌋. We used
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a clustering orderp = 9 for the eBCH(N = 128, K = 92, Dmin = 12) code and a clustering order of

p = 8 for the BCH(N = 127, K = 71, Dmin = 19) code.

We can see on both figures that using one decoder is by far not sufficient to have good error-correction,

since the performance is outperformed by a simple bounded distance decoder. However, the NB-DD

approach shows an impressive performance gain, especiallyat highEb/N0. Indeed, at(Eb/N0)db = 6.5dB

in Fig. 7, using a diversity order ofd = 2000 allows a gain of almost 5 decades compared to a single

decoder. Moreover, the NB-DD is1dB better than a bounded distance decoder for all frame error rates

below 10−5, which is a very important gain for this problem, that is decoding dense block codes over

the BSC.

These good performance results are even enhanced for the BCH(N = 127, K = 71, Dmin = 19) code

in Fig. 8. One can see also that for this case, the NB-DD is fullyused even with a large diversity order

since there is an important gap between a diversity orderd = 200 and a diversity orderd = 2000.

C. Turbo-codes on the BI-AWGN Channel

1) Diversity Set:In this last example, we consider the problem of decoding a turbo-code on a BPSK-

AWGN channel with a NB-BP decoder, as introduced in [17].

Binary parity-check matrices of convolutional codes are typically concentrated on the diagonal of the

matrix and are obtained through algebraic arguments [18]. That is, the parity-check matrix is sparse,

but locally dense, which is a good configuration for using witha NB-BP decoder on the clustered

matrix. Of course, when considering turbo-codes, we still get some locally dense parts in the binary

parity-check matrix of the code, except for the parts which correspond to the turbo interleaver. In [17],

the authors have proposed a pre-processing function specificto turbo-codes optimized in order to have

the most concentrated diagonal in the parity-check matrix,which is also equivalent to minimizing the

number of non-zero clusters that will be created on the diagonal after the clustering process. The binary

representation that is obtained with the technique proposed in [17] has the structure depicted in Fig. 9.

Binary representations such as the one in Fig. 9 are supposed to be a good choice since the clusters

on the diagonal are the more dense in the Tanner graph, and areassumed to participate the most to the

performance degradation of the BP decoder when these clusters contribute to cycles. Indeed, we have

verified by simulations on several turbo-codes that the number of non-zero clusters of a given size is

minimized when we perform a pre-processing resulting in a binary representation similar to figure 9.

Note that by properly choosing the columns to be permuted, several representations of this type could

be created. In this paper we will considerd = 5 such parity-check matrices which form the diversity set.
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Contrary to the two previous examples, here the diversity order is very small, but each Tanner graph is

supposed to exhibit very good performance under NB-BP decoding since they are very sparse.

2) Frame Error Rate Results:We present in this section simulation results for the duo-binary turbo-

codes of the DVB-RCS standard, which were first presented in [19]. The considered code parameters are

R = 0.5 and sizeN = {3008} coded bits, with tail-biting trellis termination. The minimum distance of

this code isDmin = 19.

The NB-DD results are plotted in Fig. 10. If we focus on the maximum performance gain that one

can hope for by looking at the lower bound curves, it is clear that using several decoders can improve

significantly the performance, both in the waterfall region and the error floor region. Using NB-BP

decoding with decoder diversity can gain between 0.25dB to 0.4dB compared to the turbo-decoder using

BCJR component decoders, which was up to now considered as the best decoder proposed for turbo-codes.

This result shows in particular that it is possible to consider iterative decoders which are more powerful,

and therefore which are closer to the maximum-likelihood decoder, than the classical turbo-decoder. This

claim was known from asymptotic density evolution results,but to the best of our knowledge, our decoder

is the first that could practically, that is with complexity reasonable enough to be implemented on a chip,

beat the turbo-decoder.

Interestingly, the serial merging which is the more simple merging strategy, achieves full decoder

diversity gain in the waterfall region,i.e., above FER= 10−3. This is particularly useful for wireless

standards which use ARQ based transmission and therefore hardly require error-correction below FER=

10−3. In the error floor region though, we can see in Fig. 10 that more elaborate merging solutions should

be used to achieve full diversity gain and obtain a substantial gain compared with turbo decoder.

V. CONCLUSION

In this paper, we have presented a new framework, called “non-binary decoder diversity” based on

the observation that different non-binary Tanner graphs ofthe same code, decoded with a non-binary

BP decoder can have distinct convergence behaviors and fixed points. This framework is especially

interesting for binary codes which are dense or locally-dense, and for which the usual binary iterative

decoders perform far from the optimum curves. We focused ourstudy on deriving an adapted strategy

for three very different test cases which are known to be complex decoding problems, and in all cases,

the proposed approach showed promising results, either close to the theoretical bound or outperforming

existing decoders.

The results presented in this paper show the potential of the non-binary decoder diversity approach to
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get close to MLD performance. This is however the first initial step and further work will be dedicated

to the characterization and the optimization of the non-binary Tanner graph, in order to match the graph

to a particular noise realization.
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Fig. 10. Performance of decoder diversity applied to the (R=0.5,N=3008) duobinary Turbo Code.
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