
HAL Id: hal-00670320
https://hal.science/hal-00670320

Submitted on 15 Feb 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimal annuitization, uncertain survival probabilities,
and maxmin preferences

Hippolyte d’Albis, Emmanuel Thibault

To cite this version:
Hippolyte d’Albis, Emmanuel Thibault. Optimal annuitization, uncertain survival probabilities, and
maxmin preferences. Economics Letters, 2012, 115 (2), pp.296-299. �10.1016/j.econlet.2011.12.045�.
�hal-00670320�

https://hal.science/hal-00670320
https://hal.archives-ouvertes.fr


Optimal Annuitization, Uncertain Survival

Probabilities and Maxmin Preferences

Hippolyte d’ALBIS∗

Paris School of Economics (University Paris 1)

Emmanuel THIBAULT

Toulouse School of Economics (University of Perpignan, CDED and IDEI)

Abstract: We consider a life-cycle model with bequest motives and assume that the

individual does not know her survival probability and has maxmin utility preferences;

we show it is optimal not to annuitize but to purchase pure life insurance policies

instead.

Keywords: Demand for Annuities, Uncertain Survival Probabilities, Uncertainty

Aversion, Maxmin.

JEL codes: D11, D81, G11, G22.

∗Corresponding Author. H. d’Albis, CES, 106 boulevard de l’Hopital, 75013 Paris, France. Phone:

33 1 44 07 81 99. Fax: 33 1 44 07 82 31. Email: dalbis@univ-paris1.fr



1 Introduction

Only a small fraction of people opt for voluntary annuitization. Such observations are

at odds with the life-cycle model of consumption with uncertain lifetime proposed by

Yaari (1965). Full annuitization should indeed be the optimal strategy followed by

an individual without altruistic motives provided that annuities are available. The

initial framework has hence been extended and many partial explanations of the so-

called annuity market participation puzzle have been proposed. However, as shown by

Davidoff et al. (2005), positive annuitization still remains optimal under very general

specifications and assumptions, including intergenerational altruism. In this paper, we

study a life-cycle model similar to that of Yaari (1965) and Davidoff et al. (2005),

while restricting ourselves to the case of warm-glow altruism. We consider a maxmin

utility problem within a framework with state-dependent utilities yielded by uncertain

lifetimes. In this simple framework, we show it is optimal not to annuitize, even for

large returns of annuities and a low degree of intergenerational altruism.

2 Basic Framework

We consider a two-period model of consumption and bequest with uncertain lifetime

similar to that of Davidoff et al. (2005). The length of life spans two periods at

the most, with the second one being uncertain. The individual derives utility from

consumption and a bequest that she might leave at the end of period 1 or 2. In the

first period, the individual is endowed with a non negative initial income Ω that can

be shared between bonds and annuities. Bonds return RB > 0 units of consumption

in period 2, whether the individual is alive or not, in exchange for each unit of the

initial endowment. Conversely, annuities return RA > RB in period 2 if the individual

is alive and nothing otherwise. Due to the possibility of dying, the demand for bonds

should be non-negative and therefore annuities are the only way to borrow (this selling

of annuities is a purchase of pure life insurance policies). If the individual is alive

during the second period, she may allocate her financial wealth between consumption

and bequest. Since death is certain at the end of period 2, the latter corresponds

exclusively to a demand for bonds.

Let c1, A and B respectively denote the consumption, the demand for annuities

and the demand for bonds in the first period, and let c2 and x respectively denote

the consumption and the bequest decided upon in the second period. The budget
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constraints can be written as follows:

c1 = Ω− A−B, (1)

c2 = RAA+RBB − x. (2)

In addition, the following inequalities hold:

c1 ≥ 0, c2 ≥ 0, x ≥ 0, B ≥ 0. (3)

Using the budget constraints, these inequalities imply that the demand for annuities

is bounded and may be negative:

− RB

RA −RB

Ω ≤ A ≤ Ω. (4)

In accordance with Davidoff et al. (2005), we assume that whatever the length of

the individual’s life, bequests are received in period 3, involving additional interest:

the bequest is therefore RBx if the individual is alive in period 2, while it is R2
BB if

she is not.

Finally, the individual’s utility is u (c1)+w (c2)+v (RBx) if she lives for two periods

and u (c1) + v (R2
BB) if she lives for only one period. Functions u (.), w (.) and v (.)

are supposed to be positive, increasing, concave and to possess an infinite slope at zero

and a horizontal slope at infinity. Additive separability is not a key assumption and

our results still hold with more general functions.

3 Optimal Annuitization and Maxmin Utility

In what follows, the individual is assumed to be in complete ignorance about her

survival probability, which may take any value between 0 and 1. Moreover, she employs

the Wald (1950) decision criterion, the so-called maxmin utility criterion. She behaves

so as to maximize utility from among the worst possible utilities. In our case, there

are two possible states of nature, namely being alive or not during the second period,

but since utility increases with a bequest, the worst state is not given a priori. The

individual hence solves:

max
c1,c2,x,B

min
(
u (c1) + w (c2) + v (RBx) , u (c1) + v

(
R2

BB
))

(5)

subject to (1), (2) and (3).

Let (c∗1, c
∗
2, x
∗, A∗, B∗) be the optimal solution of the problem. The following two

propositions characterize this solution.
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Proposition 1 .

The optimal behavior is to make welfare independent of the length of life by equaliz-

ing the utilities derived in the two states of nature, which implies: w (c∗2) + v (RBx
∗) =

v (R2
BB
∗). Consequently, the second-period consumption is greater than annuitization:

c∗2 > RAA
∗.

Proof – See Appendix A. �

The presence of a bequest motive implies that the utility obtained if death occurs

at the end of the first period is not systematically lower than if it occurs one period

later. By modifying the relative share of bonds and annuities in the portfolio, both

cases are, in actual fact, possible. In Proposition 1, we suggest that the solution of

the maxmin problem is to make welfare independent of the lottery i.e., in our case,

independent of the length of life. The intuition for this result is explained as follows.

Suppose, by contradiction, that utility is greater if the individual lives for two periods.

The individual then aims to maximize the utility obtained in the event of early death,

which is achieved by selling the highest possible, indeed an infinite number of annuities

in order to purchase a maximum number of bonds. In this case, however, the utility

in the event of early death is infinite and greater than in the event of late death.

Suppose, conversely, that the utility is greater if the individual lives for one period.

The individual then aims to maximize the utility obtained in the event of late death.

Since annuities return more than bonds, it would therefore be optimal not to hold

bonds in her portfolio. The bequest in the event of early death is therefore zero, and

the utility with one period of life cannot be greater than with two periods.

To summarize, with a maxmin utility criterion, the optimal behavior is to avoid the

lottery by ensuring the same utility whatever the length of life. As a consequence, the

utility derived from both consumption and bequest, obtained in the event of survival,

should be made equal to the utility derived from the bequest only in the event of early

death. The bequest in the latter case should then be larger than in the former, which,

using the budget constraint (2), implies that second-period consumption exceeds annu-

itization. Contrary to the expected utility case studied by Yaari (1965), the individual

consumes some of her bonds if she survives and thus, a zero annuitization strategy

is possible. We note that this result is true for any returns on annuities and bonds

provided that RA > RB.

Proposition 2 .

The optimal strategy is to sell annuities short: A∗ < 0.
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Proof – See Appendix B. �

With a maxmin utility criterion, the individual should not purchase annuities but

sell them short, or, equivalently, purchase pure life insurance policies (Bernheim, 1991).

Proposition 2 claims that the selling of annuities is the only way to sufficiently reduce

consumption and bequest in the second period in order to equalize utilities in the two

states of nature. To understand this result, let us figure out what would happen if

the utility were independent of consumption. Equalizing the utilities in the two states

of nature would then be obtained by equalizing the bequests. Since annuities return

more than bonds, the optimal portfolio should be exclusively composed of bonds: the

demand for annuities would thus be zero. Our model is more complex as utilities are

state-dependent. If the individual is alive in the second period, she benefits from her

consumption, which should be compensated by a higher utility if she were not alive;

this is achieved through the selling of annuities.

Our framework can be considered as an extreme case when dealing with the demand

for annuities. In the next section, we extend our results to a more general case for which

the values that may be taken by the unknown survival probability do not necessarily

include 0 and 1.

4 Extension to Maxmin Expected Utility

In this section, we assume that the individual is still unaware of both her survival

probability and its distribution but that she does know the support of the latter. More

precisely, the survival probability, denoted by p, may take any value within the interval

[p0, p1], with 0 ≤ p0 < p1 ≤ 1. For each value of p, an expected utility may then be

computed. We assume that the individual employs a maxmin expected utility criterion

(Gilboa and Schmeidler, 1989). Her problem can be written as follows:

max
c1,c2,x,B

min
p
u (c1) + p [w (c2) + v (RBx)] + (1− p) v

(
R2

BB
)
, (6)

subject to the same constraints as in the previous section, namely (1), (2) and (3).

We note that the problem studied in the previous section is a special case of this

one. Moreover, in order to equalize the expected utilities in each state of nature (i.e.

for each possible value of the survival probability) it is necessary to make the welfare

independent of longevity, as stated in Proposition 1. In this case, Proposition 2 holds.

In the following proposition, we give a sufficient condition under which such a behavior

is still optimal.
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Proposition 3 .

There exists p̂0 ∈ (0, RB/RA), such that if p0 < p̂0, the optimal strategy is to sell

annuities short: A∗ < 0.

Proof – See Appendix C. �

The main result we obtain in Proposition 2 is hence extended to a maxmin expected

utility framework provided that the lowest possible value of the uncertain survival

probability is not too large. If p0 is sufficiently low, the individual sells annuities short.

Conversely, if p0 is high enough, the worst state of nature may be the expected utility

computed at p0. Then, maximizing the latter objective may lead to a positive demand

for annuities.

Let us point out that the annuitization decision is made by the elderly who face

relatively low average survival probabilities and, consequently, even lower p0. At first

glance, the condition p0 < p̂0 is thus realistic.

5 Conclusion

In this article, we have provided a simple framework in which rational individuals do

not annuitize. More precisely, we show that the optimal strategy is to sell annuities

short, or to purchase pure life insurance policies. Our result hinges on two crucial

assumptions, namely that individuals are unaware of their own survival probability

and that they display aversion toward this uncertainty, and on one condition, which is

that the lowest possible survival probability should be low enough. We have proved our

result using a maxmin expected utility framework, which features a rather extreme case

in terms of aversion to uncertainty. We conjecture that our results hold for sufficiently

strong aversion to uncertainty. It would nevertheless be interesting to study this last

point carefully.
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Appendix

Appendix A – Proof of Proposition 1.

We first note that the objective function (5) is equivalent to the following one:

max (φ (c1, c2, x, B) , ψ (c1, c2, x, B)) , (A.1)

where:
φ (c1, c2, x, B) = maxw (c2) + v (RBx)

s.t. v (R2
BB)− w (c2)− v (RBx) ≥ 0,

(A.2)

ψ (c1, c2, x, B) = max v (R2
BB)

s.t. w (c2) + v (RBx)− v (R2
BB) ≥ 0.

(A.3)

The Lagrangians of problems (A.2) and (A.3) are respectively written as:

L1 = u (c1) + (1− µ) [w (c2) + v (RBx)] + µv
(
R2

BB
)
, (A.4)

L2 = u (c1) + λ [w (c2) + v (RBx)] + (1− λ) v
(
R2

BB
)
, (A.5)

where the multipliers associated with the inequality constraints are denoted by µ and

λ. As a consequence, λ = 1− µ, and the first-order conditions of our problem are:

−u′ (c1) + (1− µ)RARBv
′ (RBx) = 0, (A.6)

−u′ (c1) + (1− µ)R2
Bv
′ (RBx) + µR2

Bv
′ (R2

BB
)

= 0, (A.7)

(1− µ) [w′ (c2)−RBv
′ (RBx)] = 0, (A.8)

µ (1− µ)
[
w (c2) + v (RBx)− v

(
R2

BB
)]

= 0. (A.9)
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We now prove the first part of Proposition 1 by showing that the multiplier µ cannot

be neither zero nor one. Let us first show that µ 6= 0. Using (A.6) and (A.7), µ = 0

is indeed impossible since RA > RB. Let us now show that µ 6= 1. Using (A.6) and

(A.7), µ = 1 would imply that c1 and B tend to +∞, because it has been assumed

that marginal utility is zero at infinity. Using (1), this implies that A tends to −∞.

Then, replacing (1) in (2) gives:

x+ c2 = (RA −RB)A+RB (Ω− c1) , (A.10)

from which we deduce that x + c2 tends to −∞. Hence, µ = 1 is impossible since the

inequalities in (3) cannot be satisfied.

Next, we prove the second part of Proposition 1 using (A.9) for µ /∈ {0, 1}. At the

optimal solution, we may write:

w (c∗2) + v (RBx
∗) = v

(
R2

BB
∗) , (A.11)

which implies that x∗ < RBB
∗. Using (2) is finally sufficient to obtain the desired

conclusion. �

Appendix B – Proof of Proposition 2.

Let us compare the solution of problem (6), denoted (c∗1, c
∗
2, x
∗, A∗, B∗), with the

feasible set (c∗1, c̄2, x̄, A
∗, B∗) where c̄2 = 0 and x̄ ≡ RAA

∗ +RBB
∗. Since w′ (0) = +∞

is assumed, the latter does not satisfy (A.8), and is therefore not optimal. We conclude

(using the assumption w (0) ≥ 0) that:

w (c∗2) + v (RBx
∗) > v

(
RBRAA

∗ +R2
BB
∗) . (B.1)

Using Proposition 1, we obtain that v (R2
BB
∗) > v (RBRAA

∗ +R2
BB
∗), and conse-

quently that A∗ < 0. �

Appendix C – Proof of Proposition 3.

Let us first denote the solution of (6) by (c∗1, c
∗
2, x
∗, A∗, B∗, p∗) and the expected

utility computed at the optimum by EU∗ that we may write:

EU∗ = u (c∗1) + p∗ [w (c∗2) + v (RBx
∗)] + (1− p∗) v

(
R2

BB
∗) . (C.1)

The proof proceeds as follows. We assume that A∗ > 0, and show that there exists a

p̂0 such that, for all p0 ≤ p̂0, this is not possible. We conclude that A∗ is negative for

all p0 < p̂0.
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Let us consider the feasible set, denoted by
(
c̄1, c̄2, x̄, Ā, B̄, p̄

)
, which is such that

Ā ∈ (0, A∗), p̄ = p∗, B̄ = B∗ and x̄ = RBB
∗. We hence obtain c̄2 = RAĀ using (2),

and c̄1 > c∗1 using (1). Let EU denote the expected utility obtained by this set. Since,

by the definition of B̄ and x̄, w (c̄2) + v (RBx̄) > v
(
R2

BB̄
)
, we have:

EU > u (c̄1) + v
(
R2

BB̄
)
> u (c∗1) + v

(
R2

BB
∗) . (C.2)

Moreover, by the definition of a maximum: EU∗ ≥ EU , from which we deduce that:

EU∗ > u (c∗1) + v
(
R2

BB
∗) .

This implies that w (c∗2) + v (RBx
∗) > v (R2

BB
∗) and consequently that p∗ = p0. There-

fore, (c∗1, c
∗
2, x
∗, A∗, B∗) should be the solution of the following problem:

max
c1,c2,x,B

u (c1) + p0 [w (c2) + v (RBx)] + (1− p0) v
(
R2

BB
)
, (C.3)

subject to (1), (2) and (3).

However, it can be shown that the A solution of the latter problem is increas-

ing with p0, negative for p0 = 0 and positive for p0 = RB/RA. Then, there ex-

ists p̂0 ∈ (0, RB/RA) such that for all p0 ≤ p̂0, we have a contradiction between

(c∗1, c
∗
2, x
∗, A∗, B∗, p∗) being optimal and A∗ > 0 being positive. We conclude that for

all p0 < p̂0, the optimal demand is negative, i.e. A∗ < 0. �
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