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Abstract. This paper develops a novel framework to compute a projected Generalized Stein
Unbiased Risk Estimator (GSURE) for a wide class of sparsely regularized solutions of inverse
problems. This class includes arbitrary convex data fidelities with both analysis and synthesis
mixed ¢! — ¢% norms. The GSURE necessitates to compute the (weak) derivative of a solution
w.r.t. the observations. However, as the solution is not available in analytical form but rather
through iterative schemes such as proximal splitting, we propose to iteratively compute the
GSURE by differentiating the sequence of iterates. This provides us with a sequence of
differential mappings, which, hopefully, converge to the desired derivative and allows to compute
the GSURE. We illustrate this approach on total variation regularization with Gaussian
noise and to sparse regularization with poisson noise,o0 automatically select the regularization
parameter.

1. Introduction

This paper focuses on unbiased estimation of the ¢2-risk of recovering an image f; € RV
from low-dimensional noisy observations y = ®fy + w, where w ~ N(0,0%Idp). The linear
bounded imaging operator ® : RV — ) = R” entails loss of information so that P < N or is
rank-deficient for P = N, and the recovery problem is typically ill-posed.

In the following we denote f(y) € RY the estimator of fy from the observations y € ).
More specifically, we consider an estimator f(y) defined as a function of coefficients z(y) € X
(where X is a suitable finite-dimensional Hilbert space) that solves x(y) € argmin,cy E(x,y)
where the set of minimizers is nonempty. Here E(z,y) is an energy functional parameterized
by the observations y € ). In some cases (e.g. total variation regularization), one directly has
f(y) = z(y), but for sparse regularization in a redundant synthesis dictionary, the latter maps
coefficients x(y) to images f(y). We then make a distinction between f(y) and z(y) in the
following.

This work proposes a versatile approach for unbiased risk estimation in the case where x(y)
is computed by proximal splitting algorithms. These methods have become extremely popular
to solve inverse problems with convex non-smooth regularizations, e.g. those encountered in the
sparsity field.

2. Previous Works

Unbiased Risk Estimation. The SURE [14] is an unbiased (2-risk estimator. For denoising
® = Id, it provides an unbiased estimate SURE(y) of the risk E(|f(y) — fo|*) that depends
solely on y, without prior knowledge of fy. This can prove very useful for objective choice of
parameters that minimize the recovery risk of fp. A generalized SURE (GSURE) has been
developed for noise models within the multivariate canonical exponential family [7]. In the
context of inverse problems, this allows to compute the projected risk E(|TI(f(y) — fo)|?) where



IT is the orthogonal projector on ker(®). Similar GSURE versions have been proposed for
Gaussian noise and special regularizations or/and inverse problems, e.g. [12, 17].

SURE and GSURE have been applied to various inverse problem, to estimate the
reconstruction risk E(|®(f(y) — fo)|?), for wavelet denoising with linear expansion of thresholds
[10], wavelet-vaguelet non-iterative thresholding [12], synthesis sparsity [6, 17, 8] and analysis
sparsity [5].

Unbiased Estimation of the Degrees of Freedom. A prerequisite to compute the SURE or
GSURE is an unbiased estimate of the degrees of freedom df(y). Roughly speaking, for
overdetermined linear models, df(y) is the number of free parameters in modeling f(y) from
y. There are situations where df(y) can be estimated in closed-form from f(y). This occurs
e.g. in synthesis ¢! regularization, as established in the overdetermined case in [19], and extended
to the general setting in [9]. These results have been extended to analysis sparsity (for instance
total variation) [16, 15].  When no closed-form is available, df(y) can be estimated using
data perturbation and Monte-Carlo integration, see e.g. [18]. Alternatively, an estimate can
be obtained by formally differentiating the sequence of iterates provided by an algorithm that
converges to f(y). As proposed initially by [17] and refined in [8], this allows to compute the
GSURE of sparse synthesis regularization.

Proximal Splitting Algorithm. Convex optimization problems that appear in imaging
applications usually enjoy a lot of structure, that is efficiently captured using proximal splitting
methods. These methods are tailored to tackle large non-smooth convex optimization problems
and are now mainstream in image processing. See for instance [3] for an overview of these
methods. The precise algorithm to be used depends on the specific structure of the problem.
The forward-backward (FB) algorithm handles the sum of a smooth and a simple function (for
which the proximal mapping can be computed in closed form), see for instance [4]. The Douglas-
Rachford (DR) algorithm [2] does not make any smoothness assumption, but requires that the
functional is split into a sum of simple functions. The generalized foward-backward (GFB)
algorithm [13] is an hybridization between FB and DR, thus enabling to take into account a
smooth function and an arbitrary number of simple functions. Lastly, let us mention primal-
dual schemes, such as the one recently proposed by Chambolle and Pock [1], that enables to
minimize compositions of linear operators and simple functions. In this paper, we illustrate the
versatility of our method by applying it to both primal (FB, DR and GFB) and primal-dual
(CP) algorithms. The proposed methodology can however be adapted to any other proximal
splitting method.

Contributions The main contribution of this paper is a a new risk estimation for arbitrary
sparse regularizations when the solution is computed using a proximal splitting algorithm. This
extends the previous iterative computation methods [17, 8] to a broader class of regularizations
(e.g. total variation) without the need to resort to Monte-Carlo integration (such as [11]) which
are numerically costly.

3. Differentiating Iterative Schemes
Iterative minimization scheme. The computation of z(y) as a minimizer of some energy E(z,y)
is usually solved using an iterative scheme, initializing z(%)(yy) (for instance to 0) and then
updating

2 () = (2O (y), ), (1)



where 1 : X x ) — X is a mapping, and so that z(9) (y) converge to a solution z(y) that satisfies
the (non-expansive) fixed-point equation

z(y) = ¥(z(y),y). (2)

Note that we have made here explicit the dependency of the iterates z(©) = (9 (y) with the
observation y.

A simple, but instructive example, is the case where x +— E(z,y) is a C' function with 1/L
Lipschitz gradient, in which case one can use ¥(z,y) = v — 7V1E(z,y) where 0 < 7 < 2/L and
Vi is the gradient of E with respect to the first variable. However, the functional E we are
interested in are typically not C'. The remaining sections of this paper develops more advanced
proximal splitting schemes to define the iterations.

Iterative differentiation. The goal is then derive an algorithm to compute 0z (y), the derivative
ofy € Y+ z(y) € X. A natural way to achieve this goal is to apply an implicit function theorem
to (2). This is equivalent to applying this implicit function theorem to the first order condition
0 € 01E(x(y),y) where 01 E is the sub-derivative of E with respect to the first variable. This is
essentially the methods used in [9, 16] for the special case of £! norm regularization.

While this leads to important theoretical results, the resulting closed form formula are in
practice quite unstable and require the computation of z(y) with high precision. Furthermore,
the explicit computation of this differential is out of reach for many variational regularization
functionals E.

A more practical way to achieve this goal, introduced in [17], and that we pursue here, is to
compute iteratively this derivative. This is achieved by deriving formula (1), which allows, for
any vector § € X' to compute £ = 929 (y)[d] (the derivative of y — () (y) applied at §) as

¢ — gy 4 oP(5),

where we have defined, for & = 1,2, the following linear operators

v = 9 (2O (y), y).

The following sections are devoted to the extension of this approach to more complicated iterative
algorithm that are able to handle non-smooth functionals E.

4. Differentiating Proximal Splitting Schemes
4.1. Proximal Operator

The proximal operator associated to a proper lower semi-continuous (Isc) and convex function
x— G(x,y) is

1
Proxg(z,y) = argmin §||x —2|? + G(z,v).
z

A function for which Proxg(x,y) can be computed in closed-form is dubbed simple. A distinctive
property of Proxg(+, y) that plays a central role in the sequel is that its is a 1-Lipschitz mapping.
When y is fixed, we will denote Proxg(z) instead of Proxg(z,y) to lighten the notation.

The Legendre-Fenchel conjugate of G is G*(z,y) = max,(z, z) — G(x,y). A useful proximal
calculus rule is Moreau’s identity: x = Prox;g«(7,y) + 7 Proxq.(z/7,y), 7> 0.



4.2. Generalized Forward Backward Splitting
The Generalized Forward Backward (GFB) splitting [13] is allows one to solve a variation
problem of the form

Q
z(y) € argn)l(in E(xz,y) = F(z,y) + Z Gi(z,y) (3)
re i=1

under the hypothesis that F is C' with 1/L gradient and the G; functions are simple. It reads,
forallt=1,...,0Q,

A = zi(é) — a4 Proxmgi(X(Z)) where X =25 — zi(e) — 7V1F(x(£))

i
and z(H1) = %ZZQZI zi(”l). One recovers as a special case the Foward-Backward method [4]
when @) =1 and the Douglas-Rachford [2] when F' = 0.
Please note that in this algorithm, the iterates zz-(g),x(e),it(f) are actually functions of the
observations y.
_ For any vector § € X, we wish to compute €0 = 920 (y)[0], Ci(e) = 8Z§Z)(y)[5] and
€0 = 9z (y)[8]. The iterations on the derivatives reads

G =¢" -0 4 6)ED) +60) where 20 =260 - (¥ — (A (€) + £ (0)

7 (2

and ¢ = % 2?:1 Ci(eﬂ), where we have defined the following linear operators for k = 1, 2:
gz(,ek) = O Proxp,q; (X(£)7y) and ‘Fliz) = 8kV1F(:c(€),y) :

4.8. Primal-Dual Splitting
Proximal splitting schemes can be used to solve the large class of variational problems

x(y) € argmin E(x,y) = H(z,y) + G(Kz,y) , (4)
TeEX

where both x — H(z,y) and v — G(u,y) are proper, lsc, convex and simple functions, and
K : X — U is a bounded linear operator.
The primal-dual relaxed Arrow-Hurwicz algorithm as proposed in [1] to solve (4) reads

Y = Prox, g (U(e)) where U® =4®) + oKz,
Y = Prox,¢(X¥W) where X =2 — 7K, (5)
FOHD = 0 L g(p e+ _ 50y

where u® e U, z¥ € X and Y € X. The parameters o > 0,7 > 0 are chosen such that
oy|K|? < 1, and € € [0,1] to ensure convergence of () toward a global minimizer of (4). §=0
corresponds to the Arrow-Hurwitz algorithm, and for § =1 a convergence rate of O(1/¢) was
established on the restricted duality gap [1].

For any vector § € ), our goal is to compute the derivatives £ = 9z (y)[d], v
oul® (y)[6] and £ = 979 (y)[5]. Using the chain rule, the sequence of derivatives then reads

0n _

LD — Hg@)(T(e)) + Héé) () where T — o, + UKSE(Z),
g — g@ (20 + Qge)(é) where 20 = ¢® _ 7O (6)
D) — (1) | gt _ ¢(0)

where we have defined the following linear mappings for k = 1,2 with 0 the derivative w.r.t. the
k-th argument

'H,(f)(-) = O Prox, g~ (U“%y)[-] and g,(f)(-) =0 Prong(X(5)7y)[-].



4.4. Discussion on convergence issues

One has to be aware that given that the proximal mappings are not necessarily differentiable
everywhere, its differential is actually set-valued. Therefore, one should appeal to involved tools
from non-smooth analysis to make the above statements rigorous. We prefer not to delve into
these technicalities for the lack of space.

Another major issue is to theoretically ensure the existence of a proper sequence &) that
converges toward 0z(y)[d6]. Regarding existence, as Proxg(-,y) is a 1-Lipschitz mapping of its
first argument. Furthermore, in all the considered application, Proxg(z, ) is also Lipschitz with
respect to its second argument. If one starts at an appropriate initialization, by induction,
y — z® (y) is also Lipschitz, hence differentiable almost everywhere.  Note that for sparse
synthesis regularization, convergence can be ensured as for ¢ large enough, dz(®) (y) is constant
equal to Oz(y). As far as convergence is concerned, this remains an open question in the general
case, and we believe this would necessitate intricate arguments from non-smooth and variational
analysis. This is left to future research.

5. Risk Estimator
Projected GSURE. Recall that II = &*(®®*)*® is the orthogonal projector on ker(®)t =
Im(®*), where * stands for the Moore-Penrose pseudo-inverse. Let u(y) = I1f(y) the projected
estimator of IIfy. While f(y) is not necessarily uniquely defined, we assume that u(y) is
unambiguously defined as a single-valued mapping of the observation y. This can be ensured
under a strict convexity condition on H or G in (4) (see e.g. example (9)).

Let po(y) = ®*(®P*) Ty the maximum likelihood estimator. By generalizing the projected
GSURE of [12] to any linear operator ®, we have

GSURE(y) =luo(y) — p(y)|* — o* tr((22*)") + 20° div((22*) " @ f(y)) (7)

where div(g)(y) = tr(9dg(y)) is the divergence of the mapping g : VY — Y. Under weak
differentiability of y — u(y), one can prove that the GSURE is an unbiased estimate of the
risk on Im(®*), i.e. E,(GSURE(y)) = Ey,(|IIfy — p(y)[?) (see Appendix A).

Iterative Numerical Computation. One of the bottlenecks in calculating the GSURE(y) is to
efficiently compute the divergence term. Using the Jacobian trace formula of the divergence, it
can be easily seen that

T =

k
div((22*) T @ f(y)) = E-((0f (y)[2], po(2))) =~ Z(af(y)[zi], to(2:)) (®)

where z ~ N(0,1dp) and z; are k realizations of z. Since f(y) and its iterates f(©)(y) are defined
as explicit functions of z(y) and z(¥)(y) (see Section 6 for a detailed example), the GSURE(y)
can in turn be iteratively estimated by plugging dz() (y)[z;] provided by (6) into (8).

6. Numerical Results
6.1. Total Variation Regularization
Total variation regularization of linear inverse problems amounts to solving

o) € angmin 17—y + NVS1y )

where Vf € RV*2 is a discrete gradient. The ¢! — ¢2 norm of a vector field t = (;), € RV*2,
with t; € R?, is defined as [t|; = >, |ti]-



CP formulation. Problem (9) is a special instance of (4) letting x = f, H(z,y) = 0,V(z,y) and
1
K(2) = (¥2,Va) and Vu=(s,t) € R” xR?, Gluy) = Sls —yl* + Mt -
Separability of G in s and ¢ entails that

Prox.g(u,y) = (1 — 7)s + 7y, T+ (1)) ,

where T),, p > 0, is the component-wise 01 — ¢2 soft-thresholding, defined for i =1,..., N as

0 if Jt]<p

Ot — ﬁpti(ét,i) otherwise °

T,(t); = max(0,1 — p/|t;|)t; and OT,(t)[0¢); = { (10)

where P, is the orthogonal projector on a* for o € R?, and T, »(t)i although not differentiable
on the sphere {¢; : |t;| = p}, is directionally differentiable there. Therefore

O1 Prox,q(u,y)[ds, 6] = (1 — 7)ds, 0T+ (6)) and Os Prox.q(uw,y)[dy] = (76,,0) .

GFB formulation. It can also be recast as (3) using z = (f,u) € X = RY x RV*2, @ = 2
simple functional, and for x = (f,u)

1
Fla.y) =510/ =y, Gi(e,y) = Aluly, and

Go(z,y) = tc(x) where C={z=(f,u)\u=Vf}.

One has
ViF(z,y) = (2*(2f —¥),0),
and thus
MV1F(z,y)[05,04] = (2*®67,0) and 0:ViF(z,y)[dy] = (—2%0,,0)
and

PrOXTGl (SU, y) = (f7 Tr (u))
where T}, is the vectorial soft thresholding defined in eq. (10), and thus

01 Prox,q, (z,y)[d7,0u) = (07,0Tx+(8,)) and 0 Prox,q, (x,y)[dy] = (0,0)
and
Prox,q, (z,y) = (Id + A) " (u + div f), V(Id + 6) " (u + div f))

where A is the Laplace operator and div corresponds to the adjoint operator of V, and thus

O Prox,a, (2, y)[6f, 0] = ((Id + A) 71 (8, + div ), V(Id + A)~1(8, +divdy)), and
0 Prox;a, (z,y)[d,] = (0,0) .

Figure 1 shows an application of our GSURE to estimate the optimal A\ parameter. It is ap-
plied to a super-resolution problem, where ® € RP*¥ is a vertical sub-sampling matrix, where
(P/N = 0.5), o0 = 10 (for an image fp with a range [0,255]). For each value of X in the tested
range, GSURE(y) is computed for a single realization of y using (8) with k = 1 realizations z;.

Fig. 2 depicts an application of our GSURE to adjust the value of A optimizing the recovery
for a deblurring problem, where ® € RV*¥ is a convolution matrix (Gaussian kernel of width
2 px), o = 10 (for an image fy with a range [0,255]). For each value of A in the tested range,
GSURE(y) is computed for a single realization of y using (8) with k& = 4 realizations z;.

! Without impacting the optimal choice of A, the two curves have been vertically shifted for visualization purposes.
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6.2. Sparse synthesis with block sparsity
Mixed ¢ — ¢ norm promoting block sparsity of linear inverse problems amounts to solving

Q
* 1
fly) = ¥z(y) and =(y) € argmin J|OVz —y|” + A IBix| (11)

i=1

where U € RV*N is an orthonormal synthesis dictionary and B; : RY — RV *5 are Q linear
operators extracting blocks of size B such as N = N’ x B. The operators B; are designed such
that each of them corresponds to a different partition of R into N’ non-overlapping blocks of
size B. The ¢* — ¢2 norm of t = (t;)¥, € RV*B with t; € RP is defined as [t]; = 3, |t:].

CP formulation. When @ = 1, problem (9) is a special instance of (4) letting x = ®*f,
H(z,y) = 0,V(z,y) and

1
K(z) = (®x,Biz) and VYu=(s,t) e RE xRY*2  G(u,y) = 5||s —yI* + Alt] -

The proximal operator associated to G has already been given in the total variation case. When
@ > 1, CP formulation cannot be used and one could instead use the GFB formulation.

GFB formulation. It can also be recast as (3) using x = ®*f, @ simple functionals, and for all
i=1,...,Q
1
F(z,y) = 5|®¥z — yI?,  Gi(a,y) = AlBiz|: .

One has
ViF(z,y) = V70" (dWz — y),
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and thus
O V1F(z,y)[0,] = V@DV, and 0oViF(z,y)[d,] = -V "4,
and
Prox,¢, (z,y) = B T, (B;x)
where T}, is the vectorial soft thresholding defined in eq. (10), and thus

01 Prox,q, (x,y)[0z] = B 0T +(B;id;) and 0 Prox,q,(z,y)[dy] =0 .

Fig. 3 depicts an application of our GSURE to adjust the size of blocks B optimizing the
recovery for a compressed sensing problem, where ® € RP* is a realization of a random matrix
distribution (randomized sub-sampling of a random convolution), where (P/N = 0.5), o = 10
(for an image fp with a range [0, 255]). For each size B, Q = B2 i.e., all possible partitions have
been used, and A has been set to the value 0.70/B. For each value of A in the tested range,
GSURE(y) is computed for a single realization of y using (8) with k = 1 realizations z;.

7. Conclusion

We obtained proximal splitting derivatives for unbiasedly estimate the projected risk in
regularized inverse problems handling both synthesis and analysis sparsity priors as well as
mixed norms for block structured sparsity. Its usefulness has been illustrated on automatic
choice of the regularization parameter for total variation regularization and automatic choice of
the size of blocks for sparse synthesis with block sparsity.

Appendix A. Proof of equation (7)
Assume w — g(w) is weakly differentiable in the sense of [14], Stein’s lemma reads

Ey (w, g(w)) = o? div g(w) .

Under weak differentiability of y — pu(y) and using the fact that uo(y) = I fo + ®*(PP*)Tw and
p(y) = ILf(y), one has

E|luo(y) — p(y)|?

=Eluo()|* — 2E (po(y), 1(y)) + E|p(y)]?

= E|TLfo + &*(®0*) Tw|® — 2B (I1fy + (D) *w, u(y)) + Elu(y)|?

=E[ILfo)* + o® tr((@9*) ") — 2E (ILfo, u(y)) — 2E (w, (2D*) T f(y)) + E|u(y)|?
= E|lLfo — u(y)|* + o tr((@D*)F) — 20° div((@2*) T D f(y)) -
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