
Publications Internes de l’IRISA

ISSN : 2102-6327

PI 1991 – February 2012

Increasing the Power of the Iterated Immediate Snapshot Model with Failure Detectors

Michel Raynal* ** Julien Stainer**

Abstract: The base distributed asynchronous read/write computation model is made up of n asynchronous processes which commu-

nicate by reading and writing atomic registers only. The distributed asynchronous iterated model is a more constrained model in which

the processes execute an infinite number of rounds and communicate at each round with a new object called immediate snapshot object.

Moreover, in both models up to n − 1 processes may crash in an unexpected way. An important computability issue associated with

these models concerns their respective computability power. When considering distributed computing problems whose main issue is to

cope with asynchrony and failures called decision tasks (such as consensus, set agreement, etc.) two main results are associated with

the previous models. The first states that these models are computationally equivalent for decision tasks. The second states that they are

no longer equivalent when both are enriched with the same failure detector.

This paper shows how to capture failure detectors in each model in order both models become computationally equivalent. To

that end it introduces the notion of a “strongly correct” process which appears particularly well-suited to the iterated model. It also

presents simulations that proves the computational equivalence when both models are enriched with a failure detector. Interestingly,

these simulations works for a large family of failure detector classes. The paper extends also the simulations to the case where the

wait-freedom requirement is replaced by the notion of t-resilience. Last but not least, a noteworthy feature of the proposed approach

lies in its simplicity.

Key-words: asynchronous read/write model, decision task, distributed computability, failure detector, immediate snapshot object,

iterated model, model equivalence, process crash, simulation, t-resilience, wait-freedom.

Augmenter la puissance du calcul réparti itéré avec des détecteurs de fautes

Résumé : Les modèles de systèmes distribués asynchrones communicant par mémoire partagée sont équivalents, du point de vue de

la calculabilité, au modèle itéré où les processus communiquent via une séquence d’objets write-snapshot. Cependant, il a été montré

que l’utilisation naïve, dans le modèle itéré, des détecteurs de fautes définis pour la mémoire partagée n’apportait aucune puissance de

calcul additionelle.

Cet article propose une méthode systématique pour porter les détecteurs de fautes du modèle classique communicant par mémoire

partagée dans le modèle itéré, ceci en préservant les équivalences de modèles. Dans ce but, il introduit la notion de processus fortement

corrects qui aide à décrire les possibilités de communication dans le modèle itéré.

L’article fournit des simulations génériques (ne dépendant pas ou peu du détecteur de faute) pour prouver les équivalences de

modèles. Les cas de plusieurs détecteurs de fautes connus sont traités et le résultat est étendu au cas de la t-résilience. Enfin, un

algorithme de consensus dans le modèle itéré augmenté du détecteur de faute correspondant à Ω illustre une des possibilités offertes

par cette étude.

Mots clés : modèle asynchrone en mémoire partagée, calculabilité distribuée, détecteur de fautes, objet immediate-snapshot, modèle

itéré, équivalence de modèles, défaillance de processus, simulation, t-résilience, sans attente

* Institut Universitaire de France
** ASAP : équipe commune avec l’Université de Rennes 1 et Inria

c©IRISA – Campus de Beaulieu – 35042 Rennes Cedex – France – +33 2 99 84 71 00 – www.irisa.fr

2 M. Raynal & J. Stainer

1 Introduction

Base read/write model and tasks The base asynchronous read/write (ARW) computation model consists of n asynchronous sequen-

tial processes that communicate only by reading and writing atomic registers. Moreover, any number of processes (but one) are allowed

to crash in an unexpected way.

A decision task is the distributed analogous of the notion of a function encountered in sequential computing. Each process starts

with its own input value (without knowing the input values of the other processes). The association of an input value with each process

define an input vector of the task. Each process has to compute its own output value in such a way that the vector of output values

satisfies a predefined input/output relation (this is the relation that defines the task). The most famous distributed task is the consensus

task: each process proposes a value and processes have to decide the very same value which has to be one of the proposed values. The

progress condition that is usually considered is called wait-freedom [12]. It requires that any process that does not crash eventually

decides a value. It has been shown that the consensus task cannot be wait-free solved in the ARW model [16]. The tasks that can be

wait-free solved in this base model are sometimes called trivial tasks.

The iterated immediate snapshot (IIS) model and its power The fact that, in the ARW model, a process can issue a read or write

on any atomic register at any time makes difficult to analyze the set of runs that can be generated by the execution of an algorithm that

solves a task in this model.

To make such analyses simpler and obtain a deeper understanding of the nature of asynchronous runs, Borowsky and Gafni have in-

troduced the iterated immediate snapshot (IIS) model [4]. In this model, each process (until it possibly crashes) executes asynchronously

an infinite number of rounds and, in each round, processes communicate through a one-shot immediate snapshot object [3] associated

with this round. Such an object provides the processes with a single operation denoted write_snapshot(). This operation allows the

invoking process to deposit a value into the corresponding object and obtains a snapshot [1] of the values deposited into it. It is impor-

tant to notice that each immediate snapshot object is accessed at most once by each process but can be simultaneously accessed by any

number of processes.

A colorless decision task is a task such that any value decided by a process can be decided by any number of processes. The main

result associated with the IIS model is the following one: A colorless decision task can be wait-free solved in the ARW model if and

only if it can be wait-free solved in the IIS model. This result is due to Borowsky and Gafni [4]. Said another way, the ARW model and

the IIS model (which is more constrained as far as runs are concerned) have the same computational power for colorless decision tasks.

Enriching a model with a failure detector One way to enrich the base read/write model in order to obtain a stronger model consists

in providing the processes with operations whose computational power in presence of asynchrony and process crashes is stronger than

the one of the base read or write operations [12]. An example of such an operation is the compare&swap operation [12]. Another way

to enrich the base read/write model consists in adding to it a failure detector [6, 24].

A failure detector is a device that provides each process with a read-only variable that gives it information on failures. According

to the type and the quality of this information, several classes of failure detectors can be defined. As an example, a failure detector of

the class Ω [7] provides each process pi with a read-only local variable denoted leaderi that contains always a process identity. The

property associated with these read-only local variables is the following: there is an unknown but finite time after which all the variables

leaderi contain forever the same identity and this identity is the one of a non-faulty process. A failure detector is non-trivial if it cannot

be built in the base read/write model (i.e., if it enriches the system with additional power).

A natural question is then the following: Are the ARW model and the IIS model still equivalent for wait-free task solvability when

they are enriched with the same non-trivial failure detector? It has been shown by Rajsbaum, Raynal and Travers that the answer to this

question is “no” [23]. It follows that, from a computability point of view, the ARW model enriched with a non-trivial failure detector is

more powerful than the IIS model enriched with the same failure detector.

An approach aiming at introducing the power of failure detectors into the IIS model has been investigated in [9, 22]. This approach

consists in requiring some property P to be satisfied by the successive invocations of write_snapshot() issued on the sequence of

immediate snapshot objects. Hence the name iterated restricted immediate snapshot (IRIS) given to this model. For each failure

detector class taken separately, this approach requires (a) to associate a specific property P with the considered failure detector class,

(b) design an ad hoc simulation of the write_snapshot() operation suited to this failure detector class in order to simulate IIS in ARW

and (c) design a specific simulation of the output of the failure detector to simulate ARW in IIS. Interestingly, this approach was the first

to show that failure detectors are related to fairness and can be considered as schedulers (see also [20]).

Content of the paper Let C be a failure detector class defined in the context of the base ARW model. This paper is motivated by the

following question: Is it possible to associate with C (in a systematic way) a failure detector class C∗ such that the ARW model enriched

with C and the IIS model enriched with C∗ are equivalent for wait-free task solvability? To answer that question, the paper considers

failure detector classes whose output eventually involves (a) at least one non-faulty process and possibly faulty processes (such as Ωk)

or (b) only non-faulty processes (such as P , Σ, ✸P or ✸Sx). The contributions of the paper are the following.

Collection des Publications Internes de l’Irisa c©IRISA

Failure Detectors for the Iterated Immediate Snapshot Model 3

• The answer to the previous question is based on a simple modification of the definition of what is a correct process (i.e., a process

that does not crash in a run of the base read/write model). The notion of a correct process is replaced in the IIS model by what we

call a strongly correct process. Such a process is a process that does not crash and whose all invocations of write_snapshot() are

seen (directly or indirectly) by all other non-crashed processes1.

Given this definition, and a failure detector class C designed for the ARW model, its IIS counterpart C∗ is obtained by a simple

and systematic replacement of the words “correct process(es)” by ”strongly correct process(es)” in the definition of C.

• An immediate benefit of the previous definition is the fact that, when we want to simulate the ARW model in the IIS model, we

can directly benefit from the simulation of the read and write operations defined in [4] by Borowsky and Gafni. The only addition

to that simulation that has to be done concerns the local outputs of the corresponding failure detector C.

• Given the ARW model enriched with a failure detector class C, the paper presents a generic simulation of the IIS model enriched

with C∗. This simulation is generic in the sense that it works for any of the previously cited failure detectors. The simulation

algorithm has only to be instantiated with a predicate associated with the corresponding failure detector C.

• An interesting consequence of the fact that, given a failure detector class C, we have “for free” a corresponding failure detector

for the IIS model, not only makes simpler the understanding of IIS enriched with a failure detector but allows for relatively easy

proofs.

• The paper also generalizes the previous wait-free simulations to t-resilient simulations (let us remind that, in a system of n
processes, wait-freedom is (n− 1)-resilience).

Among other benefits, an important corollary result of the paper is the fact that if C is the weakest failure detector to solve a given

task T in the base read/write model [10], it follows from the previous simulations that (when considering all failure detector classes D∗

obtained from a detector class D designed for the read/write model) C∗ is the weakest failure detector to solve T in the IIS model and

vice-versa.

Let ARWn[C] denote the base asynchronous read/write model with n processes enriched with a failure detector of the class C and

IISn[C
∗] denote the IIS model enriched with the corresponding failure detector C∗. The wait-free simulations presented in the paper

are summarized in Figure 1.

Section 4

ARWn[C] IISn[C
∗]

[4] and Section 3

Figure 1: From ARWn[C] to IISn[C∗] and vice-versa

Roadmap The paper is made up of 6 sections. Section 2 introduces the IIS model and failure detectors. Section 3 provides simulations

from the iterated immediate snapshot model enriched with a failure detector to the read/write model while Section 4 provides simulations

in the other direction. Section 5 considers the t-resilience case (instead of wait-freedom). Finally, Section 6 concludes the paper. (For

completeness, an Ω-based consensus algorithm suited to the IIS model is described in an appendix).

2 Base definitions

Notation Shared objects are denoted with uppercase letters. Local variables are denoted with lowercase letters (the index of the

corresponding process is sometimes used as a subscript of a local variable).

2.1 Process model

In the rest of the paper, the n asynchronous and sequential processes are denoted p1, ..., pn; i is called the index of pi. Moreover, any

number of processes may crash (stop executing). A process that crashes in a run is said to be faulty in that run, otherwise it is correct in

the corresponding run. A correct process executes an infinite number of steps. Given an execution, let C denote the set of processes that

are correct in that execution and F the set of the faulty ones.

1Although it is not explicitly defined in [22], the notion of a strongly correct process is implicitly used in the proof of a theorem in that paper. It is not used to define

failure detectors suited to the IIS model.

Collection des Publications Internes de l’Irisa c©IRISA

4 M. Raynal & J. Stainer

2.2 Decision tasks

A decision task is a one-shot decision problem specified in terms of an input/output relation ∆. Each process starts with a private input

value and must eventually decide on a private output value. From a global observer point of view, an input vector I[1..n] specifies the

input I[i] = vi of each process pi. Similarly, an output vector O[1..n] specifies a decision value O[j] for each process pj .

A task is defined by a set of input vectors and a relation ∆ that describes which output vectors are correct for each input vector I .

More precisely, for each valid input vector I , the values decided by the processes are such that there is an output vector O ∈ ∆(I) such

that, for each j, O[j] is the value decided by pj and, if no value is decided by pj , it is because pj has crashed during the computation.

2.3 Base read/write model

This model, denoted ARWn[∅] in the following, has been presented in the introduction. Instead of atomic read/write registers, we

consider here that the processes communicate through snapshot objects [1]. This is at no additional computability cost as the operations

on a snapshot object can be wait-free implemented from single-writer/multi-reader atomic read/write registers. Given a snapshot object

S, these operations are denoted S.write() and S.snapshot().
S is initially empty. When pi invokes S.write(v), it adds the pair 〈i, v〉 to S and suppresses the previous pair 〈i,−〉 if any. When it

invokes S.snapshot(), pi obtains a set containing all the pairs 〈k, vk〉 currently contained in S. Such a set is called a view that we denote

arw_viewi.

A snapshot object S is atomic (we also say said that it is linearizable [14]). This means that each operation invocation appears as if

it has been executed at a single point of the time line between its start event and its end event in such a way that no two invocations are

associated with the same point of the time line. The corresponding total order is called a linearization.

2.4 The iterated immediate snapshot model

One-shot immediate snapshot object Basically, such an object is similar to a snapshot object where the write() and S.snapshot()
operations are encapsulated into a single operation denoted write_snapshot() (where the write is executed just before the snapshot).

Moreover, one-shot means that, given an object, each process invokes write_snapshot() at most once.

If several processes invoke concurrently IS .write_snapshot(), their write operations are executed concurrently followed by a con-

current execution of their snapshot operations. The invocations of IS .write_snapshot() are not linearizable but set-linearizable [18].

This is similar to atomicity except that the same point of the time line can be associated with several concurrent invocations of

IS .write_snapshot().
Let us consider a process pi that invokes IS .write_snapshot(vi) where vi is the value it wants to write into IS . When it returns

from its invocation, pi obtains a view of the object that we denote iis_viewi, Moreover, let us define iis_viewi = ∅ if pi never invokes

IS .write_snapshot(). A one-shot immediate snapshot object is defined by the following properties associated with the views obtained

by the processes.

• Self-inclusion. ∀ i : 〈i, vi〉 ∈ iis_viewi.

• Containment. ∀ i, j : (iis_viewi ⊆ iis_viewj) ∨ (iis_viewj ⊆ iis_viewi).

• Immediacy. ∀ i, j : (〈i, vi〉 ∈ iis_viewj)⇒ (iis_viewi ⊆ iis_viewj).

The first property states that a process sees its write. The second property states that the views are totally ordered by containment. The

third property states that, when a process invokes IS .write_snapshot(), its snapshot is scheduled just after its write. This last property

can be re-written as follows: ∀ i, j :
(

(〈i, vi〉 ∈ iis_viewj) ∧ (〈j, vj〉 ∈ iis_viewi)
)

⇒ (iis_viewj = iis_viewi) (which means that

concurrent invocations of IS .write_snapshot() obtain the same view).

The operation write_snapshot() can be wait-free implemented from atomic read/write registers (i.e., in the base read/write model

(e.g., [3, 5]). Hence, it does not add computational power to the read/write model.

The iterated immediate snapshot model In the base IIS model (denoted IISn[∅]), the shared memory is made up of an infinite

number of immediate snapshot objects IS [1], IS [2], ... These objects are accessed sequentially and asynchronously by the processes

according to the following round-based pattern executed by each process pi. The variable ri is local to pi and denotes its the current

round number.

ri ← 0; ℓsi ← initial local state of pi (including its input, if any);

repeat forever (asynchronous IIS rounds)

ri ← ri + 1;

iis_viewi ← IS [ri].write_snapshot(ℓsi);
computation of a new local state ℓsi (which contains iis_viewi)

end repeat.

Collection des Publications Internes de l’Irisa c©IRISA

Failure Detectors for the Iterated Immediate Snapshot Model 5

It is easy to see that the runs of an algorithm in IISn[∅] are more structured than runs inARWn[∅]. As indicated in the Introduction,

the most important result associated with this model, which is due to Borowsky and Gafni, states that theARWn[∅] and IISn[∅] models

have the same computability power for colorless wait-free decision tasks [4].

Full information algorithm As the aim of the IIS model is to address computability issues (and not efficiency), we consider full

information algorithms for this computation model.

This means that, at each round r, a process pi writes its current local state ℓsi into IS [r]. Consequently, the view it obtains from its

invocation IS [r].write_snapshot(ℓsi) contains all its causal past (hence the name full information). More precisely, for any k and any

x, let ℓsk[x] be the local state of process pk at beginning of the round x. “Full information” means that, if 〈j, ℓsj [r]〉 belongs to the view

obtained by pi during round r, then ℓsj [r] is part of ℓsi[r + 1] (let us observe that this definition is recursive).

2.5 Failure detectors

A failure detector is a device that provides processes with information on failures [6]. As already said in the introduction, several classes

of failure detectors can be defined according to the type and the quality of the information given to the processes. We consider here that

the information given to each process is a set of process indexes. This information is given by a failure detector to a process through a

local read-only variable.

Classes of failure detectors that eventually output only correct processes We consider three classes of such failure detectors: the

classes P of perfect failure detectors and ✸P of eventually perfect failure detectors (defined in [6]) and the class Σ of quorum failure

detectors (defined in [10]).

• A failure detector of the class P provides each process pi with a set trustedi that, at any time τ , contains all the processes that

have not crashed by time τ and eventually contains only correct processes.2

• The class ✸P is weaker than the class P . Namely, there is an arbitrary long finite period during which the sets trustedi can

contain arbitrary values and when this period terminates a failure detector of ✸P behaves as a failure detector of P .

• A failure detector of the class Σ provides each process pi with a set qri that eventually contains only correct processes and is such

that the value of qri at any time τ and the value of any qrj at any time τ ′ have a non-empty intersection.

Classes of failure detectors that eventually output correct and possibly faulty processes We consider here the class of eventual

leaders failure detectors denoted Ωk which has been proposed in [19]. This class class is a straightforward generalization of the failure

detector class Ω introduced in [7]. Actually, Ω1 is Ω which has been shown to be the weakest failure detector class for solving the

consensus task in shared memory systems [7, 15].

A failure detector of the class Ωk provides each process pi with a read-only local variable leadersi that always contains k process

indexes and satisfies the following property.

• The local variables leadersi offered by a failure detector of the class Ωk are such that, after some unknown but finite time τ ,

they all contain forever the same set of k process indexes and at at least one of these indexes is the one of a correct process.

Let us notice that, before time τ , the sets leadersi can contain arbitrarily changing sets of k process indexes.

2.6 Strongly correct processes (wrt the IIS model)

Motivation When considering the base read/write model, if a process issues a write into a snapshot object S, the value it has written

can be read by any process that invokes S.snapshot().
This is no longer the case in the IIS model. As an example, let us consider an IIS execution in which, at any round r, the very same

process px is always the first to invoke IS [r].write_snapshot(ℓsx) and this invocation is not concurrent with any other invocation of

IS [r].write_snapshot(). If follows that, at each round r, viewx contains only the pair 〈x, ℓsx〉. Hence, pℓ never sees values written by

other processes.

The previous observation motivates the definition of a strongly correct process. Such a process is a process whose writes into the

immediate snapshot objects are seen (directly or indirectly) infinitely often by the all correct processes. A process that is not strongly

correct is consequently a process such that only a finite number of its writes into immediate snapshot objects are eventually propagated

to all the correct processes.

2The traditional definition of P provides each process pi with a set faultyi that does not contain a process before it crashes and eventually contains all faulty

processes. It is easy to see that trustedi = {1 . . . , n} \ faultyi.

Collection des Publications Internes de l’Irisa c©IRISA

6 M. Raynal & J. Stainer

Formal definition Let iis_viewj [r] be the view obtained by pj at round r. Let SC0 be the set defined as follows (let us remember

that C denotes the set of correct processes):

SC0
def
= { i such that |{r such that ∀ j ∈ C : ∃ 〈i,−〉 ∈ iis_viewj [r]}| =∞ },

i.e., SC0 is the set of processes that have issued an infinite sequence of (not necessarily consecutive) invocations of write_snapshot()
and these invocations have been seen by each correct process (this is because these invocations are set-linearized in the first position

when considering the corresponding one-shot immediate snapshot objects).

Let us observe that, as soon as we assume that there is at least one correct process, it follows from the fact that the number of

processes is bounded that |SC0| 6= 0. Given k > 0 let us recursively define SCk as follows:

SCk
def
= { i such that |{r such that ∃ j ∈ SCk−1 : ∃ 〈i,−〉 ∈ iis_viewj [r]}| =∞ }.

Hence, SCk contains all the correct processes that have issued an infinite sequence of (not necessarily consecutive) invocations of

write_snapshot() which have been seen by at least one process of SCk−1. It follows from the self-inclusion property of the views

and the definition of SCk that SC0 ⊆ SC1 ⊆ · · · . Moreover, as all the sets are included in {1, . . . , n}, there is some K such that

SC0 ⊆ SC1 ⊆ · · · ⊆ SCK = SCK+1 = SCK+2 = · · · .
SCK defines the set of of strongly correct processes which is denoted SC. This is the set of processes that have issued an infinite

sequence of (not necessarily consecutive) invocations of write_snapshot() which have been propagated to all the correct processes.

IIS enriched with a failure detector Let C be a failure detector class. C∗ denotes the same failure detector class where the word

“correct” is replaced by the word “strongly correct”. Moreover, IISn[C∗] denotes the IIS model enriched with a failure detector of the

class C∗ where, during each round r, a process pi reads its failure detector variable at the beginning of round r and saves its value fdi
in its local state ℓsi before writing it into IS [r].

3 From IISn[C∗] to ARWn[C]

This section describes a simulation in IISn[C
∗] of a run of an algorithm designed for ARWn[C]. Except for the simulation of the

detector output, this simulation is from [4]. In order not to confuse a simulated process in ARWn[C] and its simulator in IISn[C∗],
the first one is denoted pi while the second one is denoted qi.

3.1 Description of the simulation

It is assumed, without loss of generality, that the simulated processes communicate through a single snapshot object S. A simulator qi
is associated with each simulated process pi. It locally executes the code of pi and uses the algorithms described in Figure 2 when pi
invokes S.write(−), S.snapshot() or queries the failure detector.

Immediate snapshot objects of IISn[C
∗] These objects are denoted IS [1], IS [2], ... Each object IS [r] stores a set of triples (this set

is denoted ops i in Figure 2). If the triple (j, sn, x) ∈ ops i, then the simulator qi knows that the process pj (simulated by qj) has issued

its sn-th invocation of an operation on the simulated snapshot object S; x 6= ⊥ means that this invocation is S.write(x) while x = ⊥
means that it is S.snapshot().

Local variables of a simulator qi The variable ri contains the current round number of the simulator qi. It is increased before each

invocation of ISn[ri].write_snapshot(ops i) (line 3). As this is the only place where, during a round, a simulator invokes the operation

write_snapshot(), the simulators obey the IIS model.

The local variable sni is a sequence number that measures the progress of the simulation by qi of the process pi. It is increased at

line 1 when pi starts simulating a new invocation of S.write() or S.snapshot() on behalf on pi.
As already indicated, the local variable ops i contains the triples associated with all the invocations of S.write() and S.snapshot()

that have been issued by the processes and are currently known by the simulator qi. This local variable (which can only grow) is updated

at line 1 when qi starts simulating the next operation S.write() or S.snapshot() issued by pi or at line 4 when qi learns operations on the

snapshot object S issued by other processes.

The local variable iis_viewi stores the value returned by the last invocation of IS [ri].write_snapshot() issued by the simulator qi
(line 3). When simulating an invocation of S.snapshot() issued by pi, qi computes for each simulated process pj the sequence number

max_snji (line 12) of the last value it knows (saved in v_snji at line 13) that has been written by pj in the snapshot object S. This

allows qi to compute the view arw_viewi (line 14) that it returns (line 17) as the result of the invocation of S.snapshot() issued by pi.
The local variable fdi is used to store the last value obtained by the simulator qi from its read-only local failure detector variable

denoted C∗.read().

Collection des Publications Internes de l’Irisa c©IRISA

Failure Detectors for the Iterated Immediate Snapshot Model 7

Init: opsi ← ∅; ri ← 0; sni ← 0; iis_viewi ← ∅; fdi ← C∗.read().

internal operation publicize&progress (x) is

(1) sni ← sni + 1; opsi ← opsi ∪ {(i, sni, x)};
(2) repeat ri ← ri + 1; fdi ← C∗.read();
(3) iis_viewi ← IS [ri].write_snapshot(opsi);
(4) opsi ←

⋃

〈k,opsk〉∈iis_viewi
opsk

(5) until
(

(i, sni, x) ∈
⋂

〈k,opsk〉∈iis_viewi
opsk

)

end repeat;

(6) return().

operation S.write(v) is

(7) publicize&progress (v); return().

operation S.snapshot() is

(8) publicize&progress (⊥);
(9) arw_viewi ← ∅;
(10) for each j in {1, . . . , n} do

(11) if
(

∃v | (j,−, v)
⋂

〈k,opsk〉∈iis_viewi
opsk ∧ v 6= ⊥

)

(12) then max_snji ← max{sn | (j, sn, v) ∈
⋂

〈k,opsk〉∈iis_viewi
opsk ∧ v 6= ⊥};

(13) vji ← v such that (j,max_snji, v) ∈ opsi;

(14) arw_viewi ← arw_viewi ∪ {〈j, vji〉}
(15) end if

(16) end for;

(17) return (arw_viewi).

operation C.read() is return (fdi).

Figure 2: Simulation of ARWn[C] in IISn[C∗]: code for a simulator qi (extended from [4])

Simulation of S.write(v) To simulate the invocation of S.write(v) issued by pi, the simulator qi invokes the internal operation

publicize&progress(v). It first increments sni and adds the triple (i, sni, v) to ops i (line 1). Then, it repeatedly invokeswrite_snapshot(ops i)
on successive immediate snapshot objects and enriches its set of triples ops i (lines 2-4) until it obtains a view iis_viewi in which all the

simulators it sees in that view are aware of the invocation of the operation S.write(v) that it is simulating (line 6).

Simulation of S.snapshot() To simulate an invocation of S.snapshot() issued by pi, the simulator qi first invokes publicize&progress(⊥).
When this invocation terminates, qi knows that all the simulators it sees in the last view iis_viewi it has obtained are aware of its invo-

cation of S.snapshot(). Moreover, as we have seen, the execution of publicize&progress(⊥) makes qi aware of operations simulated by

other simulators.

Then the simulator qi browses all the operations it is aware of in order to extract, for each simulated process pj , the last value

effectively written by pj (lines 10-16). This (non-⊥) value is extracted from the triple with the largest sequence number among all those

that appear in all the sets opsk that belong to the view iis_viewi returned to qi by its last invocation of write_snapshot().

Simulation of C.read() When a process pi reads its local failure detector output, the simulator qi simply returns it the current value

of fdi .

3.2 From strongly correct simulators to correct simulated processes

Strongly correct vs weakly correct simulators LetWC = C\SC (the set of weakly correct simulators). It follows from the definition

of the strongly correct simulators that, for any simulated process pi whose simulator qi is such that i ∈ WC, there is a round rmini such

that, ∀j ∈ SC, ∀r ≥ rmini : 〈i,−〉 /∈ iis_viewj [r], which means that, for r ≥ rmini, no invocation IS [r].write_snapshot() issued by

the simulator qi is seen by a strongly correct simulator.

This means that, after rmax = max{rmini}i∈WC and after all simulator crashes have occurred, the invocations ofwrite_snapshot()
by the simulators of SC are always set-linearized strictly before the ones of the simulators ofWC. Said differently, there is a round after

which no strongly correct simulator ever receives information from a weakly correct simulator. From the point of view of a strongly

correct simulator, any weakly correct simulator appears as a crashed simulator. Differently, any weakly correct simulator receives

forever information from all the strongly correct simulators3.

3This situation is similar to the case where, in the base read/write model, after some finite time, some subset of processes (the ones corresponding here to the set

of weakly correct simulators) commit forever send omission failures with respect to the correct processes (the ones corresponding here to the set of strongly correct

simulators).

Collection des Publications Internes de l’Irisa c©IRISA

8 M. Raynal & J. Stainer

Crashed and slow IIS simulators simulate crashed ARW processes An important feature of the simulation described in Figure 2 is

that, not only the crash of a simulator qi gives rise to the crash of the associated simulated process pi, but a slow simulator qj entails the

crash of its simulated process pj .

As an example, let us consider a correct simulator qj which, at any round r, is always strictly the last simulator which invokes

IS [r].write_snapshot(). It follows that no other simulator is ever informed of the operations S.write() and S.snapshot() issued by

the process pj simulated by qj . When the simulator qj executes line 3, it is informed of the operations issued by the strongly correct

simulators qi on the behalf of the processes they simulate but, as the operation of pj it is simulating (which is encoded in the triple

(j, snj , x)) is never known by the other simulators, it follows that qj loops forever in the repeat loop (lines 2-5). Hence, the simulation

of pj does not longer progress and pj is considered as a crashed process in the simulated ARW model. This means that the simulation

described in Figure 2 guarantees wait-freedom for the processes simulated by the strongly correct simulators only.

To summarize When simulating ARWn[C] on top of IISn[C∗], we have the following: (a) a faulty or weakly correct simulator qi
gives rise to a faulty simulated process pi and (b) a strongly correct process gives rise to a correct simulated process pi in ARWn[C].

The next theorem captures the previous discussion. As it is a simple formalization of this discussion, its proof is given only in

Appendix A.

Theorem 1 Let A be an algorithm solving a colorless task in theARWn[C] model. Let us consider an execution of A simulated in the

IISn[C
∗] model by the algorithms S.write(), S.snapshot() and C.read() described in Figure 2. A process pi is correct in the simulated

execution if and only if its simulator qi is strongly correct in the simulation.

4 From ARWn[C] to IISn[C
∗]

This section presents a generic simulation of IISn[C∗] in ARWn[C]. Its generic dimension lies in the fact that C can be any failure

detector class cited in the Introduction and defined in Section 2.5 (namely, P , Σ, ✸P , Ω, Ωk, Ωk and others such as S, ✸S [6] and

✸Sx [2]). As far terminology is concerned, qi is used to denote a simulated IIS process while pi is used to denote the corresponding

ARW simulator process. The simulation is described in Figure 3. Differently from the simulation described in Figure 2, the algorithms

of Figure 3 are not required to be full-information algorithms.

4.1 Description of the simulation

The simulated model IS [1], IS [2], ... denote the infinite sequence of one-shot immediate snapshot objects of the simulated IIS model.

Hence, a simulated process qi invokes IS [r].write_snapshot() and C∗.read().

Shared objects of the simulation The simulation uses an infinite sequence of objects S[1], S[2], ... The object S[r] is used to

implement the corresponding one-shot immediate snapshot object IS [r].
Each object S[r] can be accessed by two operations denoted collect() and arw_write_snapshot(). The later is nothing else than

the operation write_snapshot() (which satisfies the self-inclusion, containment and immediacy properties defined in Section 2.4). It

is prefixed by “arw” in order not to be confused with the operation of the IIS model that it helps simulate. The operation collect() is

similar to the operation snapshot(), except that it is not required to be atomic. It consists in an asynchronous scan of the corresponding

S[r] object which returns the set of pairs it has seen in S[r]. Both collect() and arw_write_snapshot() can be wait-free implemented in

ARWn[∅] (an implementation of arw_write_snapshot() is described in Appendix B).

FD_VAL is an array of single-writer/multi-reader atomic registers. The simulator pi stores in the register FD_VAL[i] the last value

it has read from its local failure detector variable which is denoted C.read().

operation IS [r].write_snapshot(v) is

(1) if
(

(r mod n) + 1 = i
)

(2) then repeat arw_viewi ← S[r].collect(); FD_VAL[i]← C.read()
(3) until

(

PROPC(arw_viewi)
)

end repeat

(4) else FD_VAL[i]← C.read()
(5) end if;

(6) iis_view ← S[r].arw_write_snapshot(v);
(7) return (iis_view).

operation C∗.read() is return (FD_VAL[i]).

Figure 3: A generic simulation of IISn[C∗] in ARWn[C]: code for a simulator pi

Collection des Publications Internes de l’Irisa c©IRISA

Failure Detectors for the Iterated Immediate Snapshot Model 9

Where is the problem to solve If the underlying model wasARWn[∅] (no failure detector), the simulation of the operation IS[r].write_snapshot

would boil down to a simple call to S[r].arw_write_snapshot() (lines 6-7). Hence, the main difficulty to simulate IS[r].write_snapshot(v)
comes from the presence of the failure detector C.

This comes from the fact that, in all executions, we need to guarantee a correct association between the schedule of the (simu-

lated) invocations of IS[r].write_snapshot() and the outputs of the simulated failure detector C∗. This, which depends on the output

of the underlying failure detector C, requires to appropriately synchronize, at every round r, the simulation of the invocations of

IS[r].write_snapshot(). Once, this is done, the set-linearization of the simulated invocations of IS[r].write_snapshot() follows from

the set-linearization of these invocations in the ARWn[C] model.

Associate each round with a simulator The simulation associates each round r with a simulator (we say that the corresponding

simulator “owns” round r) in such a way that each correct simulator owns an infinite number of rounds. This is implemented with a

simple round-robin technique (line 1).

Simulation of IS [r].write_snapshot(v) To simulate an invocation IS[r].write_snapshot(v) issued by the simulated process qi, the

simulator pi first checks if it is the owner of the corresponding round r. If it is not, it refreshes the value of FD_VAL[i] (line 4) and

executes the “common part”, namely, it invokes S[r].arw_write_snapshot(v) (line 6) which returns it a set iis_view that constitutes the

result of the invocation of IS[r].write_snapshot(v).
If the simulator pi is the owner of the round, it repeatedly reads asynchronously the current value of the implementation object

S[r] (that it stores in arw_viewi) and refreshes the value of FD_VAL[i] (line 2). This repeat statement terminates when the values of

arw_viewi it has obtained satisfy some predicate (line 3). This predicate, denoted PROPC(), which depends on the failure detector class

C, encapsulates the generic dimension of the simulation. Then, after it has exited the loop, the simulator pi executes the “common”

part, i.e., lines 6-7. It invokes S[r].arw_write_snapshot(v) which provides it with a view iis_view which is returned as the result of the

invocation of IS[r].write_snapshot(v).
The fact that, during each round, (a) some code is executed only by the simulator that owns r, (b) some code is executed only by the

other simulators and (c) some code is executed by all simulators, realizes the synchronization discussed above that allows for a correct

set-linearization of the invocations of IS[r].write_snapshot() in IISn[C∗].

Simulation of C∗.read() When a simulated process qi wants to read its local failure detector output, its simulator pi returns it the last

value it has read from its local failure detector variable.

To summarize When simulating IISn[C
∗] on top of ARWn[C], we have the following: (a) a faulty simulator pi gives rise to a

faulty simulated process qi and (b) a correct simulator pi gives rise either to a strongly correct, a weakly correct or a faulty simulated

process qi in IISn[C∗] (this can depend on PROPC()).
Moreover, whatever C, we have to show that there is at least one correct process in IISn[C∗]. This amounts to show that there is

a simulator pi that executes the infinite sequence {IS [r].write_snapshot()}r≥1. To that end, we have to show that each object IS [r] is

non-blocking [12] (i.e., whatever the round r and the concurrency pattern, at least one invocation of IS [r].write_snapshot() terminates).

The corresponding proof is given when we consider specific failure detector classes (see below). Then, due to the structure of the IIS

model, the very existence of at least one correct process in IISn[C∗] entails the existence of at least one strongly correct process in this

model (see the definition of the set SC in Section 2.6).

4.2 Instantiating the simulation with C = Ωk

When C = Ωk, the property PROPC(arw_view) can be instantiated at each simulator pi as follows:

PROPΩk
(arw_viewi) =

(

∃ ℓ ∈ FD_VAL[i] : (ℓ = i ∨ ∃〈ℓ,−〉 ∈ arw_viewi)
)

.

Let leadersi = FD_VAL[i] (the last value of Ωk read by the simulator pi). The previous predicate directs the simulator pi, at each

round r it owns, to wait until i ∈ leadersi or until it has seen the simulation of IS [r].write_snasphot() issued by a simulator qj such

that j ∈ leadersi .

Theorem 2 Let A be an algorithm solving a colorless task in the IISn[Ω∗
k] model. The simulation of A on top ofARWn[Ωk] where the

invocations of IS [r].write_snapshot() and C∗.read() are implemented by the algorithms described in Figure 3 and the predicate PROPC

is instantiated by PROPΩk
, produces an execution of A that could have been obtained in IISn[Ω∗

k]. Moreover, there is a one-to-one

correspondence between the correct (simulated) processes in IISn[Ω∗
k] and the correct simulators in ARWn[Ωk].

Proof The proof has to show that: (a) there is at least one correct process in IISn[Ω∗
k] (consequently, as we have seen previously,

there is a strongly correct process in IISn[Ω
∗
k]); (b) there is a one-to-one correspondence between correct simulators (pi) and correct

simulated processes (qi); (c) the behavior of the local failure detector variables of the processes in IISn[Ω∗
k] is the one defined by Ω∗

k;

Collection des Publications Internes de l’Irisa c©IRISA

10 M. Raynal & J. Stainer

and, for any round r, (d) the invocations of IS [r].write_snapshot() satisfy the self-inclusion, containment, and immediacy properties

(defined in Section 2.4).

Proof of (a). As (by definition) one of the leaders eventually output by Ωk is a correct simulator pi, there is a finite time τ after which the

predicate PROPΩk
returns always true when evaluated by the simulator pi. Hence, this simulator can never be blocked forever at line 3

when it executes (on behalf of the simulated process qi) the algorithm implementing the operation IS [r].write_snapshot(). It follows

from this observation that there is at least one correct simulated process qi.

Proof of (b). The correct simulator pi which eventually belongs forever to the output of Ωk invokes arw_write_snapshot(v) at each

simulated round r (line 6). Let τr be the finite time instant at which this invocation terminates. As there is a finite time τ ′ ≥ τ after

which i belongs to all the failure detector outputs, it follows that, at some finite time τ ′′ ≥ max(τ ′, τr), the evaluation of PROPΩk
by any

correct simulator returns true at round r. Hence that any correct simulator terminates its simulation of IS [r].write_snapshot(). As this

is true for any round r, any correct simulator simulates an infinite number of rounds of the IIS model. Consequently, if a simulator pj
is correct in ARWn[Ω

∗
k] the associated simulated process qj is correct in IISn[Ω

∗
k] (which entails that, at any round r, the simulation

of the operation IS [r].write_snapshot() is wait-free). Finally, a faulty simulator pi trivially gives rise to a faulty simulated process qi
which concludes the proof of Item (b).

Proof of (c). To show that the behavior of the local failure detector variables at each simulated process qx is the one defined by Ω∗
k, let

us first observe that, it follows directly from lines 2 and 4 that the outputs of Ω∗
k are outputs of Ωk. Hence, we have only to show that,

after some time, Ωk outputs forever a set L such that there is a simulator pi with i ∈ L ∩ C (let us remember that C is the set of correct

simulators) and the simulated process qi associated with the simulator pi is strongly correct.

Let r be a round such that all the faulty simulators have crashed before r and, after r, all correct simulators obtain forever the

same set of leaders L from Ωk. Due to PROPΩk
, in all rounds r′ ≥ r, each correct simulator pj , j /∈ L, has to wait (at each round it

owns) until a correct simulator pi, i ∈ L, has written into S[r′] (execution of S[r′].arw_write_snapshot() by pi at line 6 and execution

of S[r′].collect() by pj at line 2). It follows that, in the simulated system, the invocation of IS [r′].write_snapshot() issued by any

simulated process qj , j /∈ L, is set-linearized after the invocation of IS [r′].write_snapshot() issued by a simulated process pi such that

i ∈ L.

Let qj be a strongly correct simulated process (since there are some correct simulated processes, there is at least one strongly correct

one). As qj executes an infinite number of rounds and 1 ≤ |L ∩ C| ≤ k, it follows that there is a correct simulated process qℓ such that

ℓ ∈ L∩C and there is an infinite number of rounds r′′ such that the invocation of IS [r′′].write_snapshot() issued by qj is set-linearized

after the one of qℓ. It follows that qℓ is a (simulated process which) is strongly correct.4

Proof of (d). The fact that, at any round r, the invocations of IS [r].write_snapshot() satisfy the self-inclusion, containment and immedi-

acy properties follow directly (as already indicated) from the fact that invocations of the underlying operationS[r].arw_write_snapshot()
satisfy these properties. ✷Theorem 2

The following corollary is an immediate consequence of the previous theorem.

Corollary 1 A colorless task T is solvable in ARWn[Ωk] iff it is solvable in IISn[Ω∗
k].

4.3 Instantiating the simulation with C = ✸P

The failure detector class C = ✸P When C = ✸P , the property PROP✸P (arw_view) can be instantiated at each simulator pi as

follows:

PROP✸P (arw_viewi) =
(

∀ j ∈ FD_VAL[i] : (j = i ∨ 〈j,−〉 ∈ arw_viewi)
)

.

This property forces the corresponding simulator pi, at each round r it owns, to wait until all the simulators pj that it currently trusts

(i.e., any j ∈ fd_vali(i)) have invoked S[r].arw_write_snapshot() (i.e., have written a pair 〈j,−〉 into S[r]).

Theorem 3 Let A be an algorithm solving a colorless task in the IISn[✸P ∗] model. The simulation of A on top ofARWn[✸P] where

the invocations of IS [r].write_snapshot() and ✸P ∗.read() are implemented by the algorithms described in Figure 3 and the predicate

PROPC is instantiated by PROP✸P , produces an execution of A that could have been obtained in IISn[✸P ∗]. Moreover, there is a

one-to-one correspondence between the correct (simulated) processes in IISn[✸P ∗] and the correct simulators in ARWn[✸P] and

all correct simulated processes are strongly correct.

Proof The proof is similar to the previous one. We show here only that each correct simulator pi gives rise to a strongly correct

(simulated) process qi.

4Let us observe that, while this proves that there is a correct simulator that gives rise to a strongly correct simulated process, we cannot determine how many simulated

processes are strongly correct. This number depends on the execution.

Collection des Publications Internes de l’Irisa c©IRISA

Failure Detectors for the Iterated Immediate Snapshot Model 11

The proof is by contradiction. Let us suppose that a correct simulator loops forever in the repeat (lines 2-3) when it executes the

algorithm simulating IS [r].write_snapshot(). Let r denote the first round during which this happens and let pi be the simulator that

owns this round (hence, pi is the first simulator that loops forever).

Let us notice that, as i = (r mod n) + 1, it is the only simulator which loops at round r. Hence, all other correct simulators

eventually invoke S[r].arw_write_snapshot() at line 6 and consequently return from their simulation of IS [r].write_snapshot().
As the failure detector✸P eventually outputs a set including only correct simulators, the evaluation of the predicate PROP✸P (r,−,−)

eventually returns true to pi which terminates its simulation of IS [r].write_snapshot(). A contradiction. It follows from this contra-

diction that every correct simulator executes an infinite number of rounds, which means that, at any round r, the implementation of the

operation IS [r].write_snapshot() is wait-free.

Finally, as, at each round it owns, each correct simulator pi waits for all other correct simulators, each correct simulator sees the

simulation of IS [r].write_snapshot() by the other correct simulators infinitely often. Hence, each correct simulator pi simulates a

strongly correct process qi. ✷Theorem 3

4.4 Instantiating the simulation with C = P, Σ, S, ✸S, Sx, ✸Sx

The same predicate PROPC as the one used for ✸P works for these failure detector classes.

The failure detector classes C = P, Σ, S, ✸S The previous proof can be easily translated for the the failure detector classes

C = P, Σ, S, ✸S. This follows from the observation that, as ✸P , each of these failure detector classes permanently (C = P) or

eventually (C = Σ, S, ✸S) output only sets of correct processes.

The failure detector classes C = Sx, ✸Sx These failure detector classes (introduced in [2]) extend the classes S and ✸S. Intuitively,

they restrict the properties defining S and ✸S to be only on a dynamically determined subset of processes Q such that |Q| = x (hence

their name: limited scope failure detector classes).

It is possible to show that the algorithms of Figure 3 instantiated with the previous predicate PROP✸P () allows for a correct simulation

of IISn[C∗] inARWn[C] forC = Sx, ✸Sx. Let us also remark that, for any r, the simulation of the operation IS [r].write_snapshot()
is wait-free (each simulated process qi whose simulator pi is correct executes an infinite number of IIS rounds). However, while each

correct simulator simulates a strongly correct process when C ∈ {P,✸P}, no conclusion can be drawn from the number of strongly

correct simulated processes (except that there is at least one) when C ∈ {Σ, Sx,✸Sx}.

5 From wait-freedom to t-resilience

Notation Let IISn,t[C] denote the extended IISn[C] model in which at least n− t processes are strongly correct, i.e., |SC| ≥ n− t
and |WC|+ |F| ≤ t. Similarly, let ARWn,t[C] denote the extendedARWn[C] model in which at most t processes are faulty.

From IISn,t[C∗] to ARWn,t[C] Theorem 1 has shown that the simulation described in Figure 2 (which is a simple extension to

failure detectors of the simulation described in [4]) ensures that (a) any strongly correct simulator in IIS gives rise to a correct simulated

process in ARW and (b) a weakly or faulty simulator gives rise to a faulty simulated process. It follows that if |SC| ≥ n − t in

IISn,t[C
∗] we have at most t faulty process in the simulated system ARWn,t[C].

FromARWn,t[C] to IISn,t[C∗] In this direction, the simulation fromARWn[C] in IISn[C∗] presented in Figure 3 can be easily

adapted in order to simulate ARWn,t[C] in IISn,t[C∗].
It is indeed sufficient to replace PROPC by PROPC ∧ |arw_viewi | ≥ (n − t − 1) (it is of course assumed that we do not have

|arw_viewi | ≥ (n − t − 1) ⇒ ¬ PROPC). In this way, at every round r it owns, each correct simulator pi is constrained to wait until

at least n − t − 1 processes have invoked S[r].arw_write_snapshot() before being allowed to invoke its own. The correction of this

extended simulation is captured in the following theorem.

Theorem 4 Let A be an algorithm solving a colorless task in the IISn[C∗] model. For the failure detector classes studied in this

paper, The simulation of A on top of ARWn[C] where the invocations of IS [r].write_snapshot() and C∗.read() are implemented by

the algorithms described in Figure 3 and the predicate PROPC is replaced by PROPC ∧ |arw_viewi | ≥ (n− t− 1), produces a correct

execution of A in IISn[C
∗] in which n− t processes are strongly correct.

Proof The proof consists in showing that (a) each correct simulator that would simulate an infinite number of IIS rounds when consid-

ering only PROPC does simulate an infinite number of rounds when considering PROPC ∧ (arw_viewi ≥ n− t− 1); and (b) there is at

least (n− t) strongly correct processes in the simulated IIS model.

Collection des Publications Internes de l’Irisa c©IRISA

12 M. Raynal & J. Stainer

Proof of (a). The proof by contradiction. Let us suppose that a correct simulator pi that, at some round r, blocks forever because the

predicate (arw_viewi ≥ n − t − 1) is never satisfied. Let r be the first round at which this occurs. By assumption, at least n − t − 1
simulators pj eventually invoke S[r].arw_write_snapshot(), it follows that the predicate (arw_viewi ≥ n− t− 1) eventually becomes

true. Hence the predicate PROPC ∧ (arw_viewi ≥ n− t− 1) eventually becomes true which concludes the proof of item (a).

Proof of (b). Due to the previous item, there is a correct simulator pi that that simulates a strongly correct process. Let pi such a

simulator. This simulator pi simulates an infinite number of rounds and, in each round r it owns, it simulates IS [r].write_snapshot() on

behalf of qi, after (or simultaneously with) the invocations of IS [r].write_snapshot() issued by at least n− t processes (n− t− 1 other

processes plus itself). As there is a bounded number of processes, pi consequently simulates its write-snapshots infinitely often after (or

simultaneously with) those of at least n − t simulators. Hence at least n − t simulated processes are strongly correct and (b) follows.

✷Theorem 4

6 Conclusion

This paper has addressed the respective power of the base asynchronous read/write model ARW and the iterated immediate snapshot

model IIS when both are enriched with the same non-trivial failure detector (non-trivial means that the failure detector cannot be

implemented in the base ARW model). The paper has shown that, once enriched with the same failure detector, both models have the

same computational power when the notion of a correct process used in the ARW model is replaced by the notion of a strongly correct

when considering the IIS model. This notion is related to the writes seen by a process at each round of the IIS model, more precisely, a

process is strongly correct if all its writes into the sequence of immediate snapshot objects are eventually propagated to all the processes

that do not crash.

The paper has presented a formal definition of a strongly correct process and two simulations, a first one from IIS to ARW and

a second one from ARW to IIS. It has also proved these simulations and shown how they can be extended when the wait-freedom is

replaced by t-resilience. An appendix of the paper has also presented a consensus algorithm suited to the IIS model enriched with an

eventual leader failure detector.

Acknowledgments

This work has been partially supported by the French ANR project DISPLEXITY devoted to the computability and complexity in

distributed computing.

References

[1] Afek Y., Attiya H., Dolev D., Gafni E., Merritt M. and Shavit N., Atomic snapshots of shared memory. Journal of the ACM, 40(4):873-890, 1993.

[2] Anceaume E., Fernandez A., Mostefaoui A., G. Neiger G. and Raynal M., A necessary and sufficient condition for transforming limited accuracy

failure detectors. Journal of Computer and System Sciences, 68:123-133, 2004.

[3] Borowsky E. and Gafni E., Immediate atomic snapshots and fast renaming. Proc. 12th ACM Symposium on Principles of Distributed Computing

(PODC’93), pp. 41-51, 1993.

[4] Borowsky E. and Gafni E., A simple algorithmically reasoned characterization of wait-free computations. Proc. 16th ACM Symposium on

Principles of Distributed Computing (PODC’97), pp. 189-198, 1997.

[5] Castañeda A., Rajsbaum S. and Raynal M., The renaming problem in shared memory systems: an introduction. Elsevier Computer Science

Review, 5:229-251, 2011.

[6] Chandra T. and Toueg S., Unreliable failure detectors for reliable distributed systems. Journal of the ACM, 43(2):225-267, 1996.

[7] Chandra T., Hadzilacos V. and Toueg S., The weakest failure detector for solving consensus. Journal of the ACM, 43(4):685-722, 1996.

[8] Chaudhuri S., More Choices Allow More Faults: Set Consensus Problems in Totally Asynchronous Systems. Information and Computation,

105:132-158, 1993.

[9] Cornejo A., Rajsbaum S., Raynal M., Travers C., Failure Detectors as Schedulers (Brief Announcement). Proc. 26th ACM Symposium on

Principles of Distributed Computing (PODC), ACM Press, pp.308-309, 2007.

[10] Delporte-Gallet C., Fauconnier H., Guerraoui R., Hadzilacos V., Kouznetsov P. and Toueg S., The weakest failure detectors to solve certain

fundamental problems in distributed computing. Proc. 23th ACM Symposium on Principles of Distributed Computing (PODC’04), ACM Press,

pp. 338-346, 2004.

Collection des Publications Internes de l’Irisa c©IRISA

Failure Detectors for the Iterated Immediate Snapshot Model 13

[11] Gafni E. and Rajsbaum S. Distributed Programming with Tasks. Proc. 14th Int’l Conference On Principles Of Distributed Systems (OPODIS),

Springer Verlag LNCS #6490, pp. 205-218, 2010.

[12] Herlihy M.P., Wait-free synchronization. ACM Transactions on Programming Languages and Systems, 13(1):124-149, 1991.

[13] Herlihy M. and Shavit N., The topological structure of asynchronous computability. Journal of the ACM, 46(6):858-923, 1999.

[14] Herlihy M.P. and Wing J.M., Linearizability: a correctness condition for concurrent objects. ACM Transactions on Programming Languages and

Systems, 12(3):463-492, 1990.

[15] Lo W.-K. and Hadzilacos V., Using failure detectors to solve consensus in asynchronous shared-memory systems. Proc. 8th Int’l Workshop on

Distributed Algorithms (WDAG’94, now DISC), Springer-Verlag LNCS #857, pp. 280-295, 1994.

[16] Loui M. and Abu-Amara H., Memory requirements for for agreement among Unreliable Asynchronous processes. Advances in Computing

Research, 4:163-183, JAI Press Inc., 1987.

[17] Mostefaoui A., Rajsbaum S., Raynal M. and Travers C., On the Computability Power and the Robustness of Set Agreement-oriented Failure

Detector Classes. Distributed Computing, 21(3):201-222, 2008.

[18] Neiger G., Set Linearizability. Brief Announcement, Proc. 13th ACM Symposium on Principles of Distributed Computing (PODC), ACM Press,

pp. 396, 1994.

[19] Neiger G., Failure detectors and the wait-free hierarchy. Proc. 14th ACM Symposium on Principles of Distributed Computing (PODC’95), ACM

Press, pp. 100-109, 1995.

[20] Pike S.M., Sastry S. and Welch J.L., Failure detectors encapsulate fairness. Proc. 14th Int’l Conference On Principles Of Distributed Systems

(OPODIS), Springer Verlag LNCS #6490, pp. 173-188, 2010.

[21] Rajsbaum S., Iterated shared memory models. Proc. 9th Latin American Symposium Theoretical Informatics (LATIN’10), Springer Verlag LNCS

#6343, pp.407-416, 2010.

[22] Rajsbaum S., Raynal M., Travers C., The iterated restricted immediate snapshot model. Proc. 14th Annual Int’l Conference Computing and

Combinatorics (COCOON 2008), Springer Verlag LNCS #5092, pp. 487-497, 2008.

[23] Rajsbaum S., Raynal M., Travers C., An impossibility about failure detectors in the iterated immediate snapshot model. Information Processing

Letters, 108(3):160-164, 2008.

[24] Raynal M., Failure detectors for asynchronous distributed systems: an introduction. Wiley Encyclopdia of Computer Science and Engineering,

Vol. 2, pp. 1181-1191, 2009 (ISBN 978-0-471-38393-2).

A Proof of Theorem 1

Theorem 1 Let A be an algorithm designed for the ARWn[C] model. Let us consider an execution of A simulated in the IISn[C∗]
model by the algorithms described in Figure 2. A process pi is correct in the simulated execution if and only if its simulator qi is strongly

correct.

Proof Let us first observe that a simulated process whose simulator eventually crashes in IISn is faulty (it cannot issue an infinite

number of steps since its simulator crashes after a finite number of steps). Hence, it remains to show that (a) all simulators in WC
simulate faulty processes and (b) all simulators in SC simulate correct processes .

Proof of (a). Let us first remark that, as there is a bounded number of simulators and (by assumption) at least one of them is correct,

|SC| ≥ 1. If C = SC (i.e.,WC = ∅), (a) trivially follows. Hence, let us consider that there is at least one weakly correct simulator qi.
Let rmax be a round number such that (1) ∀i ∈ WC, ∀j ∈ SC, ∀r ≥ rmax : 〈i,−〉 /∈ is_viewj [r] and (2) no faulty simulator

starts round rmax. At any round r ≥ rmax, any strongly correct simulator issues its invocation of IS [r].write_snapshot() strictly

before those of any weakly correct simulator. Consequently, when after round rmax, qi, i ∈ WC, executes the algorithm that simulates

the next invocation of S.write() or S.snapshot() issued by pi, encoded in the triple (i, sn, x), the only simulators that can see this

triple are weakly correct simulators. Then, as after rmax the simulator qi sees all the triples written or known by the strongly correct

simulators, its predicate of line 5 will never be verified and qi will loop forever. Hence the simulated process pi never ends its invo-

cation of S.write() or S.snapshot(): it does no longer progress and appears as a crashed process in the simulated execution inASWn[C].

Proof of (b). Let now qi be a strongly correct simulator. By definition of SC, there is a set SCk such that i ∈ SCk and there is an infinite

sequence of invocations of IS [r].write_snapshot() issued by qi which occur before those of some simulators of SCk−1. It follows that,

each time qi simulates a S.write() or S.snapshot() invocation on behalf of pi, after a finite number of rounds, the corresponding triple

(i, sn, x) is added to the set of its known simulated operations by a simulator of SCk−1. Then, in the same way and in a finite number

Collection des Publications Internes de l’Irisa c©IRISA

14 M. Raynal & J. Stainer

of rounds, that simulator propagates this triple to a simulator SCk−2. This continues recursively and, in a finite number of rounds,

the triple (i, sn, x) written by qi is added to the set opsy of known operations by a simulator qy , y ∈ SC0. Then, it follows from the

definition of SC0 that qy propagates the triple that becomes eventually known by all correct simulators. After that, the next invocation

of S[r′].write_snapshot() issued by qi is such that the predicate of line 5 is satisfied and qi can terminate its simulation of the operation

S.write() or S.snapshot() issued by the process pi. It follows that the simulated process pi always progresses and it is consequently

correct with respect to the simulated execution in ARWn[C].
✷Theorem 1

B An implementation of the arw_write_snapshot() operation

For a completeness purpose, this appendix presents a wait-free implementation of the operationwrite_snapshot() (called arw_write_snapshot()
in Section 4) suited to ARWn[∅].

operation write_snapshot(vi) is

REG[i]← vi;

repeat LEVEL[i]← LEVEL[i]− 1;

for j ∈ {1, . . . , n} do leveli[j]← LEVEL[j] end for;

viewi ←
{

j : leveli[j] ≤ LEVEL[i]};
until (|viewi| ≥ LEVEL[i]) end repeat;

return({〈j, REG[j]〉 such that j ∈ viewi}).

Figure 4: Borowsky-Gafni’s wait-free algorithm for write_snapshot() in ARWn[∅]: code for pi
.

This algorithm, described in Figure 4. is due to Borowsky and Gafni [3]. It considers that each process invokes the operation at

most once and uses two arrays of single-writer/multi-reader atomic registers denoted REG[1..n] and LEVEL[1..n] (only pi can write

REG [i] and LEVEL[i]). A process pi first writes its value in REG[i]. Then the core of the implementation of write_snapshot() is

based on the array LEVEL[1..n]. That array, initialized to [n+ 1, . . . , n+ 1], can be thought of as a ladder, where initially a process is

at the top of the ladder, namely, at level n + 1. Then it descends the ladder, one step after the other, according to predefined rules until

it stops at some level (or crashes). While descending the ladder, a process pi registers its current position in the ladder in the atomic

register LEVEL[i].
After it has stepped down from one ladder level to the next one, a process pi computes a local view (denoted viewi) of the progress

of the other processes in their descent of the ladder. That view contains the processes pj seen by pi at the same or a lower ladder level

(i.e., such that leveli[j] ≤ LEVEL[i]). Then, if the current level ℓ of pi is such that pi sees at least ℓ processes in its view (i.e., processes

that are at its level or a lower level) it stops at the level ℓ of the ladder. Finally, pi returns a set of pairs determined from the values

of viewi. Each pair is a process index and the value written by the corresponding process. This algorithm satisfies the self-inclusion,

containment and immediacy properties stated in Section 2.4.

For the interested reader, a recursive algorithm implementing the operation write_snapshot() is described in [5, 11].

C A consensus algorithm for the IIS model

For completeness, this appendix presents an algorithm designed for an IISn[C∗] model, namely, a consensus algorithm for IISn[Ω∗].

C.1 Description of the algorithm

Global variables As we consider the IIS model, there is an infinite array IS of immediate snapshot objects, such that IS [r] is accessed

by a process only when it executes round r.

Local variables Each process pi manages the following local variables.

• ri is the local round number.

• esti is the local estimate of the decision value. It is initialized to vi, the value proposed by pi.

• r_leaderi is the leader known by pi at the current round. It is initialized to the default value⊥.

cur_leaderi is an auxiliary variable that contains the leader id obtained by pi at the beginning of the current round.

• deci is a one-write boolean variable initialized to false . It is set to true when pi decides and keeps then that value forever.

Collection des Publications Internes de l’Irisa c©IRISA

Failure Detectors for the Iterated Immediate Snapshot Model 15

• val_ld_seeni is a boolean initialized to false . It is set to true during a round r if and only if pi knows the current estimate value

of the leader of the current round and all processes known by pi have the same leader.

operation propose (vi)

(1) init: ri ← 0; esti ← vi; r_leaderi ← ⊥; val_ld_seeni ← false ; deci ← false ;

(2) repeat forever (asynchronous IIS rounds)

(3) ri ← ri + 1;

(4) cur_leaderi ← Ω∗.read();
(5) if (cur_leaderi 6= r_leaderi) then val_ld_seeni ← false; r_leaderi ← cur_leaderi end if;

(6) iis_viewi ← IS [ri].write_snapshot(〈esti, r_leaderi, val_ld_seeni, deci〉);
(7) if (¬ deci) then

(8) if
(

∃〈−, 〈v,−,−, true〉〉 ∈ iis_viewi

)

(9) ∨
(

∃v : ∀〈j, 〈est,−, val_ld_seen,−〉〉 ∈ iis_viewi : (val_ld_seen = true ∧ est = v)
)

(10) then esti ← v; deci ← true; decide (esti)

(11) else if
(

∃ℓ : ∀〈j, 〈−, r_leader,−,−〉 ∈ iis_viewi : r_leader = ℓ
)

(12) then if
(

∃ v : (〈ℓ, 〈v,−,−,−〉〉 ∈ iis_viewi) ∨ (∃〈−, 〈v,−, true,−〉〉 ∈ iis_viewi)
)

(13) then esti ← v; val_ld_seeni ← true

(14) end if

(15) else if
(

∃〈−, 〈v,−, true,−〉〉 ∈ iis_viewi

)

then esti ← v end if; val_ld_seeni ← false

(16) end if

(17) end if

(18) end if

(19) end repeat

end operation.

Figure 5: Consensus in IISnΩ∗

The algorithm is described in Figure 5. When a process invokes propose (vi) where vi is the value it proposes, it first initializes its

local variables (line 1). Then it enters an infinite loop (lines 2-19). Within the loop, the behavior of a process pi can be decomposed into

three phases.

• A process pi first increases ri (line 3) and reads the current value of its local failure detector output (line 4). If the leader has

changed since the last round, pi resets accordingly val_ld_seeni to false and r_leaderi (line 5).

• Then, pi invokes IS [r].write_snapshot() to write its local state which abstracted as a tuple of 4 values 〈esti, r_leaderi, val_ld_seeni, dec
When it returns from that invocation, it obtains a view made up of pairs 〈j, 〈est, r_leader, val_ld_seen, dec〉〉 deposited by other

processes (line 6).

• Then the behavior of pi depends on deci. If it has already decided, pi proceeds directly to the next round. Otherwise it checks a

decision predicate (lines 9-10). This predicate is true if the view iis_viewi just obtained by pi contains a value v already decided

by a process (line 9) or all the processes pj that appear in iis_viewi have written the same estimate value est = v and this value

comes from the same leader, namely val_ld_seen = true (line 10).

– It the predicate is satisfied, pi adopts v as new estimate, decides (line 10) and proceeds to the next round.

– If the decision predicate is false, pi strives to progress to a decision. To that end, it checks if all the processes in its view

have the same leader pℓ (line 11).

∗ If all the processes in its view have the same leader pℓ and pi knows the estimate v of pℓ (first predicate of line 12) or

knows that a process knows that value (first predicate of line 12), then it adopts v as its new estimate value esti and sets

val_ld_seeni to true (line 13). If none of this predicates is satisfied, esti and val_ld_seeni keep their previous values.

∗ If the processes in its view do not share the same leader, pi sets val_ld_seeni to false and, if its view contains a tuple

〈v,−, true,−〉, it updates its estimate esti to v (line 15).

As we can see, the principle of the algorithm is the following. A process that is considered as a leader tries to impose its estimate

value as the decision value. As Ω∗ does not guarantee a common leader since the very beginning, the processes are required to “vote”

when they see a common leader in their view (this is captured by the boolean variables val_ld_seeni). This idea is made operational by

the lines 8-17.

C.2 Proof of the consensus algorithm

Lemma 1 When executed in IISn[Ω∗], the algorithm described in Figure 5 satisfies the consensus validity property.

Proof All the decided values are read from the local variables esti (line 10). These variables are initialized to proposed values (line 1).

They are then updated with values v read from tuples contained in iis_viewi (lines 10, 13 and 15). The views iis_viewi are returned

Collection des Publications Internes de l’Irisa c©IRISA

16 M. Raynal & J. Stainer

from the immediate snapshot objects (line 6). The rest of the proof shows that any tuples written in an immediate snapshot object

contains a proposed values.

Let us consider the value est contained in a tuple written by a given in IS [r] by a process pi, with r > 1 (line 6). It is either a tuple

pi has written in IS [r − 1] (if one of its predicates at line 7, 12 or 15 was false during round r − 1), or the one it has adopted from

IS [r− 1] (through iis_viewi at line 10, 13 or 15). In both cases that tuple has been written in the immediate snapshot object during the

previous round. Since only proposed values belong to tuples written in IS [1] (esti is not modified between line 1 and 6), the only values

inside tuples written in IS [r], r > 0 are proposed values and the validity follows. ✷Lemma 1

Lemma 2 When executed in IISn[Ω∗], the algorithm described in Figure 5 satisfies the consensus termination property, i.e., any

strongly correct process decide.

Proof Let us first observe that, as soon as a process decide (invocation of decide() at line 10), it repeatedly write tuples carrying the

value it has decided together with the flag deci = true (line 6). Moreover, when a process retrieves such a tuple from an invocation

IS [r].write_snapshot() it also immediately decides (lines 8 and 10) and consequently writes tuples with the same decided value in the

following rounds (if it does not crash).

For any process pi and any round number r such that pi invokes IS [r].write_snapshot(), let P r
i be the non-empty set of processes

that see this write in the view they obtain from their own invocation of IS [r].write_snapshot(). If a process pi decides at round r, the

processes of P r+1
i that have not decided yet decide during round r + 1. Then, at the beginning of round r + 2, all the processes of

P r+1
i have decided, and it follows that all the processes of

⋃

j∈P
r+1

i

P r+2
j have decided by the beginning of round r+3 and recursively.

It follows that all processes that would have been informed of pi state at round r in a full information algorithm following the same

schedule eventually decide. By definition of the strongly correct processes, it follows that, if one of them decide, then, in a finite number

of round, all alive processes decide.

Suppose now that no strongly correct process ever decide. Let then pℓ be the strongly correct leader elected by Ω∗. It follows from

the definition of “strongly correct process” and Ω∗ that there is a round number rmax such that: (1) all faulty processes have crashed

before invoking IS [rmax].write_snapshot(), (2) for all r ≥ rmax, the invocations of IS [r].write_snapshot() issued by the strongly

correct processes are set-linearized strictly before those of weakly correct processes, and (3) all the reads of Ω∗ issued by strongly

correct processes after the beginning of rmax return ℓ. Consequently, after the beginning of rmax, the predicate of line 11 is always

true for all the strongly correct processes.

Since pℓ is correct and never decides, it executes an infinite number of rounds without ever invoking decide()(line 10). When it

executes the round rmax, the view it obtains from IS [rmax].write_snapshot() contains only pairs written by strongly correct processes.

As it does not decide, it checks the predicate line 11 and according to the definition of rmax, this predicate returns true. Process pℓ
then makes true the first part of the predicate of line 12 and (according to the self-inclusion property of the immediate snapshot object

IS [rmax]) pℓ consequently sets val_ld_seenℓ to true at the end of round rmax.

According to the definition of rmax, it follows that, after the beginning of round rmax+1, the predicate of line 5 is never satisfied

while the predicate of line 11 is always satisfied by any strongly correct process. These processes consequently never reset their variables

val_ld_seen to false. Hence, after round rmax, each strongly correct process pk that eventually verifies the predicate of line 12 sets

val_ld_seenk to true and keep doing it forever.

After rmax+1, pℓ and all the processes that obtain the tuple in their view repeatedly write tuples carrying the flag val_ld_seen = true.

Like in the case of tuples carrying dec = true, these flags eventually reach all alive processes. Consequently, all strongly correct pro-

cesses eventually set val_ld_seen = true and then keep it so forever.

Let us consider now that the following claim (proved below in Lemma 3) is verified: (C1) if two processes write tuples with

val_ld_seen = true and dec = false in the same IS [r] object, then these tuples carry also the same est. It follows from this claim

that, as soon as all strongly correct processes have (1) reached the round rmax+1 and (2) set their variable val_ld_seen to true, they all

verify the predicate line 9 and decide, what contradicts the initial hypothesis. This ends the proof of termination under the assumption

that C1 is true. ✷Lemma 2

Lemma 3 When executed in IISn[Ω∗], the algorithm described in Figure 5 satisfies the consensus agreement property.

Proof Let us consider an execution of the algorithm of Figure 5, where pi a process that terminates its invocation of IS [r].write_snapshot(),
r > 0, and iis_viewi the view it obtains. Let ℓi[r] be a process identity or the default value⊥ according to the following rules:

•
(

∀ 〈j, 〈−, ℓj ,−,−〉〉 ∈ iis_viewi : ℓj = ℓ
)

⇒ ℓi[r] = ℓ,

•
(

∃ 〈j, 〈−, ℓj ,−,−〉〉, 〈k, 〈−, ℓk,−,−〉〉 ∈ iis_viewi : ℓj 6= ℓk
)

⇒ ℓi[r] = ⊥.

Namely, if all processes seen by pi during round r agree on the same round leader, then ℓi[r] is this leader, otherwise it is ⊥. (Let us

remark that one could replace the predicate of line 11 by ∃ℓ 6= ⊥ : ℓi[ri] = ℓ.)
The set-linearizability of the invocations of write_snapshot(), implies these two properties, where iis_viewi[r] denotes the view

obtained by a process pi during round r:

Collection des Publications Internes de l’Irisa c©IRISA

Failure Detectors for the Iterated Immediate Snapshot Model 17

• ∀ i :
(

(ℓi[r] = ⊥)⇒ (∀j : (〈i,−〉 ∈ iis_viewj [r]⇒ ℓj [r] = ⊥))
)

,

• ∀ i, j :
(

(ℓi[r] 6= ⊥ ∧ ℓj [r] 6= ⊥)⇒ (ℓi[r] = ℓj [r])
)

.

The first property one states that, if a process sees at least two different leaders in the view it obtains from IS [r].write_snapshot(), then

all processes that have their invocation of IS [r].write_snapshot() set-linearized after pi’s one see also at least two different leaders.

(The proof follows directly from the containment property of the write_snapshot() operation.) On the other hand, the second property

ensures that there can be at most one round leader for a given round. (This follows from both the containment and immediacy properties

of the write_snapshot() operation.) It is thus possible to define ℓ[r] as the unique non-⊥ leader of the round r or as⊥ if ∀i : ℓi[r] = ⊥.

Remark that a process pi that writes a tuple carrying the flag val_ld_seen = true during round r necessarily verifies (1) ℓi[r−1] 6= ⊥
and (2) the value it retrieves from Ω∗ at the beginning of round r is ℓ[r − 1]. It follows from that remark and from the second property

of ℓi[r] that all the tuples written at a given round with the tag val_ld_seen = true carry the same value of r_leader.

Let now pℓ be a process such that (1) a process pi writes 〈−, ℓ, true, false〉 during a round r and (2) no process writes 〈−, ℓ, true, false〉
during the round r−1 (note that all tuples written into WS[1] are such that val_ld_seen = false). The previous observations entail that

ℓ[r−1] = ℓ and that all the tuples of the type 〈−, ℓ, true, false〉written during the round r carry the same estimate. Indeed, the processes

that wrote these tuples have necessarily executed line 13 at the end of round r − 1, hence their first predicate of line 12 was verified

(this cannot be due to the second predicate of line 12 since their predicate line 11 was verified and no process writes 〈−, ℓ, true, false〉
during round r − 1). They consequently all verified the first part of the predicate line 12 and all adopted the unique estimate value

written by pℓ at round r − 1.

Similarly, all the processes that write a tuple 〈−, ℓ, true, false〉 during the round r+1 (if there are some) have adopted their estimate

at line 13, so it is the only one present in the immediate snapshot object IS [r] (and recursively while there are such processes). It follows

that during a given round r, all the tuples carrying a flag val_ld_seen = true also contain the same estimate and the same round leader,

which proves Claim C1.

Consider the first round r during which a process decides, let pi be such a process and v the value it decides. Necessarily pi decides

because the predicate line 9 is true (otherwise another process would have decided during round r − 1 which would contradicts the

definition of r). Hence, according to Claim C1 and the containment property of the immediate snapshot objects, all the processes that

decide during round r decide the same value. Moreover, since pi obtains a view where all tuples are such that 〈v,−, true, false〉, all

other processes that terminates round r obtain a view where there is at least one such tuple. They consequently execute line 13 or line 15

according to the value of the predicate line 11. In both cases they adopt v at the end of round r. The only value written in all the objects

IS [r′], r′ > r, is then v and the agreement property follows. ✷Lemma 3

Theorem 5 When executed in IISn[Ω∗], the algorithm described in Figure 5 solves the the consensus problem.

Proof The proof follows directly Lemma 1, Lemma 2 and Lemma 3. ✷Theorem 5

Collection des Publications Internes de l’Irisa c©IRISA

