Non-heuristic reduction of the graph in graph-cut optimization
Francois Malgouyres, Nicolas Lermé

To cite this version:

HAL Id: hal-00670091
https://hal.archives-ouvertes.fr/hal-00670091
Submitted on 14 Feb 2012
Non-heuristic reduction of the graph in graph-cut optimization

François Malgouyres1 and Nicolas Lermé2

1Institut de Mathématiques de Toulouse, CNRS UMR 5219, Université de Toulouse, France
2LAGA, CNRS UMR 7539 and LIPN CNRS UMR 7030, Université de Paris 13, France

E-mail:
1François.Malgouyres@math.univ-toulouse.fr 2nicolas.lerme@lipn.univ-paris13.fr

Abstract. During the last ten years, graph cuts had a growing impact in shape optimization. In particular, they are commonly used in applications of shape optimization such as image processing, computer vision and computer graphics. Their success is due to their ability to efficiently solve (apparently) difficult shape optimization problems which typically involve the perimeter of the shape. Nevertheless, solving problems with a large number of variables remains computationally expensive and requires a high memory usage since underlying graphs sometimes involve billion of nodes and even more edges. Several strategies have been proposed in the literature to improve graph-cuts in this regards. In this paper, we give a formal statement which expresses that a simple and local test performed on every node before its construction permits to avoid the construction of useless nodes for the graphs typically encountered in image processing and vision. A useless node is such that the value of the maximum flow in the graph does not change when removing the node from the graph. Such a test therefore permits to limit the construction of the graph to a band of useful nodes surrounding the final cut.

1. Introduction
Shape optimization is a field which has many practical applications. Among shape optimization methods, graph-cut methods have recently received a growing interest because of their ability to minimize pairwise Markov Random Fields of the form

$$E(u) = \beta \sum_{p \in P} E_p(u_p) + \sum_{(p,q) \in (P \times P)} E_{p,q}(u_p, u_q), \quad \beta \in \mathbb{R}^+, \quad (1)$$

among $u \in \{0, 1\}^P$, for a set of pixels $P \subset \mathbb{Z}^d$ and for a positive integer d. Indeed, when the terms $E_{p,q}()$ are submodular, Kolmogorov and Zabih (see [1]) give a way to build a graph such that for any $S \subset P$, we have

$$\text{val}_G(S) = E(u^S) + K, \quad (2)$$

for some constant $K \in \mathbb{R}$ (irrelevant in the current minimization context), for $u^S \in \{0, 1\}^P$ defined for all $p \in P$ by

$$u^S_p = \begin{cases} 1, & \text{if } p \in S, \\ 0, & \text{if } p \notin S, \end{cases}, \quad (3)$$

and $\text{val}_G(S)$ is the value of the cut defined by $S \subset P$ (see next section for a precise definition).
Moreover, since (3) makes a one to one correspondence between cuts and elements of \(\{0, 1\}^P\), we trivially obtain from (2) that to any minimum cut (min-cut) in \(G\) corresponds a minimizer of (1) and vice versa. Moreover, a min-cut can efficiently be computed with a maximum flow (max-flow) algorithm such as the one described in [2].

One drawback of graph-cuts is that the graph contains as many nodes as the number of pixels and that its number of edges behaves like

\[
O \left(\sum_{p \in P} \#\sigma(p) \right),
\]

where \(\#\sigma(p)\) is the number of neighbors of a pixel \(p \in P\) (see Section 2 for a detailed description of the graph). Such a memory requirement is a strong limitation when minimizing (1) for \(\#P\) large and/or for \(d\) large (\(\#\sigma(p)\) typically grows like a radius raised to the power \(d\)...)

Except some exact methods [3, 4, 5], the heuristics generally fail to accurately preserve thin structures [6, 7, 8, 9, 10]. As previous band-based strategies [11, 8, 5, 7, 6], the nodes are typically located in a narrow band surrounding the object edges.

In this paper, we propose not to build any node satisfying a local test. This test is similar to the ones in [12, 11]. The nodes that fail to comply with the test are built in the reduced graph. The difference with the results stated in [12, 11] is that the test has been slightly modified in order to obtain a formal statement guaranteeing that the value of the max-flow in the reduced graph is equal to the value of the max-flow in the initial graph. As a consequence, any max-flow in the reduced graph is also a max-flow in the initial graph and the cut defined by this flow is a min-cut in the initial graph. In other words, despite the graph reduction, the max-flow algorithm still permits to build a minimizer of \(E\).

The proof of the result presented in this paper as well as experiments are provided in [13] and will also be submitted for publication in a long version of the current paper.

2. Definition of the graph
The graph constructed in [1] has the form described below. This constitute the main motivation for considering this graph structure.

We consider two terminal nodes \(s\) and \(t\) and the set of nodes

\[V = P \cup \{s, t\}. \]

We consider a set of directed edges \(E \subset (V \times V)\) such that \((V, E)\) is a simple directed graph. We also assume that for every \(p \in P\),

\[(p, s) \notin E \text{ and } (t, p) \notin E.\]

We denote the neighbors of any nodes \(p \in V\) by

\[\sigma_E(p) = \{q \in V, (p, q) \in E \text{ or } (q, p) \in E\}. \]

We define the capacities as a mapping \(c : (V \times V) \to \mathbb{R}^+\) and denote the capacity of any edge \((p, q) \in (V \times V)\) by

\[c_{p, q} \geq 0. \]

Notice that usually, the capacities are only defined over \(E\). We extend their definition to \((V \times V)\) in order to simplify notations. This extension is performed by setting

\[c_{p, q} = 0, \text{ whenever } (p, q) \notin E. \quad (4) \]
We assume, without loss of generality (see [1]), that capacities are such that for every \(p \in \mathcal{P} \),
\[
c_{s,p} \neq 0 \Rightarrow c_{p,t} = 0.
\]

We therefore summarize the capacities of the edges linked to the terminal nodes and set for all \(p \in \mathcal{P} \)
\[
c_p = c_{s,p} - c_{p,t}.
\]

For any \(S \subseteq \mathcal{P} \), we denote by \(\text{val}_G(S) \) the value of the \(s\)-\(t \) cut
\[
(S \cup \{s\}, (\mathcal{P} \setminus S) \cup \{t\}),
\]
in \(G \).

We also define flows in the graph as any mapping \(f : (\mathcal{V} \times \mathcal{V}) \rightarrow \mathbb{R}^+ \) satisfying both the capacity constraints
\[
0 \leq f_{p,q} \leq c_{p,q} \quad \text{for all } (p, q) \in (\mathcal{V} \times \mathcal{V}),
\]
and the flow conservation
\[
\sum_{q \in \sigma_E(p)} f_{q,p} = \sum_{q \in \sigma_E(p)} f_{p,q} \quad \text{for all } p \in \mathcal{P}.
\]

We have not clarified that \((q, p) \in \mathcal{E} \) (resp. \((p, q) \in \mathcal{E}) \) in the above left (resp. right) summation. This is because, (4) and (5) guarantee that \(f_{p,q} = 0 \), whenever \((p, q) \not\in \mathcal{E} \).

As usual, the value of the flow \(f \) in \(G \) is defined by
\[
\text{val}_G(f) = \sum_{p \in \sigma_E(s)} f_{s,p}.
\]

Notice that we use the same notation for the value of a flow and the value of a \(s\)-\(t \) cut in \(G \). This abuse of notation will never be ambiguous, once in context.

We call max-flow any solution \(f^* \) of the linear program
\[
\left\{ \begin{array}{l}
\max_f \text{val}_G(f), \\
\text{under the constraints (5) and (6)}.
\end{array} \right.
\]

In the sequel, we also consider a subset \(B \subseteq \mathbb{Z}^d \) and assume that \(B \) and \(G \) are such that
\[
\forall p \in \mathcal{P}, \quad (\sigma_E(p) \cap \mathcal{P}) \subset B_p,
\]
where
\[
B_p = \{ p + q, q \in B \}.
\]

In practice, we typically think of \(B \) as a ball centered at the origin. In such a case, (8) means that neighbors in the graph \(G \) are close to each other in \(\mathbb{Z}^d \).

3. Main result of the paper

Before stating the main result of the paper, we remind the convention that the summation over an empty set of indexes is null. More precisely, whatever \((a_{p,q})(p,q)\in \mathcal{V} \times \mathcal{V} \in \mathbb{R}^{\mathcal{V} \times \mathcal{V}}\),
\[
\sum_{(p,q)\in \emptyset} a_{p,q} = 0.
\]
Theorem 1 Let G be a graph as defined in Section 2, let B satisfy (8) and let us assume that
$p \in P$ satisfies
\[
\left\{ \begin{array}{ll}
\forall q \in B_p, & c_q \geq \sum_{q' \not\in B_p} c_{q,q'} \\
\text{or} & \\
\forall q \in B_p, & c_q \leq -\sum_{q' \not\in B_p} c_{q,q'} .
\end{array} \right.
\tag{10}
\]
Then, there exists a max-flow f in G such that
\[
\forall q \in \sigma_{\mathcal{E}}(p), \quad f_{p,q} = f_{q,p} = 0.
\]
As a consequence, removing the node p from the graph G does not modify its max-flow value.

Algorithmically, the above theorem guarantees that we can test every node, during the graph construction, before it is added to the graph. If the node satisfies (10), it is not useful to the max-flow evaluation. It can therefore be removed from the graph G without modifying its max-flow value.

Let us describe the meaning of the test corresponding to the upper line of (10). For every node q in B_p

- either q is inside B_p in which case, for all $q' \not\in B_p$, $c_{q,q'} = 0$ and the test simply becomes $c_q \geq 0$.
- or q is on the border of B_p and then the test takes the form $c_q \geq \sum_{q' \not\in B_p} c_{q,q'} \geq 0$ and is generally more difficult to satisfy.

Notice also that a similar theorem with the test
\[
\left\{ \begin{array}{ll}
\forall q \in B_p, & c_q \geq \sum_{q' \in \sigma_{\mathcal{E}}(q)} c_{q,q'} \\
\text{or} & \\
\forall q \in B_p, & c_q \leq -\sum_{q' \in \sigma_{\mathcal{E}}(q)} c_{q,q'},
\end{array} \right.
\]
is easy to obtain. The two results should not be confused.

Let us now describe how to build the minimizer of (1), once the minimum cut
\[
(S \cup \{s\}, ((P \setminus \{p\}) \setminus S) \cup \{t\}),
\]
where $S \subset (P \setminus \{p\})$, has been computed in the graph from which the node p satisfying (10) has been removed. The minimizer $u^* \in \{0, 1\}^P$ of (1) is defined by
\[
u^*_r = \left\{ \begin{array}{ll}
1 , & \text{if } r = p \text{ and } \forall q \in B_p, \quad c_q \geq \sum_{q' \not\in B_p} c_{q,q'} \\
0 , & \text{if } r = p \text{ and } \forall q \in B_p, \quad c_q \leq -\sum_{q' \not\in B_p} c_{q,q'} \\
1 , & \text{if } r \neq p \text{ and } r \in S, \\
0 , & \text{if } r \neq p \text{ and } r \not\in S.
\end{array} \right.
\]

References
[12] Lermé N, Malgouyres F and Léotocart L 2010 ICIP pp 3045–3048