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New conditioning model for robots

Jean Marc Salotti

IMS laboratory, ENSC-IPB, Bordeaux University
146 Rue Léo Saignat 33076 Bordeaux Cedex France

Abstract. We present a neural network for the prediction of resvard a

conditioning model. It is based on two noisy-or and one naigly+godes and
update rules inspired from BANNER technique. In specificx;ase show that the
computation is similar to Rescorla-Wagner's equation, hwhitspired many
computational models in the domain of conditioning.

1 Conditioning

The objective of this work is to define the behavidreobots according to the theory
of conditioning. Animal conditioning occurs when a stimukisdapeatedly presented
before a reward or a punishment. Pavlov' experimentsdugs are well known and
classical or operant conditioning have been studied for @ fiome [3]. However,
despite several decades of works on conditioning models #ill difficult to
establish all the rules that govern the propertiesooflitioning. Most approaches are
based on the original model proposed by Rescorla and Wdghen which
conditioning is characterized by associative strengths. fidation of the associative
strength of a stimulus X after a new trial is givendguation (1). The increase is
proportional to the salience of X (parametgrand the efficiency of conditioning
(parameterB). A is the maximum strength andry is the sum of all associative
strength of the present stimuli.

V;ﬂ :V; tay :8(/] _VTr;taI) (1)

The associative strength of a given stimulus can bepietied as the degree to which
a reward is predicted. Another important model has Ipgeposed by Klopf with
further considerations by Grossberg [1], [2]. In these hspdemuli were represented
by neurons and associative strengths were determined lbyptgynveights. Other
authors followed the same principles [1], [5], [6]. Suttond Barto also proposed a
model of classical conditioning based on well known retégment learning
techniques (TD model, 1987 and 1990 [7]). Despite all these waltkaodels suffer
from specific drawbacks. We propose in this paper a new ghi@disystem for
conditioning and its application in robotics. It is Ehsm a specific neural network
architecture corresponding to the nodes of a Bayesiawmorie The method is
explained in Section 2. Some results are then preseng&etiion 3. In Section 4, we
describe a simple application of our model with robots. filally conclude with the
perspectives of this work.



2 Proposed model

2.1 Description of the network

Stimuli are defined as perceptual events in the repiesambf robots. In a simplified

world, there is only one reward (or only one uncondiid stimulus, which predicts
the reward with probability 1) and the objective isd&termine if one or several
observed stimuli predict the reward event in the nextseeonds or eventually if they
inhibit it. Our neural network is defined by three le@se Fig. 1). In the first level,
the output of the neurons corresponds to the observattte different stimuli. In the

second level, the output of the neurons correspond tprthtEability of obtaining a

true value for a hidden Boolean variable. There arehidden variables. Each of
them corresponds to a Noisy-Or node of the conditioragbilities of the first level

(see next section). The first one can be considerduegarobability of triggering the
real but hidden cause of the reward event and the secmaaresponds to the
probability of triggering a hidden inhibitory mechanism thiavents the action of the
cause and the observation of the reward. That secomableais necessary to allow
inhibitory conditioning [4]. Inhibitory conditioning indeed ags if the conditioned

response is always observed after the detection of en gitimulus X (reward

expected) but is never observed if Y is present at the same. If a single noisy-or

node had been used, the reward would have been expected df dhe causal

mechanisms had been present. That specific probleraltezsly been identified in
previous work [6]. The neuronal output of the third levelresponds to the

probability of observing another event. It is definedhesprobability of presence of
the cause with absence of the inhibitory mechanismbibehy conditioning is thus

easily integrated in the model. In general, the lagnevs the reward, but not
necessarily.

PURAY PUAZ) PR

PRevward)

Fig. 1: Neural network model.

2.2 Neural computation

Pearl proposed the Noisy-Or to simplify the problermupélating many conditional
probabilities in a Bayesian network [4]. We proposenplement his method as
follows. First of all, we define P@#K) as the conditional probability of obtaining
H;=true during a limited period of time (for instance 5 sets) following the



observation of event X. In the neural network, synaptéghts correspond to
conditional probabilities. For instance the condiglomprobability P(H|X) is the
synaptic weight between node P(X) and P(Hf X;..X, are possible stimuli events
predicting H=true, in a Noisy-Or node it is sufficient to have astireate of all
P(Y|X) to compute P(Y|X.X,) [4]. For the second level, the output of the neuron is
therefore determined by the output of the neurons of the favel and their
associative weights according to equation (2).

P(H,) =1-[] @-P(H,X))P(X)) @)

A similar equation holds for the computation of P(H'he difference only appears
during the updates of the synaptic weights (e.g. theitiamal probabilities). At the
last level of the network, P(Reward) is computed acogrtti equation (3).

P(Reward) = P(H,)(1-P(H,)) ®)

2.3 Updaterules

As it is suggested in the BANNER method proposed by Ramdcira, the update of
the conditional probabilities can be performed accgrdina rule that minimizes the
mean square error [8]. However, since we do not wantdp the robot during
learning, we propose to take into account each errorcangdate the probabilities in
an incremental way. Let us consider the error for argivial. There are two cases. If
the reward is observed after a given set of stimudi gllobal error is 1-P(Reward) and
if no reward is observed the global error is P(RewarifjceSthe computation of
P(Reward) involves a multiplication between B(bind P(H), the propagation of the
error to the second level is trivial. IfgXs an observed stimulus, the update of the
conditional probabilities P(#iXy) and P(H|Xy) can be easily performed using a
gradient descent technique, which is very similar toome proposed in BANNER,
see equations (4) and (5).

Err (P(H,)) = Py, (H,) = P(H,) (4)
P.or{H1) is the correct value of P{Hconsidering only the current observations. It is
equal to 1 if the reward has been observed and 0O otleerwis

_ _ | OErr(R(H,)
Paa(Hi X)) = R(Hy|X, )+ a( FEYCH) j
Paa(Hy|X,) = R(H.[X, ) +=a [ €= R (H,|X)) Vu(X))) 5)
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where t is the time according to a given discretizatiolis a learning rate smaller
than 1, Vu(X) is a logical variable equal to 1 if Kas been observed and 0 otherwise.
There is an increment or a decrement of the probalititprding to the sign of the
error. A similar equation holds for P{M,) with a symmetric error. The problem is
that we are dealing with probabilities and even thotigh update rule takes into
account the partial derivative of the error and evoluiatéise appropriate slope there
is no guarantee that the probability would remain inréimge [0..1] depending on the
value of the learning parameter. We therefore proposegaikito account the



maximum modification of the probability. If the updatde increases the probability,
the maximum local error is 1-P{pX) and if it is decreasing, it is equal to RikL).
We propose to multiply the right term by this maximum lageor so that the update
is always a fraction of the maximum allowed modifioati The new equations are
therefore (6)(7) and (8)(9), respectively, when the revimmobserved and when it is
not.

Pt+1(H1|Xk) = Pt(H1|Xk)+a1 |_| @- Pt(H1|Xi)VU(Xi)) (6)
Pt+1(H2|Xk) = Pt(H2|Xk)_a2Pt(H2|Xk)|_| @- Pt(H2|Xi)VU(Xi))
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(7)

P..(H,|X,) =R (H,|X,) —agF’t(Hllxk)ﬂ @- P (H,|X)Vu(X))) @)
1K

Pt+1(H2|Xk) = P((H2|Xk)+a4 |_| @- Pt(H2|Xi)VU(Xi)) 9)

Note that in equations (6) and (9) the new term doesxmicitly appear because it is
now included in the product. Remark: We suggested that a pedietvard event

would be expected during a fixed period of time after a stimelaat. We therefore

have to memorize all events during that period. Howeferréward is observed at a
given time t, the traces of the stimulus and the reweedte might still be present at
time t+1, t+2 and so on depending on time discretizatichis is the case, we have
to apply equations (6) and (7) at every step. This is indacinteresting property

because the increase of the conditional probab#itinversely proportional to the
interval between the stimulus and the reward and thaepohas been observed in
the domain of animal conditioning. Conversely, if teavard event is absent during
all the fixed period, equations (8) and (9) are applied onbe@nd the trace of the
stimulus event is forgotten.
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Fig. 2: Conditioning experiment: during the first 60 trialstimulus event occurs
and after 3 seconds a reward is presented. The propabititward after that
stimulus is equal to P(H1). Then during the next 60 triasstimulus is still

presented but not the reward. The probability of rewetet #fat stimulus



decreases below 0.5. There is extinction of conditioriimlly, during the last 60
trials, the stimulus and the reward are presentedquésition of conditioning).

3 Reaults

Some results are presented Fig. 2. The following paemehave been used:
01=02=0.002, a3=04=0.008, time discretization: 0.2s, fixed period: 5s. It is
important to note that similar curves would be obtaiwét different parameters. If
we consider that conditioning is acquired if the probgbdf the reward exceeds 0.5,
our experiment illustrates a conditioning followed by its restton and finally its
reacquisition at a faster rate. Other conditioning expartmare correctly described
with the proposed model. Let us consider the blockingcteffeonditioning with a
given stimulus Y is blocked or takes a long time if Y alsvéollows a stimulus X and
X is already a stimulus that predicts the reward. In egudt), P(H/Y) does not
increase much because RI¥) is close to 1 and the product is proportional to 1-
P(H/X). Latent inhibition is characterized by an inhibition ednditioning if the
stimulus has already been observed without the rewaalirimodel latent inhibition

is observed because RjHncreases before P(H Our model can account for many
conditioning properties. More importantly, the main adage of our model is that it
is not necessary to reset the parameters beforevaexmgeriment. The conditioning
with a given stimulus can be extinguished, reacquired, cadbinith another
stimulus at all time. The model can therefore be usedhiotics in real time.

4 Application in robotics

We implemented our model in Java for Lego Mindstorms robiite robot is a
simple rover equipped with ultrasonic sensors for measuringngis to an obstacle
and a RFID sensor. There are three action modes.elmahmal mode, the robot
randomly chooses an action among several ones, sudo &rward 20 cm”, "turn
45° east”, "turn 45° west". If an obstacle is detectal distance less than 20 cm, the
robot switch on a red light and enters a reactive mibdeaits 2 seconds, then makes
a 180° turn and return to the normal mode. The obstaelgs ghe role of an
unconditioned stimulus. In the real world, stimuli agppidally sounds or visual
features and the problem of stimulus recognition is kntawbe hard. A RFID sensor
has been used to simplify interactions with the robotnlfemitter is presented in
front of the sensor, its radio frequency is immedyaiéntified with 100% certainty.
In our experiments stimuli are different emitters. E#ioke a stimulus is detected
(and identified), its trace is memorized during 5 secondasrivhile, if an obstacle is
detected, the conditional probability of observing an aibstafter the detection of
that stimulus is updated according to our model. We adaptdédheng rates such
that conditioning is functional after 3 similar situaso\s a consequence, the fourth
time the same stimulus is detected, the robot enteogditioning mode, switch on a
red light and goes foward during 5 seconds waiting fodétection of the obstacle. If
it is detected before the end of the 5 seconds, it eatexactive mode. If the obstacle
is not detected it returns to the normal mode. Experinfents also been conducted
with several stimuli. Extinction, reacquisition, latemthibition, blocking and



inhibitory conditioning (obstacle never expected after\ergistimulus) have been
successfully observed.

5 Conclusion

Our model has been briefly described. There are mdrgr atteresting results that
could be discussed. The application of our model to the wedd of robots is
currently investigated. A promising perspective is theeafgthe model for the training
of robots like the training of animals to do simple taslésh as sit down, jump, go
and take an objet and so on. This is possible if the Imisdased for operant
conditioning. Since conditional probabilities can taki account any event, it is
easy to consider the actions of the robots as fdessi¥ents that would predict
rewards or punishments.
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