On some convex cocompact groups in real hyperbolic space
Marc Desgroseilliers, Frédéric Haglund

To cite this version:
Marc Desgroseilliers, Frédéric Haglund. On some convex cocompact groups in real hyperbolic space. 2012.

HAL Id: hal-00669827
https://hal.archives-ouvertes.fr/hal-00669827
Submitted on 14 Feb 2012

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
ON SOME CONVEX COCOMPACT GROUPS IN REAL HYPERBOLIC SPACE

MARC DESGROSEILLIERS AND FRÉDÉRIC HAGLUND

Abstract. We generalize to a wider class of hyperbolic groups a construction by Misha Kapovich yielding convex cocompact representations into real hyperbolic space.

Contents
1. Introduction. 2
1.1. Background on Coxeter groups and polygonal complexes. 2
1.2. Statements of the results. 4
1.3. Concluding remarks and questions. 6
1.4. Organization of the paper. 7
2. Geometry of even-gonal complexes. 7
2.1. Non-positive curvature conditions. 7
2.2. Square subdivision. 8
2.3. Straight and ramified hyperplanes of even-gonal complexes. 9
2.4. Intersection and osculation of hyperplanes. 12
2.5. Two-dimensional and two-spherical Coxeter groups. 14
3. Quasi-isometric embedding of CAT(0) large-gonal complexes. 16
4. Real hyperbolic convex cocompact Coxeter groups. 17
4.1. Reflection subgroups in \mathbb{H}^p. 18
4.2. Convex cocompactness when there is no pair of asymptotic faces (proof of Theorem 4.7). 21
4.3. Constructions using the Witt-Tits quadratic form. 25
4.4. Computation of signatures, proof of Proposition 4.21 and new examples. 29
5. Faithful representation of large even-gonal groups into two-dimensional Coxeter groups. 31
5.1. Various complications for the action of a group on the set of hyperplanes. 31
5.2. The Coxeter group associated to an action without ambiguous intersection. 33
5.3. The special representation is faithful and convex cocompact when the action is special. 36
5.4. Constructing a convex cocompact 2-spherical representation. 37
6. Wall-defined representations and virtual specialness. 39
References 40

Date: February 14, 2012.
Key words and phrases. CAT(0) Polygonal Complexes, Coxeter Groups, Separable Subgroups, Convex Cocompact Representations, Real Hyperbolic Spaces.
1. Introduction.

In this paper we study discrete cocompact isometry groups of $\text{CAT}(-1)$ polygonal complexes, and try to represent them faithfully as convex cocompact groups of \mathbb{H}^p (for some large integer p). The case of a (large) polygon of finite groups was first handled by Misha Kapovich in [19]. In fact the argument of Kapovich generalizes to a much wider class of groups. We now present more precisely our results.

1.1. Background on Coxeter groups and polygonal complexes.

Recall a group $\Gamma < \text{Isom}(\mathbb{H}^p)$ is convex-cocompact provided Γ acts properly on \mathbb{H}^p and is cocompact on the convex hull of its limit set. Equivalently, any orbital map $\gamma : \Gamma \to \text{Isom}(\mathbb{H}^p)$, sending $x\gamma$ to γx, is a quasi-isometric embedding. More generally for any geodesic metric space Y we say that a representation $\rho : \Gamma \to \text{Isom}(Y)$ is convex-cocompact whenever there exists a closed convex subspace $Z \subset Y$ which is invariant under Γ and the Γ-action on Z is proper and cocompact. (Recall that a subspace $Z \subset Y$ is convex if any geodesic segment with endpoints inside Z is entirely contained inside Z.) When the metric space Y is hyperbolic in the sense of Gromov and Γ is convex cocompact in Y, it follows that Γ is word-hyperbolic (see [12] or [11] for references on hyperbolic groups). In particular when a group is convex cocompact in \mathbb{H}^p then it is a word-hyperbolic group. The converse problem is then:

What kind of word-hyperbolic groups are convex cocompact in \mathbb{H}^p?

The above question is extremely general and we will focus on a very particular class of groups. Any convex cocompact group of \mathbb{H}^p inherits the Haagerup property of $\text{Isom}(\mathbb{H}^p)$ (see [9]), so we must investigate the class of word-hyperbolic groups with this property.

Recall first that Coxeter groups correspond to presentations of the form

$$W = \langle s_1, \ldots, s_r \mid (s_i)^2 = 1, (s_is_j)^{m_{ij}} = 1 \rangle$$

Precisely the data are: a graph G on the set $\{1, \ldots, r\}$, and for each edge $\{i, j\}$ of G a natural number $m_{ij} \geq 2$. When $\{i, j\}$ is not an edge and $i \neq j$ there is no relation involving s_i, s_j - by convention we set $m_{ij} = \infty$. When $i = j$ we set $m_{ij} = 1$. The pair $(W,S = \{s_1, \ldots, s_r\})$ is called a Coxeter system.

Every Coxeter group has the Haagerup property (see [4]). Many Coxeter groups are word-hyperbolic, but very few of these can be discrete cocompact in \mathbb{H}^p, since their visual boundary is almost never a sphere. To be more precise a Coxeter group (W,S) is always a discrete cocompact group of automorphism of its Davis complex $\Sigma(W, S)$ (see [7] for the construction of $\Sigma(W, S)$ as a combinatorial object). Moussong proved that $\Sigma(W, S)$ always admits a $\text{CAT}(0)$ metric and proved that when W does not contain “obvious” free abelian groups of rank ≥ 2, then $\Sigma(W, S)$ has a $\text{CAT}(-1)$ metric, and thus W is word-hyperbolic. See [20] for the geometrization of $\Sigma(W, S)$; we refer to [5] for the general facts on $\text{CAT}(0)$ and $\text{CAT}(-1)$ metric spaces, which generalize Hadamard manifolds. For example the word-hyperbolicity of W follows from the assumption:

$$\forall i,j \text{ with } i \neq j, \ m_{ij} \geq 4.$$

A natural question is then:

Are word-hyperbolic Coxeter groups convex cocompact in some \mathbb{H}^p?

This question appears for example in Kapovich’s survey [18], where Kapovich notices that some hyperbolic Coxeter groups cannot be realized as convex cocompact reflection subgroups, a fact discovered by Felikson and Tumarkin (see [10]).
In this paper we obtain:

Theorem 1.1. Let G denote any finite graph of girth ≥ 4. Let $m \geq 4$ be any integer. Let $W(G, m)$ be the Coxeter group with one generating involution s_v for each vertex v of G, and one relation $(s_v s_w)^m = 1$ for each edge $\{v, w\}$ of G.

Then $W(G, m)$ is convex-cocompact in some \mathbb{H}^p.

(We insist that the $\text{CAT}(-1)$ Davis complex $\Sigma(W(G, m))$ is two-dimensional.)

Warning: the representation we get is not by reflections, in the sense that the generators s_v do not act by reflections on \mathbb{H}^p. We do not know wether a (discrete, convex cocompact) reflection-representation exists.

To obtain Theorem 1.1 we first consider a very particular class of two-dimensional Coxeter groups:

Lemma 1.2. For $m \geq 4$ let $W(p, m)$ denote the Coxeter group with p generating involutions s_1, \ldots, s_p, and relations $(s_is_j)^m = 1$ (for any pair i, j with $i \neq j$).

Then $W(p, m)$ is convex-cocompact in \mathbb{H}^{p-1}. Moreover the convex-cocompact representation $W(p, m) \to \text{Isom}(\mathbb{H}^{p-1})$ extends to a faithful convex-cocompact representation $\text{Aut}(\Sigma(W(p, m))) \to \text{Isom}(\mathbb{H}^{p-1})$.

Our argument consists in simply checking that the Tits’ form of $W(p, m)$ has signature $(p-1, 1)$. Note that the Tits-Witt representation sends the generators to reflections.

We are in fact interested in groups that have a priori nothing to do with Coxeter groups: discrete cocompact groups of two-dimensional objects.

For us a *polygonal complex* is a cell complex X of dimension two such that:

1. the 1-skeleton X^1 is a metric graph where each edge has length 1
2. each 2-cell is a regular euclidean convex polygon (thus called a *polygon of X*)
3. the attaching map of a polygon P is a local isometry $\partial P \to X^1$
4. the link of a 0-cell is a combinatorial graph: it has no loops (this follows from (2)) and no multiple edges

The complex is *evengonal* provided each polygon has an even number of edges. The complex is *k-gonal* provided each polygon has k edges.

For any polygonal complex we consider the following combinatorial quantities:

1. $n(X)$ denotes the minimum of the number of sides of a polygon of X
2. $\mu(X)$ denotes the minimum of the girth of the links of vertices of X

It is easily seen that if $n(X) \geq 6$ [7] or $\mu(X) \geq 6$ [7] then X admits a locally $\text{CAT}(0)$ [CAT(-1)] metric. It is not seldom that discrete cocompact groups of simply-connected polygonal complexes with $n(X) = 3$ have property (T) of Kazhdan, which is strongly opposite to Haagerup property, and thus these kinds of groups cannot be convex cocompact in \mathbb{H}^p. We thus concentrate on the case when Γ is a discrete cocompact group of automorphisms of a simply-connected evengonal complex X with $n(X) \geq 6$. In this case it is well-known that X has natural “hyperplanes” and thus Γ has the Haagerup property.

The last notion we need was introduced in [16], to which we refer for details. In the present paper we say a group Γ is *cubically special* provided there is a right-angled Coxeter group (W, S) (a Coxeter group all of whose finite m_{ij} are equal to 2), and a convex subcomplex $X \subset \Sigma(W, S)$ such that $\Gamma \subset W$, and the $\text{CAT}(0)$ cube complex X is invariant and cocompact under Γ. It happens that being cubically special is related to
strong subgroup separability properties, where we recall a subgroup is called \textit{separable} if it is an intersection of finite index subgroups. Combining Theorem 7.3 and Theorem 8.13 in [16] we obtain in the context of polygonal complexes:

Theorem 1.3. Let Γ be a discrete cocompact automorphism group of an even-gonal complex X with either $n(X) \geq 8$, or $n(X) \geq 6$ and $\mu(X) \geq 4$. Then the hyperbolic group Γ is \textit{virtually cubically special} if and only if every quasi-convex subgroup of Γ is separable.

What we call here “cubically special” was simply named “special” (or C-special) in [16]. The reason is that in the present paper we consider $CAT(0)$ complexes built of even polygons that are more general than squares, and we define special actions on these kind of complexes. Having a special action on an even polygonal complex results in a convex cocompact representation in some related Coxeter group. This group is a 2-dimensional Coxeter group but it is no longer right-angled in general. We have been able to represent this kind of 2-dimensional Coxeter groups into $\text{Isom}(\mathbb{H}^p)$, whereas we couldn’t find interesting representations for 2-dimensional right-angled Coxeter groups.

It turns out that in the context of hyperbolic complexes and groups the two notions of special actions are virtually equivalent, although one of them looks like it is a strict generalization of the other.

1.2. **Statements of the results.**

Our main result relates uniform lattices of even-gonal complexes and two-dimensional word-hyperbolic Coxeter groups:

Theorem 1.4.

Let Γ be a uniform lattice of a simply-connected even-gonal complex X with $n(X) \geq 6$ and $\mu(X) \geq 4$. Assume Γ is virtually cubically special.

There is a Coxeter group (W, S), with $n(X) \leq 2m_{ij}$ for $i \neq j$, and a convex-cocompact faithful representation $\rho: \Gamma \to \text{Aut}(\Sigma(W, S))$ whose image is virtually contained in W.

All m_{ij} can be choosen to be finite, and we still get a convex-cocompact representation provided $n(X) \geq 8$.

If furthermore all polygons of X have the same number of sides, say $2m$, then the target Coxeter group W can be choosen to equal $W(p, m)$ (for some large number p).

Combining the above theorem with Lemma 1.2 we obtain:

Theorem 1.5.

Let X be a simply-connected $2m$-gonal complex with $m \geq 4$ and $\mu(X) \geq 4$.

If Γ is a virtually special uniform lattice of X then there is a faithful convex-cocompact representation $\rho: \Gamma \to \text{Isom}(\mathbb{H}^p)$.

We note that Theorem 1.1 is an immediate application of the above theorem, since the Davis complex of $W(G, m)$ satisfies the geometric assumptions, and word-hyperbolic Coxeter groups are virtually special by [17].

We also (essentially) recover Kapovich’s theorem on even-gons of finite groups (see Theorem 1.1 in [19]). Indeed the universal cover of a $2m$-gon of finite groups is a simply-connected $2m$-gonal complex X with bipartite vertex links. It follows that $\mu(X) \geq 4$ and also that Γ is virtually special, according to a deep result of Dani Wise (see [24, 25] and the translation in the special language in [16]). So our Theorem 1.5 applies (provided $m \geq 4$). Moreover it can be checked that Kapovich’s representation $\Gamma \to \text{Isom}(\mathbb{H}^p)$ actually
factors as the composite of our \(\Gamma \to \text{Aut}(\Sigma(W(p, m))) \) and our \(\text{Aut}(\Sigma(W(p, m))) \to \text{Isom}(\mathbb{H}^p) \). (In fact our construction still yields Kapovich’s representation when \(m = 3 \), but in this case the methods developed in this paper do not allow to reprove that the representation is convex cocompact. We observe this convex cocompactness result was established in Kapovich’s paper using an argument that is more elaborate than the one used for the generic case \(m \geq 4 \).

We emphasize that both Theorems 1.4 and 1.5 provide a representation of the whole group \(\Gamma \), even when \(\Gamma \) has torsion: it is not a virtual representation.

We want also to insist that when a word-hyperbolic group is virtually special then by definition it is related to some right-angled Coxeter group. But in general this Coxeter group is neither hyperbolic nor is it two-dimensional, so Theorem 1.4 requires a bit more of work.

Dani Wise has proved that when a \(\text{CAT}(0) \) polygonal complex \(X \) satisfies \(n(X) \geq 6 \) and has bipartite vertex-links then any uniform lattice of \(X \) is virtually special (see [24, 25, 16]). This applies in particular to two-dimensional Tits-buildings (with \(n(X) \geq 8 \)). Note the girth of bipartite graphs is at least four. Thus using Theorem 1.5 we obtain:

Corollary 1.6.

Let \(X \) be a simply-connected \(2m \)-gonal complex with \(m \geq 4 \). Assume \(X \) is a Tits building (that is: all vertex-links are isomorphic to a given generalized \(\nu \)-gon, \(\nu \geq 2 \)), or more generally all vertex-links of \(X \) are bipartite graphs.

Then any uniform lattice of \(X \) has a faithfull convex-cocompact representation \(\rho : \Gamma \to \text{Isom}(\mathbb{H}^p) \).

We note that for \(p = 2m \geq 8 \) the above applies in particular when \(X = I_{pq} \), the right-angled hyperbolic building all of whose chambers are regular right-angled \(p \)-gons and all of whose edges are contained in \(q \) polygons. In that case Marc Bourdon had already been constructing a convex cocompact representation for a certain graph products of finite groups \(\Gamma_{pq} \) acting geometrically on \(I_{pq} \) (see [3]). The new thing we get here is that the pair \((I_{(2m)q}, \Gamma_{(2m)q}) \) embeds equivariantly into \((\Sigma(W(m, r)), W(m, r)) \) for some \(r \) (which can be computed more or less explicitly in this case).

We also study further the relationship between being virtually special and having a convex cocompact representation in \(\mathbb{H}^p \).

First of all the representations in both Theorems 1.4 and 1.5 have a geometric companion.

In Theorem 1.4 there is a combinatorial map \(X \to \Sigma(W, S) \) (sending polygons to polygons) which is equivariant under our \(\Gamma \to \text{Aut}(\Sigma(W, S)) \). This map is an isometric embedding for the combinatorial distances on the 1-skeleta, but not an isometric embedding for the usual \(\text{CAT}(0) \) metrics. In Lemma 1.2 the representation \(W(p, m) \to \text{Isom}(\mathbb{H}^{p-1}) \) also has a geometric companion: there is an equivariant map \(\Sigma(W(p, m)) \to \mathbb{H}^{p-1} \) such that the image of each polygon of \(\Sigma(W(p, m)) \) is an isometric copy of some regular \(2m \)-gon of \(\mathbb{H}^2 \).

Thus in Theorem 1.5 the representation \(\Gamma < \text{Aut}(X) \to \text{Isom}(\mathbb{H}^p) \) is polynomial in the sense that there is an equivariant locally injective map \(X \to \mathbb{H}^p \) sending each polygon of \(X \) to a regular planar polygon of \(\mathbb{H}^p \).
The crucial assumption in Theorem 1.5 is that \(\Gamma \) is virtually special: this very strong property enables the construction of a convex cocompact polygonal representation. However in the context of polygonal representations the virtual specialness hypothesis is not too strong as shows the following kind of reciprocal statement to Theorem 1.5:

Theorem 1.7. Let \(\Gamma \) be a uniform lattice of a simply-connected even-gonal complex \(X \) with \(n(X) \geq 8 \), or \(n(X) \geq 6 \) and \(\mu(X) \geq 4 \).

If \(\Gamma \) has a polygonal representation \(\Gamma \to \text{Isom}(\mathbb{H}^p) \), then \(\Gamma \) is virtually special.

1.3. Concluding remarks and questions.

The results in this paper show that the Coxeter groups \(W(p, m) \) contain as quasi-convex subgroups a lot of groups acting geometrically on negatively curved polygonal complexes. Similarly the polygonal complexes \(\Sigma(W(p, m)) \) contain (equivariantly) a lot of homogeneous \(2m \)-gonal complexes. This is a remarkable universality property of the so-called Gromov polyhedra \(\Sigma(W(p, m)) \) (see [13]).

Question: is there a uniform lattice \(\Gamma \) of a simply-connected \(2m \)-gonal complex \(X \) with \(m \geq 4 \) and \(\mu(X) \geq 4 \), such that \(\Gamma \) is not convex-cocompact in \(\mathbb{H}^p \)? or not convex-cocompact in \(\Sigma(W(p, m)) \)?

Such a hyperbolic group would not be virtually special.

We mention that for any complex \(X \) as above there exists a polygonal map \(X \to \Sigma(W(p, m)) \) (for some large \(p \)), such that the induced map \(X^1 \to \Sigma^1(W(p, m)) \) is an isometric embedding of graphs. (Similarly every hyperbolic uniformly locally finite \(\text{CAT}(0) \) cube complex embeds isometrically into the Davis complex of a right-angled Coxeter group.) The problem is to map \(X \) inside \(\Sigma(W(p, m)) \) in such a way that the \(\Gamma \)-action on \(X \) extends to \(\Sigma(W(p, m)) \).

Conjecture 1: if a Coxeter group \((W, S) \) has \(4 \leq m_{st} < +\infty \) for every \(s \neq t \), then \(W \) is convex-cocompact in \(\mathbb{H}^p \).

Using Theorem 1.4 this would imply:

Conjecture 2: any virtually special uniform lattice of a simply-connected even-gonal complex \(X \), with \(n(X) \geq 8 \) and \(\mu(X) \geq 4 \) is convex-cocompact in \(\mathbb{H}^p \).

In fact Conjecture 1 and the quotient theorem could be used to deduce

Conjecture 3: if a Coxeter group \((W, S) \) has \(4 \leq m_{st} \leq +\infty \) for every \(s \neq t \), then \(W \) is convex-cocompact in \(\mathbb{H}^p \).

We would like to get rid of the assumption \(\mu(X) \geq 4 \) in Conjecture 2 above. However it is not always possible to map polynomially a \(\text{CAT}(-1) \) \(2m \)-gonal complex \(X \) with \(\mu(X) = 3 \) to a Davis complex \(\Sigma(W(m, p)) \). Indeed \(X \) may have non-trivial holonomy in the following sense (see [13]). There is a \(2m \)-gon \(P \) in \(X \) and a sequence \(P_1, P_2, \ldots, P_{2m} \) of polygons such that:

1. \(P_1 \cap P, \ldots, P_{2m} \cap P \) are the consecutive edges of \(\partial P \)
2. \(P_1 \cap P_2 \) is an edge, \(P_2 \cap P_3 \) is an edge, \ldots, \(P_{2m-1} \cap P_{2m} \) is an edge (these edges are adjacent to \(P \))
3. \(P_{2m} \cap P_1 \) is a vertex (of \(P \))

Question: if \(\Gamma \) is a virtually special uniform lattice of a holonomy free \(2m \)-gonal complex \(X \) with \(m \geq 4 \), then the pair \((X, \Gamma) \) embeds equivariantly in some \((\Sigma(W(p, m)), W(p, m)) \)?
1.4. Organization of the paper.
In Section 2 our goal is to describe and study the hyperplanes and ramified hyperplanes in even-gonal complexes. We conclude this section by giving some more definitions on Coxeter groups.

In Section 3 we give local small-cancellation type conditions on a polygonal map \(f : X \rightarrow Y \) that force \(f : X^1 \rightarrow Y^1 \) to be a global isometric embedding (Proposition 3.2).

In Section 4 we present more or less classical facts about real hyperbolic reflection groups. In particular we give necessary and sufficient conditions on a Poincaré polyhedron under which the associated reflection group is convex cocompact (Theorem 4.7). We then recall the definition of the Witt-Tits quadratic form. Applying Theorem 4.7 we then explain when the Witt-Tits representation is convex-cocompact in real hyperbolic space (under the assumption that the Witt-Tits quadratic form has hyperbolic signature, see Proposition 4.15). As an application we deduce Lemma 1.2 (see Corollary 4.22).

In Section 5 we define special actions on polygonal complexes. We show that if a uniform lattice \(\Gamma \) of an even-gonal complex \(X \) with \(\mu(X) \geq 4 \) acts specially then there is a naturally associated 2-dimensional Coxeter system \((W, S) \) and an isometric embedding of the pair \((X, \Gamma)\) inside \((\Sigma(W, S), W)\). We check that if \(\Gamma \) is virtually cubically special then it also has a finite index subgroup which acts specially on the polygonal complex \(X \) (see Corollary 5.4), and in fact we can even get arbitrarily good lower bounds for the embedding radius of ramified hyperplanes. Combining this result with Lemma 1.2 and Proposition 3.2 we conclude this section with a proof of Theorem 1.4.

In Section 6 we introduce wall-defined representation (which generalize polygonal representations). We show that if a group \(\Gamma \) has a representation in Isom(\(H^p\)) with an equivariant locally injective wall-defined map \(X \rightarrow H^p \), then \(\Gamma \) is virtually special (see Theorem 6.1). This proves Theorem 1.7.

2. Geometry of even-gonal complexes.
(In this section all polygonal complexes are locally compact.)

2.1. Non-positive curvature conditions.

Definition 2.1 (piecewise euclidean metric). Let \(X \) be a polygonal complex.

By definition the 2-cells of \(X \) have a euclidean metric (and each edge of a polygon of \(X \) has unit length). We may thus consider on \(X \) the induced length metric, which we call the piecewise euclidean metric on \(X \).

Let \(X, Y \) be polygonal complexes. A map \(f : X \rightarrow Y \) is combinatorial provided it sends isometrically an edge [a polygon] of \(X \) onto an edge [a polygon] of \(Y \).

Definition 2.2 (non-positive and negative curvature conditions). We say a polygonal complex is non-positively curved provided its piecewise euclidean metric is locally \(CAT(0) \).

We say a polygonal complex is negatively curved provided it is non-positively curved, and moreover the piecewise euclidean metric has no embedded euclidean open disk through vertices.

Let \(X \) be a polygonal complex. For each vertex \(v \) of \(X \) and each \(k \)-gon \(P \) through \(v \) we assign the length \(\alpha(v, P) = \pi(1 - \frac{2}{k}) \) to the edge of \(\text{link}(v, X) \) corresponding to \(P \). This turns \(\text{link}(v, X) \) to a metric graph and we denote by \(\mu_{\text{eucl}}(v, X) \) its systole. Specifically
\(\mu_{\text{eucl}}(v, X) \) is the infimum of all sums \(\alpha(v, P_1) + \cdots + \alpha(v, P_\ell) \), where \(P_1, \ldots, P_\ell \) is a locally injective cycle of polygons around \(v \). We set \(\mu_{\text{eucl}}(X) = \inf_{v \in X^0} \mu_{\text{eucl}}(v, X) \).

We quote the following well-known result relating curvature and systole:

Lemma 2.3 (see Lemma 5.6 in [5]). Let \(X \) be a polygonal complex. Then \(X \) is non-positively curved [negatively curved] if and only if \(\mu_{\text{eucl}}(X) \geq 2\pi \) [\(> 2\pi \)].

If \(X \) is non-positively curved and simply connected it is a \(\text{CAT}(0) \) space (see [5]) and thus we say \(X \) is a \(\text{CAT}(0) \) polygonal complex.

Definition 2.4 (local largeness). We say \(X \) is large at vertices if the minimum of the girths of vertex-links is at least four: \(\mu(X) \geq 4 \).

We say \(X \) is large-gonal if the smallest number of sides of a polygon is at least six: \(n(X) \geq 6 \).

We say \(X \) is locally large if it is large at vertices and moreover the smallest number of sides of a polygon is at least four: \(\mu(X) \geq 4 \) and \(n(X) \geq 4 \).

Using Lemma 2.3 we have the following relations between local largeness conditions and curvature conditions:

Lemma 2.5. Let \(X \) be a polygonal complex.

1. Assume \(X \) is large-gonal. Then \(X \) is non-positively curved.
2. Assume \(X \) is large at vertices. Then \(X \) is non-positively curved if and only if \(X \) is locally large. If furthermore \(X \) is even-gonal, then \(X \) is negatively curved if and only if \(X \) is large-gonal.

Since we do not really use the \(\text{CAT}(0) \) metric in this article the following can be considered to be a definition:

Lemma 2.6 (combinatorial characterization of local isometries). Let \(X, Y \) be polygonal complexes with \(n(Y) \geq 4 \). A combinatorial map \(f : X \to Y \) is a local isometry if and only if \(f \) is locally injective and moreover \(f(\text{link}(v, X)) \) is a full subgraph of \(\text{link}(f(v), Y) \).

See [6] for a detailed argument. So the advantage when working with triangle-free polygonal complexes is that usual \(\text{CAT}(0) \) notions have a combinatorial characterization.

A subcomplex \(Y \subset X \) is locally convex if the inclusion map \(Y \to X \) is a local isometry. It is a standard fact that a local isometry with \(\text{CAT}(0) \) target is in fact a global isometry from its \(\text{CAT}(0) \) source onto its image. So when \(X \) is a \(\text{CAT}(0) \) polygonal complex any locally convex subcomplex \(Y \subset X \) is in fact a convex subspace, and thus we say \(Y \) is a convex subcomplex.

2.2. Square subdivision.

In this paper we will employ the expression square complex instead of the heavier 4-gonal complex.

Let \(P \) denote any euclidean convex polygon with \(n \) cyclically ordered vertices \(v_1, \ldots, v_n \) (and the usual convention that \(v_{n+1} = v_1 \)). Add an additional vertex \(v_0 \) in the interior of \(P \), subdivide each edge \([v_i v_{i+1}] \) of \(\partial P \) by adding a vertex \(w_i \) in its interior, and then add the edges \([v_0 w_1], \ldots, [v_0 w_n] \). The resulting square complex is the square subdivision of \(P \) and is denoted by \(P_{\square} \). So \(P_{\square} \) consists in \(n \) unit squares.

Let \(X \) denote any polygonal complex. We may perform the square subdivision of each polygon of \(X \) individually, and then glue the subdivided polygons along the (subdivided)
edges coming from the 1-skeleton of X, thus producing a square complex which we call the square subdivision of X and which we denote by $X\square$.

We observe that the square subdivision $X\square$ is non-positively curved if and only if X is locally large ($n(X) \geq 4$ and $\mu(X) \geq 4$). We leave the verification of the following easy result to the reader:

Lemma 2.7. Let $f : X \to Y$ be a combinatorial map of polygonal complexes. Then there is a naturally induced combinatorial map $f\square : X\square \to Y\square$. If moreover $n(Y) \geq 4$ then $f\square$ is a local isometry if and only if f is a local isometry.

2.3. Straight and ramified hyperplanes of even-gonal complexes.

Hyperplanes in even-gonal complexes have been used since a long time, see for example [13]. To define his representations Kapovich introduced what we call below ramified hyperplanes (see [19]).

Definition 2.8 (hyperplanes of an even-gon). Let P be an polygon with $2m$ edges, and let e_1, e_2, \ldots, e_{2m} be a cyclic enumeration of the edges of P. As usual we consider the indices modulo $2m$ so that $e_{2m+1} = e_1$.

Let e be an edge of P: the radial segment of P at e is the straight euclidean segment joining the center of P to the midpoint of e.

We say e_i and e_{i+m} are parallel in P. So P has m parallelism classes of edges. A straight hyperplane of P (or simply a hyperplane of P) is the union of radial segments at e_i and e_{i+m}. Thus P has m hyperplanes;

Any two edges $e_i, e_{i+2\ell}$ whose indices differ by an even number are said to be even-parallel in P. Since P is an even-gon e_1 and e_2 are not even-parallel, and P has exactly two even-parallelism classes of edges. A ramified hyperplane of P is the union of radial segments at $e_i, e_{i+2}, \ldots, e_{i+2k}, \ldots$. Thus P has two ramified hyperplanes.

We will use the expression straight hyperplanes to insist on the difference with ramified hyperplanes. When we use the word hyperplane alone, it always means straight hyperplane. Note that when P is a square ramified hyperplanes are straight.

Definition 2.9 (hyperplanes of an even-gonal complex). Let X be an even-gonal complex. The disjoint union of the hyperplanes of polygons of X naturally maps to X:

$$\bigsqcup_{h \text{ hyperplane of } P, \ P \text{ polygon of } X} h \to X$$

We then identify two points $p, q \in \bigsqcup_{h} ph$ if they have the same image in X and moreover $p = q$ is the midpoint of an edge of X. The resulting quotient graph $\mathcal{H}(X)$ is the space of hyperplanes of X. Its connected components are the immersed hyperplanes of X. Since radial segments have a length each immersed hyperplane is a metric graph.

Definition 2.10 (hyperplanes neighborhoods). Let X be an even-gonal complex. The disjoint union of the polygons of X marked by their hyperplanes naturally maps to X:

$$\bigsqcup_{P \text{ polygon of } X, \ h \text{ hyperplane of } P} P \times \{h\} \to X$$
and we identify two edges a in $P \times \{h\}$ and a' in $P' \times \{h'\}$ if a, a' map to the same edge in X and moreover the midpoint of $a = a'$ is an extremity of both h and h'. We denote by $N(\mathcal{H}(X))$ the resulting quotient polygonal complex. There is a natural map $i : \mathcal{H}(X) \rightarrow N(\mathcal{H}(X))$, and it is compatible with both maps $\mathcal{H}(X) \rightarrow X$ and $N(\mathcal{H}(X)) \rightarrow X$.

Lemma 2.11. The family of orthogonal projections $P \times \{h\} \rightarrow h$ induces a map $r : N(\mathcal{H}(X)) \rightarrow \mathcal{H}(X)$ such that $r \circ i = id$. In particular i is injective and it induces a 1-1 identification between the connected components of $\mathcal{H}(X)$ and the connected components of $N(\mathcal{H}(X))$.

For every immersed hyperplane H of X we will thus denote by $N(H)$ the connected component of $N(\mathcal{H}(X))$ containing H, and we call $N(H)$ the polygonal neighborhood of H.

Lemma 2.12.

1. Both maps $i : \mathcal{H}(X) \rightarrow N(\mathcal{H}(X))$ and $\mathcal{H}(X) \rightarrow X$ are local isometries.

2. Assume the even-gonal complex X is large at vertices ($\mu(X) \geq 4$): then $N(\mathcal{H}(X)) \rightarrow X$ is a local isometry.

sketch. The retraction map $r : N(\mathcal{H}(X)) \rightarrow \mathcal{H}(X)$ is clearly 1-Lipschitz, thus $i : \mathcal{H}(X) \rightarrow N(\mathcal{H}(X))$ is a local isometry. Since $N(\mathcal{H}(X)) \rightarrow X$ is a local isometry in the neighborhood of every point of $\mathcal{H}(X)$, it thus follows by composition that $\mathcal{H}(X) \rightarrow X$ is a local isometry as well.

Assume now $\mu(X) \geq 4$ and let \bar{v} be a vertex of $N(\mathcal{H}(X))$, and denote by v its image in X. Let P be a polygon of X containing v, and let h be a hyperplane of P such that \bar{v} is the image of $v \times \{h\}$. We let a, a' denote the two edges of ∂P which are perpendicular to h at their midpoint. Either $v \not\in a \cup a'$: then in fact link($\bar{v}, N(\mathcal{H}(X))$) identifies with link($v, P$), and this edge is obviously a full subgraph of link(v, X). Or $v \in a \cup a'$, say $v \in a$. Consider the polygons $P_1 = P, \ldots, P_k$ of X which contain a. Then link($\bar{v}, N(\mathcal{H}(X))$) identifies with \cup_i link(v, P_i) \simeq Star($a, \text{link}(v, X)$). Now any subgraph of diameter two in a graph of girth ≥ 4 has to be full. \hfill \Box

Using the previous Lemma and the standard incompressibility of local isometries in non-positive curvature we get

Corollary 2.13 (see [14]). Let X be a CAT(0) even-gonal complex. Then every immersed hyperplane embeds in X. Its image is a convex subtree of X that disconnects X into two connected components.

If moreover X is large at vertices then the union of polygons of X meeting a given hyperplane is a convex subcomplex.

An other classical fact is that the hyperplanes of a CAT(0) polygonal complex explain the combinatorial distance on the 1-skeleton :

Theorem 2.14. Let X be a CAT(0) even-gonal complex. The combinatorial distance between two vertices of the 1-skeleton X^1 equals the number of hyperplanes separating the vertices. Moreover an edge-path (e_1, \ldots, e_t) of X^1 is a combinatorial geodesic between its endpoints if and only if the sequence of hyperplanes it crosses at each edge e_i has no repetition.
We refer to [14] for an argument. Sometimes using hyperplanes is easier, so the combinatorial distance on X^1 is more adapted than the $\text{CAT}(0)$ distance on X. Note however that if there is an upper bound for the number of vertices in a polygon and on the number of edges containing a vertex in the $\text{CAT}(0)$ polygonal complex X, then the inclusion $(X^1, d_{\text{comb}}) \to (X, d_{\text{eucl}})$ is a quasi-surjective quasi-isometry. The upper bounds clearly exist if X admits a cocompact group of automorphism.

We now define the (immersed) ramified hyperplanes of an even-gonal complex.

Definition 2.15 (ramified hyperplanes and their neighborhoods). Let X be a non-positively curved even-gonal complex. The disjoint union of the ramified hyperplanes of polygons of X naturally maps to X:

$$\bigsqcup h \to X$$

h a ramified hyperplane of P,

P polygon of X

and identify two points $p, q \in \bigsqcup_{h \in P} h$ if they have the same image in X and moreover $p = q$ is the midpoint of an edge of X. The resulting quotient graph $\mathcal{H}_r(X)$ is the space of ramified hyperplanes of X. Its connected components are the immersed ramified hyperplanes of X.

Consider also:

$$\bigsqcup P \times \{h\} \to X$$

P polygon of X,

h a ramified hyperplane of P

and identify two edges a in $P \times \{h\}$ and a' in $P' \times \{h'\}$ if a, a' map to the same edge in X and moreover the midpoint of $a = a'$ belong to both h and h'. We denote by $N(\mathcal{H}_r(X))$ the resulting quotient polygonal complex. There is a natural map $i : \mathcal{H}_r(X) \to N(\mathcal{H}_r(X))$, and it is compatible with both maps $\mathcal{H}_r(X) \to X$ and $N(\mathcal{H}_r(X)) \to X$.

In order to study the immersed ramified hyperplanes of the non-positively curved even-gonal complex X, it is convenient to work with the square subdivision X_\square of X. Indeed we note that a ramified hyperplane h of an even-gon P is a subcomplex of P_\square. This turns h to a metric graph whose edges have unit length. Note there is a retraction $P_\square \to h$ which projects orthogonally each square C of P_\square onto its unit edge $C \cap h$.

We will consider the induced combinatorial maps

$$\mathcal{H}_r \to X_\square, \mathcal{H}_r \to N_\square(\mathcal{H}_r(X)), N_\square(\mathcal{H}_r(X)) \to X_\square$$

where $N_\square(\mathcal{H}_r(X))$ denotes the square subdivision of $N(\mathcal{H}_r(X))$.

Lemma 2.16. The family of retractions $P_\square \times \{h\} \to h$ induces a map $r : N_\square(\mathcal{H}_r(X)) \to \mathcal{H}_r(X)$ such that $r \circ i = \text{id}$. In particular i is injective and it induces a 1-1 identification between the connected components of $\mathcal{H}_r(X)$ and the connected components of $N(\mathcal{H}_r(X))$.

For every immersed ramified hyperplane H of X we will denote by $N(H)$ the connected component of $N(\mathcal{H}_r(X))$ containing H, and we call $N(H)$ the polygonal neighborhood of H. We also consider the square subdivision $N_\square(H) \subset N_\square(\mathcal{H}_r(X))$.

Lemma 2.17. Let X be an even-gonal complex with $\mu(X) \geq 4$. For any immersed ramified hyperplane H the combinatorial maps $H \to N_\square(H), N_\square(H) \to X_\square, H \to X_\square$ are local isometries.
Proof. The retraction \(r : N_{\square}(\mathcal{H}_r(X)) \to \mathcal{H}_r(X) \) is 1-Lipschitz, thus in fact \(H \to N_{\square}(H) \) is a global isometric embedding.

For every vertex \(\bar{v} \) of \(N(\mathcal{H}_r(X)) \) let \(v \) be its image inside \(X \), and let \(P \) be a polygon of \(X \) with a ramified hyperplane \(h \) such that \(\bar{v} \) is the image of a vertex of \(P \times \{ h \} \). Then \(v \) is contained in precisely one edge \(a \) of \(P \) that intersects \(h \). The natural map \(N(\mathcal{H}_r(X)) \to X \) then induces an identification of \(\text{link}(\bar{v}, N(\mathcal{H}_r(X))) \) with \(\text{Star}(a, \text{link}(v, X)) \). This is a full subgraph of \(\text{link}(v, X) \) since \(\mu(X) \geq 4 \). Thus \(N(\mathcal{H}_r(X)) \to X \) is a local isometry.

It follows by Lemma 2.7 that \(N_{\square}(H) \to X_{\square} \) is a local isometry and by composition so is \(H \to X_{\square} \).

Corollary 2.18. Let \(X \) be a CAT(0) even-gonal complex with \(\mu(X) \geq 4 \).

1. Each ramified hyperplane \(H \) embeds as a convex subcomplex of \(X_{\square} \). Moreover \(N_{\square}(H) \) is a convex subcomplex of \(X_{\square} \), and \(N(H) \) is also a convex subcomplex of \(X \).

2. Let \(a, b \) be two distinct edges at a vertex \(v \). Then the [ramified] hyperplanes \(H, K \) cutting \(a, b \) are distinct. More precisely if \(a, b \) are linked in \(\text{link}(v, X) \) then \(H \cap K \) is the center of the polygon spanned by \(a \) and \(b \), and if \(a, b \) are not linked in \(\text{link}(v, X) \) then \(H \cap K = \emptyset \).

Proof. 1) By Lemma 2.17 the map \(H \to X_{\square} \) is a local isometry, and by assumption its target is \(\text{CAT}(0) \). It follows that \(H \) embeds as a convex subcomplex of \(X_{\square} \).

Similarly we get that \(N_{\square}(H) \) is a convex subcomplex of \(X_{\square} \), and we deduce by Lemma 2.7 that \(N(H) \) is a convex subcomplex of \(X \).

2) Assume first \(a, b \) span a polygon \(P \). Let \(r, s \) be the radial segments of \(P \) at \(a, b \). So \(H \) is the [ramified] hyperplane that contains \(r \) and \(K \) is the [ramified] hyperplane that contains \(r \). By convexity of \(H \subset X_{\square} \) we see that \(H \) cannot contain \(s \). It follows that \(H \cap P \) is the [ramified] hyperplane of \(P \) containing \(r \). Similarly \(K \cap P \) is the [ramified] hyperplane of \(P \) containing \(s \). So \(H \cap K \cap P \) is the center \(p \) of \(P \). Since \(H \cap K \) is convex and contains \(p \) as an isolated point it follows that \(H \cap K = \{p\} \).

Assume now that \(a, b \) are unlinked in \(\text{link}(v, X) \). Thus the union \(\pi \) of the two half-edges of \(a, b \) containing \(v \) is a geodesic segment of \(X \). The endpoints of \(\pi \) are in \(H, K \) but \(\pi \) itself is not contained in a [ramified] hyperplane since it contains a vertex. By convexity of [ramified] hyperplanes we deduce that \(H \neq K \).

We note that the hexagonal tessellation of the euclidean plane has only three ramified hyperplanes, which are not at all simply-connected. So the assumption \(\mu(X) \geq 4 \) is essential in the Lemma above.

2.4. Intersection and osculation of hyperplanes.

Proposition 2.19 (intersections). Let \(X \) be a CAT(0) even-gonal complex [with \(\mu(X) \geq 4 \)], and let \(H, H' \) be two [ramified] hyperplanes of \(X \). Then

1. either \(N(H) \cap N(H') = \emptyset \),
2. or \(N(H) \cap N(H') \) is a non empty subgraph of \(X^1 \),
3. or \(N(H) \cap N(H') \) is the union of a single polygon \(P \) with a subgraph of \(X^1 \),
4. or \(H = H' \).

In case (2) we have \(H \cap H' = \emptyset \). In case (3) we have \(H \cap H' = \{p\} \) where \(p \) is the center of \(P \). Moreover under the assumption \(\mu(X) \geq 4 \) we have \(N(H) \cap N(H') = P \).
Proof. Assume \(N(H) \cap N(H') \neq \emptyset \). Both \([\text{ramified}]\) hyperplanes \(H, H' \) are convex subspaces of \(X \) [of \(X \blacklozenge \)]. Thus \(H \cap H' \) is a convex subtree of \(H \) (the edges are the radial segments). We note that \(N(H) \cap N(H') \) contains a polygon if and only if \(H \cap H' \) contains the center of this polygon: in particular if \(H \cap H' = \emptyset \) then \(N(H) \cap N(H') \) is a subgraph of \(X^1 \).

If \(H \cap H' \) contains a point that is not the center of a polygon, then \(H \cap H' \) contains a radial segment and thus \(H = H' \). So if \(H \cap H' \) contains two distinct points then \(H = H' \). It follows that if \(H \cap H' \neq \emptyset \) then either \(H = H' \) or there is a polygon \(P \) with center \(p \) such that \(H \cap H' = \{ p \} \), in which case \(P \) is obviously the single polygon contained inside \(N(H) \cap N(H') \).

Assume \(\mu(X) \geq 4 \) and \(H \cap H' \) is the center \(p \) of a polygon \(P \). We know \(P \) is contained in the convex subcomplex \(N(H) \cap N(H') \). We claim that \(P \) is a connected component of \(N(H) \cap N(H') \), which implies \(N(H) \cap N(H') = P \). So assume by contradiction that \(a \) is an edge of \(N(H) \cap N(H') \) such that \(a \cap P \) is a vertex \(v \). Since \(a \subset N(H) \) there is a polygon \(Q \) of \(N(H) \) such that \(a \subset Q \). Since \(P, Q \) are non-disjoint polygons of \(N(H) \) it follows that \(P \cap Q \) is an edge \(b \) (with \(b \cap H \neq \emptyset \)). Similarly there is a polygon \(Q' \) of \(N(H') \) which contains \(a \) and such that \(P \cap Q' \) is an edge \(b' \) with \(b' \cap H' \neq \emptyset \). If \(b = b' \) then \(H = H' \), contradicting \(H \cap H' = \{ p \} \). So we have found a cycle of length 3 in \(\text{link}(v, X) \) : this contradicts \(\mu(X) \geq 4 \).

\[\square \]

Corollary 2.20 (combinatorial convexity of hyperplane neighborhoods). Let \(H \) be a hyperplane of a \(\text{CAT}(0) \) even-gonal complex. Assume either \(X \) is locally large, or \(X \) is large-gonal. Then \(N(H)^1 \) is a convex subgraph of \(X^1 \).

The statement is true under the more general assumption that \(X \) has no vertex around which there is a 3-cycle of polygons, including one square. We leave details to the reader.

Proof. Assume by contradiction there is a geodesic edge-path \(\sigma = (\vec{e}_1, \vec{e}_2, \ldots, \vec{e}_n) \) starting at some vertex \(v \in N(H) \), ending at \(v' \in N(H) \), and with \(\vec{e}_1 \notin N(H) \). We claim the hyperplane \(H_1 \) cutting \(\vec{e}_1 \) is disjoint from \(H \). The contradiction follows since we then also have \(H_1 \cap N(H) = \emptyset \) and thus the path \(\sigma \) has to cut back \(H_1 \), which is impossible since \(\sigma \) is a geodesic.

It remains to prove the claim that \(H \cap H_1 = \emptyset \).

Let \(v \) be the vertex of \(\vec{e}_1 \) that lays inside \(N(H) \). Let \(P \) be a polygon of \(N(H) \) and let \(p \) denote the geodesic segment of \(P \) joining \(v \) orthogonally to the diameter \(H \cap P \). Similarly let \(p_1 \) denote half of the edge \(e_1 \), joining \(v \) to the midpoint of \(e_1 \). A quick

\[\square \]

Definition 2.21 (intersecting, crossing, osculating). Let \(H, H' \) be two \([\text{ramified}]\) hyperplanes of a \(\text{CAT}(0) \) even-gonal complex [with \(\mu(X) \geq 4 \)]. We say \(H, H' \) intersect if \(H \cap H' \neq \emptyset \). We say \(H, H' \) cross if they intersect and are distinct. We say \(H, H' \) osculate if \(N(H) \cap N(H') \neq \emptyset \), but \(H, H' \) do not intersect.

By Proposition 2.19 \(H, H' \) cross if and only if \(H \cap H' \) is the center of a polygon and \(H, H' \) osculate if and only if \(N(H) \cap N(H') \) is a non-empty subgraph of \(X^1 \).

Lemma 2.22 (nearby hyperplanes). Let \(X \) be a \(\text{CAT}(0) \) even-gonal complex with \(\mu(X) \geq 4 \), and let \(a, b \) be two distinct edges of \(X \) adjacent to some vertex \(v \). Let \(H, K \) denote the \([\text{ramified}]\) hyperplanes dual to \(a, b \). Then \(H \neq K \) and moreover
(1) H and K intersect if and only if a, b are adjacent vertices of link(v, X)
(2) H and K osculate if and only if a, b are non-adjacent vertices of link(v, X)

Proof. Clearly $N(H) \cap N(K)$ contains v. So H, K either intersect or they osculate, and the Lemma follows from Corollary 2.18.2 □

Remark 2.23 (cubulation and relationship between the osculation properties). Let X be a $CAT(0)$ even-gonal complex. Using the family of hyperplanes of X there is a naturally defined embedding of graphs $X^1 \rightarrow C^1$, where C is a $CAT(0)$ cube complex (see [22, 6]). Moreover the hyperplanes of X are in 1-1 correspondence with the hyperplanes of C, through the identification of parallelism classes of edges in both X and C. The cubes of C correspond to certain configurations of pairwise intersecting hyperplanes.

It is easy to describe C when X is locally large. For each $2m$-gon P of X the m hyperplanes of X cutting P are pairwise intersecting, and in C we must add an m-cube containing ∂P as a combinatorial equator. These are the only (maximal) cubes to add to X in order to get C in that case.

Indeed since X is locally large the hyperplanes are convex subcomplexes of the $CAT(0)$ complex X and when they intersect they meet with right angle. We deduce that if H_1, H_2, \ldots, H_k is any family of pairwise intersecting hyperplanes of X, then there is a polygon P such that all hyperplanes H_i of the family cut P.

2.5. Two-dimensional and two-spherical Coxeter groups.

Definition 2.24 (the Cayley graph, the Cayley 2-complex and the Davis complex). Let (W, S) be a Coxeter system.

The Cayley graph of (W, S) is the graph $G(W, S)$ defined as follows: The set of vertices is W. There is an edge between w and ws_i for any $w \in W$ and any generator $s_i \in S$. Note that edges are labeled in S (or in I). Observe this version of Cayley graphs is adapted to a group generated by involutions since it has a single edge between two adjacent vertices (unlike in the classical definition).

We now describe the Cayley 2-complex of (W, S). This is an even-gonal complex $\Sigma^2(W, S)$ obtained as follows. The 1-skeleton of $\Sigma^2(W, S)$ is the Cayley graph $G(W, S)$. For any pair i, j with $m_{ij} < \infty$ and any $2m_{ij}$-cycle c whose labels alternate between i and j there is a polygon bounding c.

The Davis complex of (W, S) is a polyhedral complex $\Sigma(W, S)$ whose 2-skeleton is the Cayley complex $\Sigma^2(W, S)$, with additional higher-dimensional cells corresponding to (cosets of) finite subgroups generated by subsets of S (of cardinality > 2). For more details see [7].

Observe that the Cayley 2-complex is connected and simply-connected. Moussong defined a piecewise euclidean metric on the Davis complex, and showed that it is indeed $CAT(0)$ ([20]). In particular the Davis complex is contractible.

Observe that the left multiplication induces an action of W by polygonal automorphisms onto $\Sigma^2(W, S)$. This action is simply-transitive on vertices.

Definition 2.25 (2-dimensional). We say a Coxeter system (W, S) is 2-dimensional provided for any subset $T \subset S$ with $|T| \geq 3$ the Coxeter system (W_T, T) is infinite. This is equivalent to requiring that the Cayley 2-complex equals the Davis complex. In this case $\Sigma^2(W, S)$ is already a $CAT(0)$ even-gonal complex.
When \((W, S)\) is 2-dimensional we will thus omit the superscript 2, write \(\Sigma(W, S)\) instead of \(\Sigma^2(W, S)\), and refer to this polygonal complex as to the Davis complex.

Definition 2.26 (2-spherical). A Coxeter system \((W, S)\) where all \(m_{ij}\)'s are finite is called 2-spherical. This is equivalent to demand that the vertex links in \(\Sigma^2(W, S)\) be complete graphs.

Without using Moussong’s criterion a very simple systole computation in the links of vertices gives:

Lemma 2.27. Let \((W, S)\) be a Coxeter system s.t. \(m_{ij} \geq 3\) for all \(i, j\). Then \((W, S)\) is 2-dimensional (in other words \(\Sigma^2(W, S)\) is CAT(0) and equal to \(\Sigma(W, S)\)).

Moreover \((W, S)\) is word-hyperbolic iff \(\Sigma(W, S)\) is negatively curved, which happens exactly when there is no subset \(\{i, j, k\} \subset S\) with \(m_{ij} = m_{jk} = m_{ki} = 3\).

We now recall the key-point about the combinatorial geometry in Coxeter systems (for these classical results see [2]). Recall first that for each edge \(e\) of the Cayley graph \(G(W, S)\) joining elements \(w\) and \(ws\), the element \(t := wsw^{-1}\) is called a reflection of \((W, S)\). The set of fixed points of the reflection \(t\) is the set of midpoints of certain edges (including \(e\)), it is called the hyperplane dual to \(e\). We will denote it by \(H_e\) or \(H_t\). Then \(G(W, S) \setminus H_e\) has two connected components.

Theorem 2.28 (hyperplane characterization of combinatorial geodesics). Let \((e_1, e_2, \ldots, e_n)\) be an edge-path in the Cayley graph of a Coxeter system \((W, S)\). Let \(H_1, \ldots, H_n\) be the hyperplanes of \(G(W, S)\) dual to \(e_1, \ldots, e_n\).

Then \((e_1, e_2, \ldots, e_n)\) is a combinatorial geodesic \(\iff\) there is no repetition in the sequence \((H_1, \ldots, H_n)\). The combinatorial distance between two vertices is the number of hyperplanes which separate them.

We conclude this section by describing geometrically a natural finite extension of a Coxeter group. So let \((W, S)\) be a 2-dimensional Coxeter system, so that the Davis complex \(\Sigma(W, S)\) is a nice CAT(0) even-gonal complex.

We denote by \(\Aut_{\text{diag}}(W, S)\) the finite group of permutations \(f: S \to S\) such that for each \(i, j\) we have \(m_{f(s_i)f(s_j)} = m_{ij}\). There is a natural embedding \(\Aut_{\text{diag}}(W, S) \to \Aut(W)\), and the corresponding automorphisms of \(W\) are called diagram automorphisms. We denote by \(\hat{W}\) the semi-direct product of \(W\) with \(\Aut_{\text{diag}}(W, S)\) (this is an abuse of notation since \(\hat{W}\) depends on \(S\)). Note the diagram automorphisms preserve the set of generating reflections, so the action of \(\Aut_{\text{diag}}(W, S)\) onto \(W\) extends to an action on the Davis complex \(\Sigma(W, S)\).

Lemma 2.29 (identifying \(\hat{W}\)). The group \(\Aut_{\text{diag}}(W, S)\) normalizes \(W\) inside \(\Aut(\Sigma(W, S))\), and the action by conjugation of \(f \in \Aut_{\text{diag}}(W, S)\) onto \(W < \Aut(\Sigma(W, S))\) coincides with the natural action by diagram-automorphisms.

The normalizer of \(W\) in \(\Aut(\Sigma(W, S))\) equals the subgroup generated by \(W\) and \(\Aut_{\text{diag}}(W, S)\), and it is isomorphic with \(\hat{W}\).

Proof. For \(f \in \Aut_{\text{diag}}(W, S)\) let \(\hat{f}\) denote the corresponding automorphism of \(\Sigma(W, S)\). Let \(w \in W\) and let \(x \in \Sigma(W, S)\). Then

\[
\hat{f}(wx) = f(w)\hat{f}(x)
\]
Indeed this relation is true for \(x \in \Sigma^0(W, S) = W \) and moreover the automorphisms of \(\Sigma(W, S) \) are entirely determined by their restriction to \(W \).

We deduce the following conjugation formula:

\[
\text{For } v \in W, \quad (\widehat{f} \circ w \circ \widehat{f}^{-1})(vx) = \widehat{f}(wf^{-1}(v)f^{-1}(x)) = f(w)vx
\]

In other words we have \(\widehat{f} \circ w \circ \widehat{f}^{-1} = f(w) \) (in \(\text{Aut}_{\text{diag}}(W, S) \)).

The subgroup generated by \(W \) and \(\text{Aut}_{\text{diag}}(W, S) \) inside \(\text{Aut}(\Sigma(W, S)) \) is then isomorphic with \(\widehat{W} \) since using the simple-transitivity of \(W \) on \(\Sigma^0(W, S) \) we see that \(W \cap \text{Aut}_{\text{diag}}(W, S) = \{1\} \).

It remains to prove that any automorphism \(\varphi : \Sigma(W, S) \to \Sigma(W, S) \) that normalizes \(W \) is inside \(W.\text{Aut}_{\text{diag}}(W, S) \). Let \(w_0 \in W = \Sigma^0(W, S) \) be the image under \(\varphi \) of the origin \(1 \in W = \Sigma^0(W, S) \). We set \(\varphi_0 = (w_0)^{-1} \circ \varphi \). So \(\varphi_0 \) normalizes \(W \) and fixes the origin \(1 \). In particular \(\varphi_0 \) induces a permutation \(f \) of the edges at \(1 \). These edges are labelled by generators \(s \in S \), so \(f \) is in fact a permutation of \(S \). Since \(\varphi_0 \) is a polygonal automorphism it preserves the number of sides of the polygons adjacent to the origin. In other words \(f \in \text{Aut}_{\text{diag}}(W, S) \).

Clearly \(\varphi_0 = \widehat{f} \) on the star of \(1 \) in \(\Sigma(W, S) \). So the automorphism of \(W \) induced by \(f \) and by \(\varphi_0 \) coincides on the generating set \(S \), and therefore for any vertex \(w \in W \) we have

\[
\widehat{f}(w) = \varphi_0(w)
\]

We conclude that \(\varphi_0 = \widehat{f} \) on the whole of \(\Sigma(W, S) \).

\[
\square
\]

3. Quasi-isometric embedding of \(\text{CAT}(0) \) large-gonal complexes.

Definition 3.1 (corners). A *corner of order* \(k \) in a polygonal complex \(X \) is a connected subgraph of the boundary of a polygonal face of \(X \) that contains \(k + 1 \) edges. For \(k = 1 \) we simply say a *corner*, and for \(k = 2 \) we say a *double corner*.

Let \(f : X \to Y \) be a polygonal map of polygonal complexes.

We say \(f : X \to Y \) has *no missing corner* provided for any combinatorial path \((a, b)\) of \(X \) with \(a \neq b \), if the edges \(f(a), f(b) \) form a corner of \(Y \), then \(a, b \) form a corner of \(X \).

We say \(f : X \to Y \) has *no missing double corner* provided for any combinatorial path \((a, b, c)\) of \(X \) with \(a \neq b, b \neq c \), if the edges \(f(a), f(b), f(c) \) form a double corner of \(Y \), then \(a, b, c \) form a double corner of \(X \).

We say \(f : X \to Y \) has *no missing half-cell* provided for any edge-path \(\pi \) of \(X \) of length \(k + 1 \), if \(f(\pi) \) is a corner of order \(k \) inside a \(2(k + 1) \)-gon of \(Y \), then \(\pi \) is a corner of order \(k \) inside a \(2(k + 1) \)-gon of \(X \).

Observe a polygonal map \(f : X \to Y \) is an isometric embedding for the \(\text{CAT}(0) \) metrics if and only if it has no missing corner.

Proposition 3.2. Let \(X, Y \) denote two \(\text{CAT}(0) \) even-gonal complexes. Let \(f : X \to Y \) be a polygonal map.

Assume \(f \) is locally injective and furthermore \(f \) has no missing half-cell.

Then \(f : X^{(1)} \to Y^{(1)} \) is an isometric embedding (where the 1-skeleta are equipped with the combinatorial distance).
Proof. Assume by contradiction for some integer $n \geq 1$ there is a geodesic edge path $(\vec{e}_1, \ldots, \vec{e}_n)$ of X that f maps to a non-geodesic path, and let n be the smallest such integer. Since f is locally injective we have $n \geq 2$.

Two of the edges $f(e_1), \ldots, f(e_n)$ are dual to the same hyperplane K of Y. By minimality of n both subpaths $(f(\vec{e}_1), \ldots, f(\vec{e}_{n-1}))$ and $(f(\vec{e}_2), \ldots, f(\vec{e}_n))$ are geodesic. Thus $f(e_1)$ and $f(e_n)$ are dual to the same hyperplane K. By the combinatorial convexity of the polygonal neighborhood $N(K)$ the combinatorial geodesic $(f(\vec{e}_1), \ldots, f(\vec{e}_{n-1}))$ is entirely contained inside $N(K)$.

Since f is locally injective, the edge $f(e_2)$ is not dual to the hyperplane. Since $f(e_2)$ is contained inside $N(K)$ there is a polygon Q of Y that contains both $f(e_1)$ and $f(e_2)$. Let e' be the edge of Q which is opposite to $f(e_1)$. Then the locally injective path $(f(\vec{e}_1), \ldots, f(\vec{e}_{n-1}))$ must touch e': there is some integer $m \leq n - 1$ such that $(f(\vec{e}_1), \ldots, f(\vec{e}_m))$ describes half of the polygon Q and ends in an extremity of e'.

Since f has no missing half-cell there is a polygon P of X which contains the path $(\vec{e}_1, \vec{e}_2, \ldots, \vec{e}_m)$. Then $f(P) = Q$ and moreover $f(e) = e'$, where e denotes the edge of P that is opposite to e_1. Note $e_{m+1} \neq e$ since $(\vec{e}_1, \ldots, \vec{e}_n)$ is a geodesic edge path. Let \vec{e}' be the orientation of e such that the endpoint is the vertex of $e_m \cap e_{m+1}$.

The path $(\vec{e}_1, \vec{e}_{m+1}, \ldots, \vec{e}_n)$ is still geodesic in X^1, its image is not a geodesic, contradicting the minimality of our n. \qed

Corollary 3.3. Let X, Y denote two $\text{CAT}(0)$ evengonal complexes with $\mu(Y) \geq 6$ and let $f : X \to Y$ be a locally injective polygonal map with no missing double corner. Then f induces an isometric embedding $X^1 \to Y^1$ (thus it is a quasi-isometric embedding).

Proof. Indeed since $\mu(Y) \geq 6$ we note that no missing corner \Rightarrow no missing half-cell. We then apply Proposition 3.2. \qed

We will use Corollary 3.3 above in case when all vertex links of Y are complete graphs, and $\mu(X) \geq 4$: so any combinatorial map $X \to Y$ has missing corners, but it will be possible to find combinatorial maps with no missing double corner. Thus even when there cannot exist any local isometry $X \to Y$, it may possible to find an isometric embedding $X^1 \to Y^1$.

Remark 3.4. There is a similar statement for $\text{CAT}(0)$ cube complexes.

Namely let $f : X \to Y$ be a combinatorial locally injective map. Assume there exists an integer $R \geq 1$ such that f has no missing rectangle $[0, R] \times [0, 1]$ of size $R \times 1$ and is an isometric embedding on combinatorial geodesics of length $\leq R + 1$. Then $f : X^1 \to Y^1$ is an isometric embedding. The case $R = 1$ corresponds to the assumption that $f : X \to Y$ be a local isometry of $\text{CAT}(0)$ cube complex.

4. Real hyperbolic convex cocompact Coxeter groups.

Coxeter groups correspond to certain kinds of presentations (see the Introduction). In this section we study methods to produce real hyperbolic convex cocompact Coxeter groups.
4.1. Reflection subgroups in \mathbb{H}^p. A major source of examples of Coxeter groups is given by discrete reflection groups in real hyperbolic space (meaning discrete subgroups of $\text{Isom}(\mathbb{H}^p)$ generated by reflections).

We will identify \mathbb{H}^p with $\{(x_1, \ldots, x_p, x_{p+1}) \in \mathbb{R}^{p+1}, x_1^2 + \cdots + x_p^2 - x_{p+1}^2 = -1, x_{p+1} > 0\}$

For vectors $\vec{u} = (x_1, \ldots, x_p, x_{p+1}), \vec{v} = (y_1, \ldots, y_p, y_{p+1})$ we denote by $<< \vec{u}, \vec{v} >>$ the inner product in \mathbb{R}^{p+1}: so $<< \vec{u}, \vec{v} >> = x_1y_1 + \cdots + x_py_p - x_{p+1}y_{p+1}$. And $< \vec{u}, \vec{v} >$ denotes the standard inner product in \mathbb{R}^{p+1}.

Definition 4.1 (hyperbolic polyhedron, Poincaré polyhedra).

A hyperbolic polyhedron P is a (non empty) intersection of finitely many closed half-spaces of some real hyperbolic space \mathbb{H}^p (we allow $P = \mathbb{H}^p$). A face of P is a hyperbolic polyhedron F such that $F \subset P$ and $P \setminus F$ is connected. The span of a face F is the smallest totally geodesic subspace of \mathbb{H}^p containing F. The dimension of F is the dimension of its span. We will always assume that the span of P is the whole ambient space \mathbb{H}^p.

Note P has finitely many faces. The relative boundary of a face F is the union $\partial_{\text{rel}} F$ of all faces $F' \subset F$ with $F' \neq F$. The relative interior of F is then the subspace $\text{Int}_{\text{rel}} F := F \setminus \partial_{\text{rel}} F$.

The boundary hyperplanes of P are the finitely many hyperplanes H_1, \ldots, H_r of \mathbb{H}^p such that $H_i \cap P$ is a codimension one face of P, which we will always denote by P_1, \ldots, P_r. The defining half-spaces of P are the half-spaces X_1, \ldots, X_r of \mathbb{H}^p such that $\partial X_i = H_i$ and $P \subset X_i$. We will always denote by \vec{n}_i the vector of \mathbb{R}^{p+1} that is orthogonal to H_i, of unit length, and that points outside the half-space X_i. Note that for any $p \in H_i$ the vector \vec{n}_i belongs to the tangent space at p.

The Gram matrix of P consists in the $r \times r$-matrix $\text{Gram}(P)$ of all inner products $<< \vec{n}_i, \vec{n}_j >>$.

We say P is a Poincaré polyhedron provided any two codimension one faces P_i, P_j are either disjoint, or intersect along a codimension two face of P, and moreover the angle between the unit normal vectors $\vec{n}_i, -\vec{n}_j$ is of the form π / m_{ij} (for some integer $m_{ij} \geq 2$ depending on the intersecting faces P_i, P_j).

Note in our definition a Poincaré polyhedron P is a simple polyhedron : the links of faces are simplices. Note also that when two codimension one faces P_i, P_j of a hyperbolic polyhedron P intersect at some point p then the unit normal outgoing vectors \vec{n}_i, \vec{n}_j are both in the tangent space of p, and then $<< \vec{n}_i, \vec{n}_j >> = < \vec{n}_i, \vec{n}_j >$. The angle between the unit normal vectors $\vec{n}_i, -\vec{n}_j$ is nothing else than the dihedral angle of P between H_i and H_j at p. So the condition on P for being a Poincaré polyhedron can be rephrased as follows: for any pair of intersecting codimension 1 faces P_i, P_j, the coefficient $<< \vec{n}_i, \vec{n}_j >>$ of the Gram matrix is $-\cos(\pi / m_{ij})$ (which is > -1).

Theorem 4.2 (Poincaré’s theorem). Let $P \subset \mathbb{H}^p$ denote a Poincaré polyhedron, and let H_1, \ldots, H_r denote the boundary hyperplanes. Let s_1, \ldots, s_r denote the reflections along H_1, \ldots, H_r, and let $W = W(P) < \text{Isom}(\mathbb{H}^p)$ be the group generated by s_1, \ldots, s_r.

Then P is a strict fundamental domain for the action of W onto \mathbb{H}^p (any W-orbit intersect P in a single point) and in particular every relation in W on the generators s_1, \ldots, s_r can be deduced from the relations

$$(s_i s_j)^{m_{ij}} = 1$$
In other words \((W, \{s_1, \ldots, s_r\})\) is a Coxeter system.

Moreover the stabilizer of any face \(F\) of \(P\) is the finite subgroup \(W_F\) generated by all reflections \(s_i\) along a boundary hyperplane \(H_i\) that contains \(F\).

The above theorem contains the spherical and euclidean versions as special cases. For an argument we refer to [1]. Note that the subgroup \(W_F\) is the reflection group associated with the Poincaré polyhedron \(P_F\) obtained by intersecting the closed half-spaces containing \(P\) and bounded by some boundary hyperplane \(H_i\) which contains \(F\). Any finite group of isometries of \(\mathbf{H}^p\) has a fixed point, thus each finite subgroup of \(W\) is conjugate in one of the finite subgroups \(W_F\).

Observe also that two disjoint faces \(P_i, P_j\) of a Poincaré polyhedron \(P\) span disjoint hyperplanes. This follows since in a Coxeter system \((W, S)\) the order of \(s_i s_j\) is infinite if and only if \(m_{ij}\) is infinite. It is then easy to check that the unit normal vector \(\vec{n}_i, \vec{n}_j\) satisfy \(< < \vec{n}_i, \vec{n}_j >> = -1\). So we may characterize Poincaré polyhedra by a criterion using the Gram matrix:

A simple hyperbolic polyhedron \(P\) is a Poincaré polyhedron if and only if the off-diagonal entries of \(\text{Gram}(P)\) are either \(\leq -1\) or of the form \(-\cos(\frac{\pi}{m_{ij}})\).

Definition 4.3 (non-obtuse polyhedra). Let \(P \subset \mathbf{H}^p\) be a polyhedron with boundary hyperplanes \(H_1, \ldots, H_r\). We say \(P\) is non-obtuse provided for any pair of intersecting facets \(P_i, P_j\), the dihedral angle of \(H_i, H_j\) is \(\leq \frac{\pi}{2}\).

Poincaré polyhedra are examples of non-obtuse polyhedra.

Lemma 4.4 (geometry of non-obtuse polyhedra).

Let \(P \subset \mathbf{H}^p\) be a non-obtuse polyhedron and let \(H\) be a boundary hyperplane of \(P\). We denote by \(Q\) the corresponding codimension one face: \(Q := P \cap H\).

1. For any point \(x \in P\) the orthogonal projection of \(x\) onto \(H\) belongs to \(Q\).
2. We set \(Q^\perp = \{x \in \mathbf{H}^p;\text{ the orthogonal projection of }x\text{ onto }H\text{ belongs to }Q\}\). Then \(P \subset Q^\perp\) and \(Q^\perp\) is a hyperbolic polyhedron.
3. For any point \(x \in H\) the orthogonal projection of \(x\) onto \(P\) belongs to \(Q\).

Proof. 1) Let \(x_i\) be the point of the closed subset \(P_i\) which is nearest to \(x\). We must show that \(d(x, x_i) = d(x, H_i)\).

We may and will assume that \(x \neq x_i\). So let \(\sigma\) denote the (non-trivial) geodesic segment from \(x_i\) to \(x\). By convexity \(\sigma \subset P\). We must prove that \(\sigma\) is perpendicular to \(H_i\) at \(x_i\). Let \(\vec{\sigma}\) be the unit tangent vector of \(\sigma\) at \(x_i\), let \(S_i\) be the hypersphere of the unit sphere of the tangent space of \(\mathbf{H}^p\) at \(x_i\) corresponding to the hyperplane \(H_i\), and finally let \(\vec{v}\) be the unit vector at \(x_i\) that is orthogonal to \(H_i\) and points toward \(P\).

Assume by contradiction that the distance between \(\vec{u}\) and \(S_i\) is \(< \frac{\pi}{2}\). Let then \(\Sigma\) be the totally geodesic plane of \(\mathbf{H}^p\) through \(x_i\), whose tangent space at \(x_i\) is generated by \((\vec{u}, \vec{v})\). Let also \(\vec{v}\) be the unit vector of the tangent space of \(\Sigma\) at \(x_i\) that is perpendicular to \(\vec{v}\) and such that \(\vec{u}\) lies in the cone generated by \(\vec{v}\) and \(\vec{v}\).

The open half-line \(R\) of \(\Sigma\) starting at \(x_i\) and directed by \(\vec{v}\) is disjoint from \(P_i\), otherwise \(\sigma\) wouldn’t be minimizing. Since \(R \subset H_i\) we must also have \(R \cap P = \emptyset\). So let \(H_k\) be a boundary hyperplane of \(P\) through \(x_i\) that separates \(R\) from \(\sigma\). Let \(\vec{v}_j\) be the unit vector at \(x_i\) that is normal to \(H_k\) and points inside \(P\).

The vector \(\vec{v}_j\) is not orthogonal to \(\Sigma\) and moreover the orthogonal projection \(\vec{v}_j'\) of \(\vec{v}_j\) onto the plane generated by \((\vec{u}, \vec{v})\) has positive coordinate along \(\vec{v}\) and negative coordinate along \(\vec{v}\).
This implies that the dihedral angle between H_i and H_k is obtuse, a contradiction.

2) The inclusion $P \subset Q^\perp$ follows by the first part of the Lemma. Either $Q = H$, in which case $Q^\perp = \mathbb{H}^p$. Or Q is an intersection of H-half-spaces G_1, \ldots, G_s. We then have $Q^\perp = \cap_{k=1}^s (G_k)^\perp$, and each $(G_k)^\perp$ is a closed half-space of \mathbb{H}^p.

3) We now prove the third statement. For $x \in \mathbb{H}$ let y denote the orthogonal projection of x onto P, and let z denote the orthogonal projection of x onto Q^\perp.

Clearly Q^\perp is invariant under the orthogonal reflection along H. It follows that $z \in H$. So $z \in H \cap Q^\perp$. We note $H \cap Q^\perp = Q$ so that $z \in Q \subset P$. Since $P \subset Q^\perp$ we conclude that $y = z$.

\[\square \]

Corollary 4.5. Let $P \subset \mathbb{H}^p$ be a non-obtuse polyhedron with boundary hyperplanes H_1, \ldots, H_r.

(1) Any face $F < P$ is a non-obtuse polyhedron (of $\text{Span}(F)$).

(2) For any point $x \in P$ and any face $F < P$, the orthogonal projection of x onto $\text{Span}(F)$ belongs to F.

(3) For any two faces F, G of P, either $F \cap G \neq \emptyset$, or $\text{Span}(F) \cap \text{Span}(G) = \emptyset$. In the latter case either $d(F, G) = 0$ or $d(F, G) > 0$ and there exists a geodesic segment $\sigma \subset P$ connecting orthogonally the faces F, G so that $d(\text{Span}(F), \text{Span}(G)) = d(F, G) > 0$.

Proof. 1) To show that a face F is non-obtuse it suffices by induction to handle the case when F has codimension one. So let H be a boundary hyperplane of P such that $F = H \cap P$. The boundary hyperplanes of F in its span H are the intersections with H of the boundary hyperplanes H_i of P which intersect transversally H. Let $\vec{n}, \vec{n}_i, \vec{n}_j$ be the unit vectors at some point $x \in F \cap H \cap H_j$, such that $\vec{n}, \vec{n}_i, \vec{n}_j$ are orthogonal to H, H_i, H_j and are going out of P. Consider the decomposition $\vec{n}_i = \vec{v}_i + \lambda_i \vec{n}$ where $\vec{v}_i \perp \vec{n}$ and $\lambda_i \in \mathbb{R}$. The non-obtuse condition yields $\lambda_i \leq 0$. Similarly we have $\vec{n}_j = \vec{v}_j + \lambda_j \vec{n}$ with $\vec{v}_j \perp \vec{n}$ and $\lambda_j \leq 0$. Now $\langle \vec{v}_i, \vec{v}_j \rangle = -\lambda_i \lambda_j$ and it follows that the dihedral angle between $H \cap H_i$ and $H \cap H_j$ inside F is non-obtuse.

2) The second statement follows by induction on $\text{codim}(F)$, using Lemma 4.4 (since faces are non-obtuse polyhedra by 1)), as well as the following standard fact:

Let F_1, F_2 be two totally geodesic subspaces of \mathbb{H}^p, and let p_i denote the orthogonal projection onto F_i. If $F_1 \subset F_2$, then $p_1 = p_1 \circ p_2$.

3) Let us prove the last stated trichotomy. So assume F, G are faces of P with $F \cap G = \emptyset$. Assume by contradiction that $\text{Span}(F) \cap \text{Span}(G)$ contains a point x. Let y denote the orthogonal projection of x onto P. For every boundary hyperplane H of P containing F we have $y \in H \cap P$ by the third part of Lemma 4.4. It follows that $y \in F$. By symmetry $y \in G$, which contradicts $F \cap G = \emptyset$.

Assume moreover $d(F, G) > 0$. Since F, G are closed convex subsets of \mathbb{H}^p it follows that there are points $p, q \in F, G$ such that $d(p, q) = d(F, G)$. Let $\sigma \subset P$ be the geodesic segment joining p and q. By 2) the point q is the orthogonal projection of p onto $\text{Span}(G)$, and similarly p is the orthogonal projection of q onto $\text{Span}(F)$, so we are done. \[\square \]

In the situation of Poincaré’s theorem we obtain a geometrically finite Coxeter group $W(P)$. We will now give conditions under which $W(P)$ is convex-cocompact.
Lemma 4.6. Let $P \subset \mathbb{H}^p$ denote a Poincaré polyhedron, let H_1, \ldots, H_r denote the boundary hyperplanes, and let W be the group generated by the reflections s_i along H_i. Let F,G be disjoint faces of P.

1) If $d(F,G) > 0$ then $\partial_\infty \text{Span}(F) \cap \partial_\infty \text{Span}(G) = \emptyset$.

2) If $d(F,G) = 0$ then $\partial_\infty \text{Span}(F) \cap \partial_\infty \text{Span}(G) \neq \emptyset$ and W is not convex cocompact.

In either cases $\text{Span}(F) \cap \text{Span}(G) = \emptyset$.

Here as usual for a subspace $X \subset \mathbb{H}^p$ we denote by $\partial_\infty X$ the set of points $\xi \in \mathbb{S}^{p-1} = \partial_\infty \mathbb{H}^p$ which are in the closure of X.

Proof. The third part of Corollary 4.5 tells us that $\text{Span}(F) \cap \text{Span}(G) = \emptyset$.

1) When $d(F,G) > 0$ the third assertion in Corollary 4.5 insures that $d(\text{Span}(F), \text{Span}(G)) = d(F,G) > 0$ and thus $\partial_\infty \text{Span}(F) \cap \partial_\infty \text{Span}(G) = \emptyset$.

2) Assume now $d(F,G) = 0$. Since $d(F,G) = 0$ and $F \cap G = \emptyset$ it follows that $\partial_\infty \text{Span}(F) \cap \partial_\infty \text{Span}(G) \neq \emptyset$. So let $\xi \in \partial_\infty \text{Span}(F) \cap \partial_\infty \text{Span}(G)$. The whole subgroup Π generated by W_F and W_G fixes ξ and in fact preserves all horospheres based at ξ.

Observe that the fixed point set of Π equals $\text{Span}(F) \cap \text{Span}(G)$, so it is empty. It follows that Π is infinite. Thus Π contains an element g of infinite order, which preserves all horospheres based at ξ. We deduce that no orbital map $\langle g \rangle \rightarrow \mathbb{H}^p, g^n \mapsto g^n x$ is a quasi-isometric embedding, and so W is not convex-cocompact.

Two faces F,G of a hyperbolic polyhedron P are said to be asymptotic if $F \cap G = \emptyset$ and $d(F,G) = 0$.

Theorem 4.7 (convex cocompact reflection groups of \mathbb{H}^p).

Let $P \subset \mathbb{H}^p$ denote a Poincaré polyhedron and let W be the group generated by the reflections along the boundary hyperplanes of P.

Then $W < \text{Isom}(\mathbb{H}^p)$ is convex cocompact if and only if P has no pair of asymptotic faces.

We are certain that this result is familiar to certain people working in the field but we couldn’t find a reference. So we provide a proof of the theorem in the next section.

4.2. Convex cocompactness when there is no pair of asymptotic faces (proof of Theorem 4.7).

The existence of an asymptotic pair of faces in the Poincaré polyhedron P prevents $W = W(P)$ from being convex cocompact: this has been established in Lemma 4.6.

We now assume that P has no pair of asymptotic faces. In fact we only assume that no face is asymptotic with a codimension one face: the convex-cocompactness statement holds true under this weaker assumption. We denote by H_1, \ldots, H_r the boundary hyperplanes of P.

We choose a point x in the interior of P. Then by Poincaré’s theorem the orbital map $W \ni w \mapsto w.x \in \mathbb{H}^p$ is injective, and we identify W with the orbit $\{wx\}_{w \in W}$. We show that W is convex cocompact, by proving that the orbital map is a quasi-isometric embedding (W is equipped with its word metric $| \cdot |_S$).

We work with the tiling of \mathbb{H}^p by W-translates of P: $\mathbb{H}^p = \bigcup_{w \in W} wP$. A hyperplane of the tiling is a hyperplane of the form $wH_i \subset \mathbb{H}^p$. Since H_i is the fixed point set of
the hyperbolic reflection \(s_i \), the conjugate \(ws_1w^{-1} \) is again a hyperbolic reflection and its fixed point set is precisely \(wH \).

At the end of this section we establish the following three results:

Lemma 4.8 (the word distance is the hyperplane distance). The number of hyperplanes of the tiling separating \(wx \) from \(w'x \) equals \(|w'^{-1}w|_S\).

Lemma 4.9 (pencil of hyperplanes). There exists a positive integer \(M > 0 \) such that for any \(w, w' \in W \), the set \(R \) of hyperplanes of the tiling separating \(wx \) from \(w'x \) contains a subset \(T \) with \(|T| \geq \frac{1}{M}|R|\), and moreover two distinct hyperplanes in \(T \) are disjoint.

Lemma 4.10 (no pair of asymptotic hyperplanes). There exists a positive constant \(D = D(P) \) such that for any two hyperplanes \(H, H' \) of the tiling we have either \(H \cap H' \neq \emptyset \) or \(d(H, H') \geq D \).

We now use these three results to finish the argument.

We will show that there exists a positive constant \(c > 0 \) such that for \(w, w' \in W \) we have

\[
(*) \quad d_{\mathbb{H}^p}(wx, w'x) \geq c|w'^{-1}w|_S
\]

(the reverse inequality is not a problem). It is enough to work with \(w \neq w' \).

Let \(R \) be the set of hyperplanes of the tiling which separate \(wx \) from \(w'x \). By Lemma 4.8 we have

\[
(1) \quad |R| = |w'^{-1}w|_S
\]

By Lemma 4.9 there exists a subset \(T \subset R \) such that \((2) \quad |T| \geq \frac{1}{M}|R|\), and moreover two distinct hyperplanes in \(T \) are disjoint. The geodesic segment \(\sigma \) of \(\mathbb{H}^p \) from \(wx \) to \(w'x \) crosses successively the hyperplanes of \(T \), so we may write \(T = \{H_1, \ldots, H_n\} \) and \(\sigma \) meets first \(H_1 \), then \(H_2 \) a.s.o. It follows that

\[
d_{\mathbb{H}^p}(wx, w'x) \geq d_{\mathbb{H}^p}(wx, H_1) + d_{\mathbb{H}^p}(H_1, H_2) + \cdots + d_{\mathbb{H}^p}(H_{n-1}, H_n) + d_{\mathbb{H}^p}(H_n, w'x)
\]

\[
\geq 2d(x, \partial P) + (n - 1)D
\]

where \(D \) is the constant of Lemma 4.10. Up to replacing \(D \) by \(\min(D, d(x, \partial P)) \) we have thus \((3) \quad d_{\mathbb{H}^p}(wx, w'x) \geq nD \). Combining \((1)\), \((2)\), \((3)\) we obtain the relation \((*)\) with \(c = \frac{D}{2} \).

We finally turn to the proof of the remaining statements. We will consider an embedded copy of the Cayley graph \(\mathcal{G}(W, S) \) inside \(\mathbb{H}^p \). We first embed the set of vertices by the orbital map \(w \mapsto wx \). Note that the injectivity of this map follows by Poincaré’s theorem 4.2, since \(x \) is in the interior of \(P \). We then map each edge \([w, ws]\) by a constant speed geodesic segment joining \(wx \) to \(wsx \), thus getting a \(W \)-equivariant map \(\mathcal{G}(W, S) \to \mathbb{H}^p \). We now check that this map is injective. The midpoint \(q \) of \([w, ws]\) maps to the midpoint \(m \) of \([wx, wsx]\). Observe that \(m \) belongs to both tiles \(wP \) and \(wsP \) since by Lemma 4.4 the orthogonal projection of \(wx \) onto the hyperplane of fixed points of \(ws^{-1} \) belongs to \(wP \). It follows that the intersection of \([wx, wsx]\) with the interior of \(wP \) is the segment \([wx, m] \), and similarly the intersection of \([wx, wsx]\) with the interior of \(wsP \) is the segment \([m, wsx]\).

Assume now two points \(y, y' \) inside two edges \([w, ws]\) and \([w', w's']\) of \(\mathcal{G}(W, S) \) get identified inside \(\mathbb{H}^p \), and let \(z \) denote their common image. We may assume \(y \in [w, q] \) and \(y' \in [w', q'] \) (with \(q, q' \) the midpoints of \([w, ws], [w', w's']\)). If \(y \neq q \) (or \(y' \neq q' \)) then \(wx \) and \(w'x \) are contained in the interior of the same tile and thus \(wx = w'x \), so in fact...
are disjoint and moreover $\| w'x, z \| = \| w'x, z \|$ and it follows by extending the geodesic segment until we reach the boundary of the tile that $m = m'$. By extending further this geodesic we get that $w'x = w's'x$, so that $w's' = w's'$, and finally $y = y'$.

To finish the argument assume $y = q$ and $y' = q'$. Since the orthogonal projection of the whole polyhedron wP onto the hyperplane $H = \text{Fix}(wsw^{-1})$ belongs to the codimension one face $F = H \cap wP$ (Lemma 4.4), and because x is interior to P we deduce that the point m (midpoint of $[wx, wsx]$) belongs to the relative interior of F. Similarly m is in the relative interior of $H \cap wsP$. Moreover wP and wsP are the only two tiles containing m. It follows that $\{ w, ws \} = \{ w', w's' \}$, and so $y = y'$. This concludes the proof of the injectivity of the map $G(W, S) \to \mathbb{H}^p$.

proof of Lemma 4.8. Let $(w_0 = w, w_1, \ldots, w_n = w')$ be a combinatorial geodesic in (W, S) from w to w'. For $i = 1, \ldots, n$ set $t_i = w_i w_i^{-1}$. The t_i's are pairwise distinct reflections of (W, S). We now consider the sequence of tiles $P_0 = w_0P, P_1 = w_1P, \ldots, P_n = w_nP$. Two consecutive tiles intersect. So if a hyperplane H of the tiling separates wx from $w'x$ then it must separate the interior of two consecutive tiles P_{i-1}, P_i. It then follows that H contains the relative interior of the codimension one face $P_{i-1} \cap P_i$. Thus the reflection along H is t_i. So the number of hyperplanes of the tiling separating wx from $w'x$ is the combinatorial distance $d_S(w, w')$.

□

proof of Lemma 4.9. As we have just seen the hyperplanes of R correspond to the half-spaces of (W, S) which separate w from w'. Moreover two hyperplanes of the tiling are disjoint iff the product of the corresponding reflections is of infinite order. We now let X be the $\text{CAT}(0)$ cube complex associated to the wall-space (W, S), as in [21]. In particular the 1-skeleton of X contains the Cayley graph of (W, S) as a totally geodesic subgraph.

Niblo and Reeves showed that there exists a positive constant $M = M(W, S)$ such that any family of $M + 1$ hyperplanes of the Cayley graph contains a pair of nested hyperplanes (see their Lemma 3 in [21]). This shows that the Niblo-Reeves cube complex has dimension $\leq M$. Recall that the hyperplanes [resp: half-spaces] of X correspond bijectively to the walls [resp: half-spaces] of (W, S). Moreover in this construction, crossing walls correspond to intersecting hyperplanes.

So to conclude the argument it is enough to prove the following :

Lemma 4.11 (pencils in finite dimensional cube complexes). Let X be a $\text{CAT}(0)$ cube complex of dimension M. Then for any two vertices $v, v' \in X^0$ at distance n there is a family T of hyperplanes of X separating v from v' such that any two hyperplanes of T are disjoint and moreover $|T| \geq \frac{1}{M} n$.

We will in fact construct T as a sequence of hyperplanes with the additional property that two consecutive hyperplanes have non-disjoint cubical neighborhoods.

proof of the cubical statement. Let e_1, \ldots, e_d be the edges of X at v which are the initial edges of combinatorial geodesics from v to v'. Then it is well known that e_1, \ldots, e_d span a cube Q_1 at v. In particular $d \leq M$. Let v_1 be the vertex opposite to v inside Q.

If $v_1 = v'$ we are done. Otherwise, let R [resp : R_1] be the set of hyperplanes of X separating v from v' [resp: v_1 from v']. Then $R = R_1 \cup \{ H_1, \ldots, H_d \}$, where H_i is the hyperplane dual to e_i. By induction there is a set $T_1 \subset R_1$ such that any two hyperplanes
of T_1 are disjoint, T_1 contains a hyperplane K_1 adjacent to v_1, and

$$|T_1| \geq \frac{1}{M} |R_1| = \frac{1}{M} (|R| - d) \geq \frac{1}{M} |R| - 1$$

One of the hyperplanes H_i cutting Q must be disjoint from K_1, otherwise there would exist a $(d+1)$-cube Q' at v_1 cut by all hyperplanes H_1, \ldots, H_d, K_1. Then there would be one more edge at v sitting on a geodesic from v to v' (through v_1). The set $T = T_1 \cup \{H_i\}$ has the desired properties.

\[\square\]

\[\square\]

proof of Lemma 4.10. Let ε_1 denote the smallest of the distances $d(F, G)$ where F, G are disjoint faces of P, and F has codimension one. Under the assumption on P we note that ε_1 is positive.

Let H, H' be two hyperplanes of the tiling such that $H \cap H' = \emptyset$. We show that for $(x, x') \in H \times H'$ we have $d(x, x') \geq D = \min(\alpha', \frac{\alpha}{2})$ where $\alpha' = \alpha(P)$ is some positive constant that we will choose later.

So let $(x, x') \in H \times H'$. Up to letting W act on the situation we may assume $x \in P$ and H is a boundary hyperplane of P. The corresponding face is $F = P \cap H$. Up to moving slightly both x and x' we may assume each point of the segment $[x, x']$ is contained in at most one of the hyperplanes of the tiling. Note that under this genericity assumption F has codimension one. Up to applying the reflection along H we may also assume that H separates the interior of P from x'.

We can order the hyperplanes of the tiling which cut $[x, x']$, namely $H_0 = H, H_1, \ldots, H_\ell = H'$, in such a way that the sequence $x_i = H_i \cap [x, x']$ is increasing from x to x'. None of the open geodesic segments $[x_i, x_{i+1}]$ meets a hyperplane of the tiling, so there exists a (unique) tile P_{i+1} such that $[x_i, x_{i+1}] \subseteq P_{i+1}$. The face spanned by x_i in both P_i and P_{i+1} has codimension one, and we denote it by F_i. For example $F_0 = F$.

We also consider the non-increasing sequence of faces defined inductively by $G_0 = F_0, G_{i+1} = G_i \cap F_{i+1}$. Let $k + 1$ be the integer such that $G_k \neq \emptyset$ and $G_{k+1} = \emptyset$ (recall $H_\ell \cap H_0 = \emptyset$).

We may assume $k > 0$. For $k = 0$ means that $[x_0, x_1]$ is a geodesic segment joining two disjoint codimension one faces of P_1. It follows that $d(x_0, x_1) \geq \varepsilon_1$ and thus $d(x, x') \geq \varepsilon_1$.

Let N be the total number of hyperplanes of the tiling whose intersection with P is non-empty (note N is bounded by a number depending only on the isomorphism class of the Coxeter system (W, S)). Let also $\alpha > 0$ denote some positive constant, that we will specify later.

Either one the distances $d(x_i, x_{i+1}), i = 0, 1, \ldots, k - 1$ is at least $\frac{\alpha}{N}$. In that case we have $d(x, x') \geq \alpha'$ where we define $\alpha' = \frac{\alpha}{N}$.

So from now on we assume that all distances $d(x_i, x_{i+1}), i = 0, 1, \ldots, k - 1$ are $< \frac{\alpha}{N}$. Thus $d(x_0, x_i) < \alpha$ for $i = 1, \ldots, k$. We will prove that in this case x is near to G_k. We first retract the situation inside P as follows. For each $i = 0, 1, \ldots, k$ the reflection s_{H_i} maps the tile P_{i+1} onto P_i, and fixes pointwise both faces G_i and G_{i+1}. The retraction map $\rho_i: P_i \to P$ is then defined inductively by $\rho_1 = s_{H_0} \rho_1, \ldots, \rho_{k+1} = \rho_k \circ s_{H_{k+1}}$. Note each ρ_i is the restriction of an isometry. The retraction ρ_i agree on F_i. Each face F_i is sent to a codimension one face F_i' of P. We note that for each $i = 0, 1, \ldots, k$ we have $G_i = F_0' \cap F_1' \cap \cdots \cap F_i'$. In particular $G_k = F_0' \cap F_1' \cap \cdots \cap F_k'$.
By retracting the points \(x_i \) we find that \(d(x, F_i') \leq \alpha \) and thus \(d(x, H'_i) \leq \alpha \) where \(H'_i \) denote the boundary hyperplane of \(P \) spanned by \(F_i' \). The Poincaré polyhedron \(P \) is simple so the dimension of \(G \) is \(p - (k + 1) \), and the span of \(G \) coincides with \(H'_0 \cap \cdots \cap H'_k \).

We argue that there is a function \(\alpha_G : (0, +\infty) \rightarrow (0, +\infty) \) such that if a point \(y \) of \(\mathbb{H}^p \) is at distance \(\leq \alpha(r) \) of each hyperplane \(H'_0, H'_1, \ldots, H'_k \) then \(y \) is \(r \)-near to the intersection of the \(H'_i \)’s.

We can now specify the value of \(\alpha : \) we choose \(\alpha = \min_G \alpha_{\text{proper face of } P} \alpha_G(\frac{\varepsilon_1}{2}) \).

With this choice of \(\alpha \) our point \(x \) is \(\frac{\varepsilon_1}{2} \)-near to the span of \(G \). Since \(P \) is non-obtuse it follows that the orthogonal projection \(p \) of \(x \) onto the span of \(G \) belongs to \(G \). The tile \(P_k \) contains both faces \(F_k \) and \(F_{k+1} \), and \(G \subset F_{k} \). So the distance from \(p \in G \) to \(x_{k+1} \in F_{k+1} \) is \(\geq \varepsilon_1 \) (recall \(F_{k+1} \) has codimension one). We conclude that \(d(x, x_{k+1}) \geq \frac{\varepsilon_1}{2} \)

We note that we can slightly simplify the characterization of convex cocompact reflection groups:

Theorem 4.12 (convex cocompact reflection groups II). Let \(P \subset \mathbb{H}^p \) denote a Poincaré polyhedron and let \(W \) be the group generated by the reflections along the boundary hyperplanes of \(P \).

Then \(W \) is convex cocompact if and only if

1. \(W \) is word-hyperbolic
2. \(P \) has no pair of asymptotic codimension one faces

Proof. If \(W \) is convex cocompact then it is a hyperbolic group, and by Theorem 4.7 there is no pair \(F, G \) of asymptotic faces, where \(F \) has codimension one and \(G \) has arbitrary codimension.

Conversely assume \(W \) is word-hyperbolic but not convex cocompact. Then by Theorem 4.7 there is a codimension one face \(F \) and a face \(G \) such that \(F \cap G = \emptyset \) but \(d(F, G) = 0 \). Then \(G \) is an intersection of \(k \) codimension one faces: \(G = P \cap H_1 \cap \cdots \cap H_k \),

and we may choose \(G \) so that \(k \) is minimal. Let \(H_0 \) be the boundary hyperplane of \(P \) such that \(F = H_0 \cap P \). We will show \(k = 1 \) which is the conclusion we need.

Let then \(\xi \in \partial_\infty \mathbb{H}^{p-1} \) be a point belonging to both \(\partial_\infty F \) and \(\partial_\infty G \). Let us now consider a horosphere of \(\mathbb{H}^{p-1} \) centered at \(\xi \), which we denote by \(\mathcal{H}_\xi \). It follows that each reflection \(s_{H_i} \) for \(i = 0, 1, \ldots, k \) preserves \(\mathcal{H}_\xi \), and so does the whole group \(W' \) generated by these reflections.

As a discrete isometry group of euclidean space \(W' \) is virtually abelian. But \((W, S) \) is assumed to be hyperbolic, so either \(W' \) is finite or \(W' \) is virtually \(\mathbb{Z} \).

Since \(F \cap G = \emptyset \) the group \(W' \) must be infinite.

So the only remaining possibility is that \(W' \) is virtually \(\mathbb{Z} \). Assume by contradiction that \(k > 1 \). Since \(d(H_0, H_i) = 0 \) it follows by minimality of \(k \) that \(H_0 \cap H_i \neq \emptyset \). Note \((W', S') = \{s_{H_0}, s_{H_1}, \ldots, s_{H_k}\} \) is a Coxeter system where any two reflections \(s_{H_i}, s_{H_j} \) generate a finite group. By the work of Davis and Meier (see [8]) the infinite Coxeter system \((W', S') \) is one-ended, contradiction.

\(\square \)

4.3. Constructions using the Witt-Tits quadratic form

In this section we use the so-called Witt-Tits quadratic form for two opposite purposes:

1. construct families of convex cocompact reflection groups in hyperbolic space
(2) construct new families of word-hyperbolic Coxeter groups which cannot be represented as discrete reflection group in hyperbolic spaces

Definition 4.13 (the Witt-Tits quadratic form). For any (abstract) Coxeter system \((W, S = \{s_1, \ldots, s_r\})\) with Coxeter matrix \((m_{ij})_{1 \leq i, j \leq r}\) let \(B\) denote the bilinear form on \(\mathbb{R}^r\) defined by \(B(e_i, e_j) = -\cos(\pi m_{ij})\). The corresponding quadratic form \(q_{(W,S)}\) is called the Witt-Tits form. When the signature of the Witt-Tits form is \((r - 1, 1)\) we say the Witt-Tits quadratic form is hyperbolic. In this case there is a Poincaré polyhedron \(P\) inside \(\mathbb{R}^{r - 1, 1}\) whose Gram matrix is precisely given by the \(B(e_i, e_j)\)'s. Unit vectors normal to the codimension one faces of \(P\) are just the vectors of the standard basis of \(\mathbb{R}^{r - 1, 1}\). We call \(P\) the Witt-Tits polyhedron of \((W, S)\) (see also [23]). Using the reflections along the sides of \(P\) we get a representation of \((W, S)\) into Isom\(\mathbb{H}^r\), which we call the Witt-Tits representation. So having a hyperbolic Witt-Tits quadratic form is one way to get a reflection group.

Lemma 4.14 (pairs of asymptotic hyperplanes in the Witt-Tits polyhedron). Assume the Witt-Tits form is hyperbolic and \(r \geq 3\). Then the hyperplanes \(H_i, H_j\) are asymptotic exactly when \(B(e_i, e_j) = -1\).

Proof. The non-zero vector \(e_i + e_j\) is isotropic (so it defines a point \(\xi\) in \(\partial_\infty \mathbb{H}^{r - 1}\)) and orthogonal to both \(e_i\) and \(e_j\) (so \(\xi \in \partial_\infty H_i \cap \partial_\infty H_j\)). \(\square\)

So the Witt-Tits representation is convex cocompact only if all coefficients \(m_{ij}\) are finite, in other words \((W, S)\) is 2-spherical.

Proposition 4.15 (convex cocompact Witt-Tits representation). Let \((W, S = \{s_1, \ldots, s_r\})\) be a Coxeter system whose Witt-Tits quadratic form has signature \((r - 1, 1)\). Then the Witt-Tits representation is convex cocompact if and only if

1. \(W\) is 2-spherical.
2. \(W\) is word-hyperbolic.

Proof. The two conditions are clearly necessary. The converse holds by applying Theorem 4.12. \(\square\)

We note that the Witt-Tits polyhedron may have to appear in any representation by reflection of a Coxeter system.

Lemma 4.16. Let \(P \subset \mathbb{H}^p\) be a Poincaré polyhedron with boundary hyperplanes \(H_1, \ldots, H_r\) and let \(W\) be the group generated by the set of reflections \(S = \{s_{H_1}, \ldots, s_{H_r}\}\). Let \(\vec{n}_1, \ldots, \vec{n}_r\) denote the unit vectors of \(\mathbb{R}^{p,1}\) which are orthogonal to \(H_1, \ldots, H_r\) and point outwards of \(P\). Let \(\vec{V} \subset \mathbb{R}^{p,1}\) be the linear subspace spanned by \(\vec{n}_1, \ldots, \vec{n}_r\). Set \(V = \mathbb{H}^p \cap \vec{V}\). We denote by \(G\) the Gram matrix of \(P\) and by \(B\) the matrix of the Witt-Tits quadratic form.

1. \(V \subset \mathbb{H}^p\) is empty or a totally geodesic \(W\)-invariant subspace. The action of \(W\) on the orthogonal complement of \(\vec{V}\) is trivial. The matrices \(G\) and \(B\) have the same coefficient in the place \(i, j\) provided \(H_i \cap H_j \neq \emptyset\) (in other words : \(m_{ij}\) is finite). In particular if \((W, S)\) is 2-spherical then \(G = B\).
(2) $V \neq \emptyset$ iff W is infinite and not virtually euclidean. In that case we obtain a hyperbolic Poincaré polyhedron $Q \subset V$ by setting $Q = V \cap P$, which we call the core of P. The r boundary hyperplanes of the polyhedron $Q \subset V$ are $H_1 \cap V, \ldots, H_r \cap V$ and the Gram matrix of Q is G.

(3) Assume W is not virtually abelian. Then the Gram matrix G is non-degenerate, and the dimension of \bar{V} is r if and only if G is non singular.

Proof.

(1) This is obvious.

(2) By homogeneity $V = \emptyset$ precisely when the quadratic form of $\mathbb{R}^{p,1}$ is ≥ 0 on \bar{V}. Either it is positive on $\bar{V} \setminus \{\bar{0}\}$, in which case W is finite. Or \bar{V} intersects the set of isotropic vectors along a line, corresponding to a unique point $\xi \in \partial_{\infty} \mathbb{H}^p$. Thus all reflections s_{H_i} fix ξ, and W is virtually abelian.

So assume now that $V \neq \emptyset$. Since V is W-invariant each hyperplane H_i has a non-empty intersection with V. For $x \in V \cap H_i$ the plane spanned by x and \vec{u} is contained inside \bar{V} and it intersects \mathbb{H}^p along an infinite geodesic line that leaves H_i orthogonally. So in fact $H_i \cap V$ is a hyperplane of V. For $x \in P$ we consider the decomposition $x = \vec{v} + \vec{u}$ with $\vec{v} \in \bar{V}$ and \vec{n} orthogonal to \bar{V}. Since $V \cap \mathbb{H}^p \neq \emptyset$ the quadratic form of $\mathbb{R}^{p,1}$ has hyperbolic signature on \bar{V}, and thus it is positive definite on the subspace orthogonal to \bar{V}. It follows that \vec{n} has non-negative norm and so \vec{v} has negative norm. In other words \vec{v} defines a point v in V. Moreover for each i we have $\langle \vec{v}, \vec{n}_i \rangle = \langle x, \vec{n}_i \rangle$, so $v \in P$. The intersection $Q = P \cap V$ is thus non-empty, and it is bounded by the V-hyperplanes $V \cap H_i$. We note th at the vectors \vec{n}_i are in \bar{V}, are normal to the V-hyperplanes $V \cap H_i$, and are pointing outwards Q. It follows that Gram$Q = G$.

(3) Assume W is not virtually abelian. Then either \bar{V} is a euclidean subspace, or it is a hyperbolic subspace of $(\mathbb{R}^{p,1}, \langle <, > \rangle)$. In both cases the restriction of the bilinear form $\langle <, > \rangle$ is non degenerate.

Assume first one of the \vec{n}_i is a linear combination of the others. Then the i-th line of G is the corresponding linear combination of the others lines of G, so G is singular. Conversely assume the i-th line - say: the first line - is a linear combination of the others lines of G. It means that there are real numbers $\lambda_2, \ldots, \lambda_r$ such that $\vec{u} := \vec{n}_1 - \sum_{k>1} \lambda_k \vec{n}_k$ satisfies $\langle \vec{u}, \vec{n}_1 \rangle = 0$ for each i. Since \bar{V} is spanned by the \vec{n}_i’s it follows that \vec{u} is in the kernel of the hyperbolic bilinear form of $\mathbb{R}^{p,1}$ restricted to \bar{V}. Under our assumption we get $\vec{u} = \vec{0}$, so the dimension of \bar{V} is $< r$.

□

Corollary 4.17 (2-spherical ⇒ rigidity of the core). Let $P \subset \mathbb{H}^p$ be a Poincaré polyhedron with boundary hyperplanes H_1, \ldots, H_r and let W be the group generated by the set of reflections $S = \{s_{H_1}, \ldots, s_{H_r}\}$. Assume W is infinite, not virtually abelian and (W, S) is 2-spherical. Assume moreover that B is non-singular. Then the Witt-Tits quadratic form is hyperbolic, the core Q of P is non empty and it is isometric to the Witt-Tits polyhedron. The action of W onto the span V of Q in \mathbb{H}^p is conjugate to the Witt-Tits representation.
So under the assumptions of the Corollary there is essentially one possible representation of \((W, S)\) as a discrete reflection group.

Corollary 4.18. Let \((W, S)\) be an abstract 2-spherical Coxeter system with non degenerate Witt-Tits form. Assume \(W\) is hyperbolic and non elementary.

Then \((W, S)\) can be realized as a discrete reflection group in some real hyperbolic space \(\mathbb{H}^p\) if and only if the signature of the Witt-Tits form is \((r - 1, 1)\).

In that case \(W\) preserves a totally geodesic subspace \(V\) of \(\mathbb{H}^p\) of dimension \(r - 1\), the action of \(W\) onto \(V\) is conjugate to the Witt-Tits representation and the action on the orthogonal complement of \(V\) is trivial. Moreover \(W\) is convex cocompact on both \(V\) and \(\mathbb{H}^p\).

The equivalence stated in this corollary appears in [10] who also refer to Lemma 12 of [23]. We thank Anna Felikson for telling us about the rigidity phenomenon for 2-spherical Poincaré polyhedra in hyperbolic space.

In the rest of this section we will compute the signature of the Witt-Tits quadratic form under certain type of assumptions which will usually imply that all coefficients \(m_{ij}\) are large (for \(i \neq j\)).

So for \(r \geq 3\) we consider a \(r \times r\) Coxeter matrix \(M = (m_{ij})\). (Recall this means \(M\) is symmetric, \(m_{ii} = 1\) and for \(i \neq j\) we have \(m_{ij} \in \{2, 3, 4, \ldots\} \cup \{\infty\}\).) Let \((W; S = \{s_1, \ldots, s_r\})\) be the associated Coxeter system. Let \(B\) be the matrix of the Witt-Tits quadratic form.

Definition 4.19 (\(m\)-large, \(m\)-small). Let \(m \geq 2\) be some natural number. We say the Coxeter matrix \(M\) is \(m\)-large if \(m_{ij} \geq m\) for any pair \((i, j)\) with \(i \neq j\). We say \(M\) is \(m\)-small if \(m_{ij} \leq m\) for any pair \((i, j)\) with \(i \neq j\).

The following is clear:

Lemma 4.20. Assume the matrix \(M\) is \(4\)-large, \(r \geq 3\) and all \(m_{ij}\)’s are finite. Then \((W, S)\) is a hyperbolic non elementary 2-spherical Coxeter system.

In fact it suffices to assume that \(M\) is \(3\)-large and there is no triple \(\{i, j, k\}\) with \(m_{ij} = m_{jk} = m_{ik} = 3\).

Proposition 4.21 (examples of hyperbolic Witt-Tits form).

1. Assume for \(i \neq j\) all \(m_{ij}\)’s are infinite (and \(r \geq 3\) as usual). Then \(B\) is hyperbolic.
2. For any \(r \geq 3\) there is a natural number \(m(r) \geq 4\) such that if the \(r \times r\) Coxeter matrix \(M\) is \(m(r)\)-large then \(B\) is hyperbolic.
3. Assume for \(i \neq j\) all \(m_{ij}\)’s are equal to some fixed number \(m \geq 4\). Then \(B\) is hyperbolic. This is still true if for \(i \neq j\) all \(m_{ij}\)’s are equal to \(3\) and \(r \geq 4\).

Combining Corollary 4.18, Lemma 4.20 and Proposition 4.21[3] we obtain

Corollary 4.22 (the Coxeter group \(W(p, m)\)). For \(p \in \mathbb{N}, p \geq 3\) and \(m \in \mathbb{N}, m \geq 3\), let \(M(p, m)\) be the \(p \times p\) Coxeter matrix all of whose entries are \(m\). Let \(W(p, m)\) be the associated Coxeter group.

The signature of the corresponding Witt-Tits form is \((p - 1, 1)\) unless \(m = p = 3\).

For \(m \geq 4\) the Witt-Tits representation of \(W(p, m)\) is convex cocompact in \(\mathbb{H}^{p-1}\). For \(m = 3\) and \(p \geq 4\) it is not.
Proposition 4.23 (extending the representation). Let \(p \in \mathbb{N}, p \geq 3 \) and \(m \in \mathbb{N}, m \geq 4 \).

The Witt-Tits representation of \(W(p, m) \) on \(\mathbb{H}^{p-1} \) extends to a convex cocompact representation of \(W(p, m) \).

This completes the proof of Lemma 1.2 in the Introduction.

Proof. Since \(W(p, m) \subset \text{Isom}(\mathbb{H}^{p-1}) \) is already convex cocompact by Corollary 4.22 and \([W(p, m) : W(p, m)] < \infty \) it suffices to prove that the action of \(W(p, m) \) extends to \(W(p, m) \).

We note that the permutation group \(\mathcal{G}_p \) acts on the standard basis by preserving the Witt-Tits quadratic form of \(W(p, m) \). This induces an isometric action of \(\mathcal{G}_p \) on \(\mathbb{H}^{p-1} \) that preserves the Witt-Tits polyhedron by permuting the codimension one faces. Clearly \(\mathcal{G}_p \cap W(p, m) = \{1, \ldots, \mathcal{G}_p \} \) and \(\mathcal{G}_p \) normalizes \(W(p, m) \). Moreover the action of \(\mathcal{G}_p \) by conjugation on \(W(p, m) \) is the action by diagram automorphisms. It follows that the subgroup of \(\text{Isom}(\mathbb{H}^{p-1}) \) generated by \(\mathcal{G}_p \) and \(W(p, m) \) is isomorphic to \(W(p, m) \).

\[\square \]

4.4. Computation of signatures, proof of Proposition 4.21 and new examples.

In this section we fix a natural number \(r \geq 3 \). We consider a regular graph \(\mathcal{G} \) with vertex set \(\{1, \ldots, r\} \), and we denote by \(k \) its valency (note that \(k \leq r - 1 \)). Let \(A \) be the adjacency matrix of \(\mathcal{G} \), and let \(\bar{A} \) be the adjacency matrix of the complementary graph. Thus \(I_r + A + \bar{A} \) is the \(r \times r \) matrix \(J \) all of whose entries are equal to 1.

Now let \(a, \bar{a} \in [0; 1], a \leq \bar{a} \) be fixed real numbers, and let us consider the \(r \times r \) real symmetric matrix \(B = I_r - aA - \bar{a}\bar{A} \). We study the signature of the quadratic form

\[Q_{\mathcal{G}, a, \bar{a}} : X \mapsto XBX \]

or in other words we study the sign of the eigenvalues of \(B \). We use the decomposition

\[B = (1 + \bar{a})I_r + (\bar{a} - a)A - \bar{a}J \]

When \(a = \cos(\frac{\pi}{m}) \) and \(a = \bar{a} \) (or equivalently \(\mathcal{G} \) is the complete graph) the matrix \(B \) is the matrix of the Witt-Tits form of \(W(r, m) \). So the computation below will prove Proposition 4.21. But we want to study also Coxeter systems where the off-diagonal coefficients \(m_{ij} \)'s can take two distinct values. Our examples are in the same spirit as the examples of [1], but our Coxeter systems will not be right-angled.

Let \(U \) denote the \(r \)-colon all of whose entries are equal to 1. Since \(\mathcal{G} \) is \(k \)-regular we have

\[BU = (1 + \bar{a})U + (\bar{a} - a)kU - r\bar{a}U = [(1 - ak + (1 + k - r)\bar{a})]U \]

So \(U \) is an eigenvector and the corresponding eigenvalue is \(\lambda_U = -[(ak-1)+\bar{a}(r-1)-k] \). Note \(\lambda_U < 0 \) in the cases we will be interested in. For example since \(\bar{a} \geq a \) we have \((ak - 1) + \bar{a}((r - 1) - k) \geq a(r - 1) \), so when \(a \geq \frac{1}{2} \) and \(r \geq 4 \) we have \(\lambda_U < 0 \). When
\(r = 3\) and either \(a > \frac{1}{2}\) or \(a = \frac{1}{2}\) and \(\bar{a} > a\) we still have \(\lambda_U < 0\). We could also assume \(\bar{a} > \frac{1}{(r - 1) - k}\).

Now if \(V\) is any colon whose sum of components is zero (in other words : if \(V\) is in the kernel of \(J\), we have
\[
BV = (1 + \bar{a})V + (\bar{a} - a)AV
\]
Note that since \(G\) is regular we have \(JA = kJ\) and so the term \(AV\) is still in the kernel of \(J\). We deduce that the kernel of \(J\) is invariant under \(B\). Since on \(\text{Ker} J\) we have
\[
BV = (1 + \bar{a})V + (\bar{a} - a)AV
\]
our initial eigenvalue problem for \(B\) reduces to the corresponding problem for the matrix \(T = (1 + \bar{a})I_r + (\bar{a} - a)A\) (restricted to the invariant subspace \(\text{Ker} J\)). In other words up to an affine transformation we are really studying the spectrum of the adjacency matrix of \(G\).

For instance when \(G\) is the complete graph on \(r\) vertices, then \(A = J - I_r\), and we deduce that for \(V \in \text{Ker} J\) we have \(BV = (1 + a)V\), so that the signature of \(Q\) is \((r - 1, 1)\).

This proves part (1) and (3) of Proposition 4.21. Part (2) follows from (1) by a standard continuity argument.

We now assume \(G\) is bipartite, and let \(V\) be the vector with entries 1 on black vertices and -1 on white vertices. Then \(AV = -kV\) so that
\[
BV = (1 + \bar{a})V + (\bar{a} - a)AV = (1 + \bar{a} - k(\bar{a} - a))V
\]
so that \(A\) has a second negative eigenvalue, provided \(k\) is large enough with respect to \(\bar{a} - a\) : specifically \(k > \frac{1 + \bar{a}}{\bar{a} - a}\). The discussion above leads to the following :

Lemma 4.24. For fixed numbers \(\frac{1}{2} \leq a < \bar{a} \leq 1\) let \(k\) be any natural number such that \(k > \frac{1 + \bar{a}}{\bar{a} - a}\). Let \(r = 2k\) and let \(G\) be the complete bipartite graph on \(k + k\) vertices. Precisely : in \(G\) the integers \(i < j\) are linked by an edge iff \(1 \leq i \leq k\) and \(k + 1 \leq j \leq 2k\).

Then the signature of the quadratic form \(Q_{G,a,\bar{a}}\) is \((r - 2, 2)\). In particular \(Q_{G,a,\bar{a}}\) is not degenerate and not hyperbolic.

Proof. Let \(\Pi^-\) be the plane spanned by the vector \(U\) all of whose entries are 1, and the vector \(V\) whose entries are 1 on the first \(k\) coordinates, and -1 on the last \(k\) coordinates. By the previous discussion and the assumption \(k > \frac{1 + \bar{a}}{\bar{a} - a}\) we have \(Q_{G,a,\bar{a}} < 0\) on \(\Pi^-\).

Now let \(E^+\) be the subspace consisting in vectors \(X\) such that the sum of the \(k\) first coordinates is 0, and the sum of the \(k\) last coordinates is 0 too. Observe \(\dim(E^+) = 2(k - 1) = r - 2\). Moreover since \(X \in \text{Ker}(J)\) we have
\[
BX = (1 + \bar{a})X + (\bar{a} - a)AX
\]
Clearly \(AX = 0\) so that \(BX = (1 + \bar{a})X\). Thus \(Q_{G,a,\bar{a}} > 0\) on \(E^+\).

Corollary 4.25. Let \(m, m'\) be natural numbers with \(4 \leq m < m'\). Let \(k\) be any natural number such that \(k > \frac{1 + \cos(\frac{m}{m'})}{\cos(\frac{m}{m'}) - \cos(\frac{m}{m'})}\). Let \(r = 2k\) and let \(G\) be the complete bipartite graph on \(k + k\) vertices. Consider the Coxeter system \((W, S)\) of rank \(r\) with \(m_{ij} = m\) if \(i, j\) are linked inside \(G\), and \(m_{ij} = m'\) when \(i, j\) are linked inside the complementary graph of \(G\).

Then \((W, S)\) is word hyperbolic, but does not act by reflection on \(\mathbb{H}^p\) in any dimension.
5. Faithful representation of large even-gonal groups into two-dimensional Coxeter groups.

5.1. Various complications for the action of a group on the set of hyperplanes.

Let X be a simply-connected even-gonal complex such that all polygons have at least four sides, and all vertex links have girth ≥ 4. Let Γ be an automorphism group of X.

In this section we adapt the various definitions leading to the notion of a special action on a $CAT(0)$ cube complex (see [16]) to the present context, where ramified hyperplanes are allowable. We then study variations around it.

Since X is even-gonal and $CAT(0)$ we may consider the family \mathcal{H} of its straight hyperplanes. And since X is furthermore large at vertices we may also consider the family \mathcal{R} of its ramified hyperplanes.

For H a hyperplane in either \mathcal{H} or \mathcal{R}:

1. the group Γ has a self-intersection at H provided there is some $\gamma \in \Gamma$ such that γH and H intersect.
2. the group Γ has a self-osculation at H provided there is some $\gamma \in \Gamma$ such that γH and H osculate.

For H, K two hyperplanes both in either \mathcal{H} or \mathcal{R}:

3. the group Γ has an inter-osculation at H, K provided H and K osculate and there is some $\gamma \in \Gamma$ such that γK and H intersect.
4. (here we assume H, K are ramified hyperplanes) the group Γ has an ambiguous intersection at H, K provided H and K intersect at the center of a $2m$-gon and there is some $\gamma \in \Gamma$ such that γK and H intersect at the center of a $2m'$-gon with $m' \neq m$.

Definition 5.1 (special action). The action of Γ on \mathcal{R} (resp. \mathcal{H}) is special provided none of the above complications arise : Γ has no self-intersection, no self-osculation, no inter-osculation and no ambiguous intersection (this is required only for pairs of ramified hyperplanes).

When X is $2m$-gonal (for example a square complex) then any automorphism group $\Gamma \subset \text{Aut}(X)$ acts without ambiguous intersections.

Note also that when X is a $CAT(0)$ square complex we have $\mathcal{R} = \mathcal{H}$ so the two notions of special actions coincide, and we recover the notion of a C-special group as in [16]. In fact considering the action of Γ onto the Sageev $CAT(0)$ cube complex Y associated with the (straight) hyperplanes we note that the Γ-action on Y is cubically special if and only if the Γ-action on \mathcal{H} is special. Indeed the hyperplanes of X and Y are in 1-1 correspondence, intersections of pairs of hyperplane occur in X iff they occurs in Y, and the same equivalence holds true for osculations (since $\mu(X) \geq 4$).

We will consider an other kind of situation that is relevant to our context : For H a hyperplane in \mathcal{R}:

2'). the group Γ has a self-osculation at distance 1 at H provided there is some $\gamma \in \Gamma$ such that the polygonal neighborhoods of γH and H are disjoint but connected by an edge.

2") the group Γ has a self-osculation at distance $\leq n$ at H provided there is some $\gamma \in \Gamma$ such that $\gamma H \neq H$ but the polygonal neighborhoods of γH and H are connected by a combinatorial path of length $\leq n$.
Thus for example self-intersection or self-osculation at H amounts to self-osculation at distance 0 at H.

Definition 5.2 (strongly clean). The action of the group Γ on \mathcal{R} has no self-osculation at distance $\leq n$ provided there is no ramified hyperplane H at which it has a self-osculation at distance $\leq n$.

The action of the group Γ on \mathcal{R} is **strongly clean** provided it has no self-osculation at distance ≤ 1.

Lemma 5.3 (separability properties \Rightarrow virtually special). Let X be a locally compact simply-connected even-gonal complex with $\mu(X) \geq 4$. Let Γ act cocompactly on X.

1) If the stabilizers of the ramified hyperplanes are separable subgroups of Γ then for any integer $n \geq 0$ the group Γ has a finite index subgroup Γ' whose action on \mathcal{R} has no self-intersection and no self-osculation at distance $\leq n$.

2) If double cosets of crossing ramified hyperplane stabilizers are closed in the profinite topology then Γ has a finite index subgroup Γ'' whose action has no interosculation and no ambiguous intersection.

Note the corresponding statement for straight hyperplanes appears in [16] (except of course for the non ambiguous intersections). We provide a complete argument for the convenience of the reader.

Proof. 1) Let $H \in \mathcal{R}$ be a ramified hyperplane, and let $N(H)$ be its polygonal neighborhood. We define

$$B_n(H, \Gamma) = \{ g \in \Gamma, \text{there is a combinatorial path of length } \leq n \text{ connecting } N(H) \text{ with } g(N(H)) \}.$$

Then $B_n(H, \Gamma)$ is a union of double cosets modulo the stabilizer Γ_H of H in Γ:

$$B_n(H, \Gamma) = \Gamma_H b_1 \Gamma_H \sqcup \cdots \sqcup \Gamma_H b_k \Gamma_H.$$

Note the union is finite because under the assumptions Γ_H is cocompact on H. By separability, let Γ'_1 be a finite index subgroup containing Γ_H and disjoint from $\{ b_1, \ldots, b_k \}$. Clearly $B_n(H, \Gamma'_1) = \emptyset$. This means that Γ'_1 does not self-intersect H, and has no self-osculalation at distance $\leq n$ at H. The same properties hold for any finite index subgroup of Γ'_1; in particular we may replace Γ'_1 by a finite index subgroup $\Gamma'(H)$ which is normal in Γ.

Choose such a finite index normal subgroup $\Gamma'(H)$ for each ramified hyperplane of a finite family that intersects each orbit of Γ in \mathcal{R} (recall Γ is cocompact on X).

Then the intersection of the finitely many subgroups $\Gamma'(H)$ yields a finite index subgroup Γ' whose action on \mathcal{R} has no self-intersection and no self-osculation at distance $\leq n$.

2) We now assume that for each crossing pair (H, K) of ramified hyperplanes the double coset $\Gamma_H \Gamma_K$ is closed in the profinite topology.

So let H, K be crossing ramified hyperplanes and let us define Cross($H, K, \Gamma) = \{ g \in \Gamma, gK \text{ and } H \text{ are crossing} \}$). Note $1 \in \text{Cross}(H, K, \Gamma)$, and by cocompactness there are finitely many elements $c_0 = 1, c_1, \ldots, c_\ell$ such that

$$\text{Cross}(H, K, \Gamma) = \Gamma_H c_0 \Gamma_K \sqcup \Gamma_H c_1 \Gamma_K \sqcup \cdots \sqcup \Gamma_H c_\ell \Gamma_K.$$

By separability let N be a finite index normal subgroup such that

$$\Gamma_H \Gamma_K \cap \left(\bigcup_{i=1}^\ell c_i N \right) = \emptyset$$
We define $\Gamma''_2 = \Gamma_H N$ and observe that Γ''_2 is a finite index subgroup of Γ that contains Γ_H. Moreover we claim that

$$\text{Cross}(H, K, \Gamma''_2) = \Gamma_H (\Gamma_K \cap \Gamma''_2)$$

Indeed for $g \in \text{Cross}(H, K, \Gamma''_2)$ we may write $g = h c_i k$ for some $i = 0, 1, \ldots, \ell$ and with $h \in \Gamma_H, k \in \Gamma_K$, and since $g \in \Gamma''_2$ we also have $g = h'n$ with $h' \in \Gamma_H$ and $n \in N$. It then follows that $c_i k n^{-1} k^{-1} = h^{-1} h'^{-1}$. Thus $c_i N \cap \Gamma_H \Gamma_K$ is not disjoint, $i = 0$ and $k = h^{-1} h'n \in \Gamma''_2 \cap \Gamma_K$.

As a consequence Γ''_2 has the following property: for $g \in \Gamma''_2$ such that gK crosses H at the center of a polygon P', there exists $\gamma \in \Gamma_H$ such that $\gamma P = P'$ (in particular P and P' have the same number of sides).

Note the above property remains true for any finite index subgroup of Γ''_2. In particular we may replace Γ''_2 by a finite index subgroup $\Gamma''(H, K)$ that is normal in Γ.

Choose such a finite index normal subgroup $\Gamma''(H, K)$ for each pair of crossing ramified hyperplanes of a finite family that intersects each orbit of Γ in $\{(H, K) \in \mathcal{R} \times \mathcal{R} \text{ such that } H, K \text{ cross} \}$.

Then the intersection of the finitely many subgroups $\Gamma''(H, K)$ yields a finite index subgroup Γ'' whose action on \mathcal{R} has no ambiguous intersections.

In the construction of Γ''_2 above we may also choose the finite index normal subgroup N so that $\Gamma_H \Gamma_K \cap \left(\bigcup_{i=1}^s d_i N \right) = \emptyset$, where d_1, \ldots, d_s are finitely many elements such that if gK osculates H then $g \in \bigcup_{i=1}^s \Gamma_H d_i \Gamma_K$. The same argument as above shows that Γ''_2 has no inter-osculation at (H, K). It follows that Γ'' has no inter-osculation on \mathcal{R}.

Corollary 5.4 (cubically special \Rightarrow polygonally special). Let X be a locally compact simply-connected even-gonal complex with $\mu(X) \geq 4$. Assume X is Gromov-hyperbolic. Let $\Gamma \subset \text{Aut}(X)$ be a discrete cocompact subgroup.

If Γ is virtually cubically special then Γ has a finite index normal subgroup whose action on the set of ramified hyperplanes of X is special and strongly clean.

Proof. Since Γ is virtually cubically special and Gromov-hyperbolic it follows by [16] that each quasi-convex subgroup and each double coset of quasiconvex subgroups is separable. We conclude by applying Lemma 5.3. \square

5.2. The Coxeter group associated to an action without ambiguous intersection.

In this section we assume X is a $\text{CAT}(0)$ even-gonal complex with $\mu(X) \geq 4$. Let $\Gamma \subset \text{Aut}(X)$ be a group acting without ambiguous intersection. We explain how to associate to the Γ-action onto X a Coxeter system $(W, S) = (W(\Gamma, X), S(\Gamma, X))$.

5.2.1. Generators.

For each ramified hyperplane $H \in \mathcal{R}$ we denote by $[H]$ the orbit of H in \mathcal{R} under Γ. For each such orbit let $s_{[H]}$ denote a generating involution. We let $S(X, \Gamma) = \{ s_{[H]}, H \in \mathcal{R} \}$. So when Γ is cocompact the generating set $S(X, \Gamma)$ is finite.

5.2.2. Relations.

Consider the map $m : \{H, K\} \mapsto \mathbb{N} \cup \{\infty\}$ that sends a pair of distinct ramified hyperplanes H, K to the number $m_{H, K} = k$ if $N(H) \cap N(K)$ is a $2k$-gon, and to $m_{H, K} = \infty$ otherwise (that is: when $H \cap K = \emptyset$).

Let H, K be two crossing ramified hyperplanes, so that $N(H) \cap N(K)$ consists in some polygon P with $2m$ sides. Since Γ acts without ambiguous intersection for any two crossing ramified hyperplanes H', K' with $H' \in [H], K' \in [K]$ the intersection $N(H') \cap$...
Lemma 5.7. (1) \((s[H]s[K])^{m[H],[K]} = 1 \)

and denote by \((W(\Gamma, X), S(\Gamma, X))\) the corresponding Coxeter system.

5.2.3. The \(W\)-distance. For each combinatorial path \(\pi = (v_0, v_1, \ldots, v_n) \) we define the \(W\)-length of \(\pi \) (denoted by \(\text{length}_W(\pi) \)) to equal the product of \(\text{length}_W(s(v_0,v_1)) \cdot \cdots \cdot \text{length}_W(s(v_{n-1},v_n)) \), where \(s(v_i,v_{i+1}) = 1 \) if \(v_i = v_{i+1} \) and otherwise \(s(v_i,v_{i+1}) \) is the generator \(s[H] \) where \([H]\) is the \(\Gamma\)-orbit of the ramified hyperplane dual to the edge joining \(v_i\) to \(v_{i+1}\).

Lemma 5.5 (properties of the \(W\)-length).

1. For \(g \in \Gamma \) we have \(\text{length}_W(g\pi) = \text{length}_W(\pi) \).
2. For concatenable paths \(\pi_1, \pi_2 \) we have \(\text{length}_W(\pi_1\pi_2) = \text{length}_W(\pi_1)\text{length}_W(\pi_2) \).
3. If \(\pi \) and \(\pi' \) are homotopic with fixed extremities then \(\text{length}_W(\pi) = \text{length}_W(\pi') \).

Proof. We give an argument only for the third property. Since \(X \) is simply-connected there is a sequence \((\pi_0 = \pi, \pi_1, \ldots, \pi_k = \pi') \) such that \(\pi_i \) and \(\pi_{i+1} \) differ by one of the three types of elementary moves:

1. \((\ldots, v, v, \ldots) \leftrightarrow (\ldots, v, \ldots) \)
2. \((\ldots, v, w, v, \ldots) \leftrightarrow (\ldots, v, \ldots) \)
3. polygonal move (or "exchange condition") - see below.

The homotopy invariance of the \(W\)-length is obvious in the case of the two first moves. Thus it suffices to consider the case when \(\pi \) and \(\pi' \) are two complementary paths of the boundary of a polygon \(P \). Let \(H, K \) be the two ramified hyperplanes dual two edges of \(P \). Then \((s[H]s[K])^{m[H,K]} = 1 \) and this can be reformulated as \(\text{length}_W(\pi) = \text{length}_W(\pi') \). □

Corollary 5.6 (\(W\)-distance). There is a map \(\delta \ (\equiv \delta_W) : X^0 \times X^0 \to W \) such that

1. For any combinatorial path \(\pi \) from \(p \) to \(q \) we have \(\delta(p,q) = \text{length}_W(\pi) \).
2. For any three vertices \(p, q, r \) we have \(\delta(p,r) = \delta(p,q)\delta(q,r) \).
3. For any two vertices \(p, q \) and any element \(g \in \Gamma \) we have \(\delta(gp,gq) = \delta(p,q) \).

The above map \(\delta_W \) we call the \(W\)-distance on \(X^0 \).

5.2.4. **Morphisms** \(\Gamma \to W \) and polygonal maps \(X \to \Sigma(W, S) \). For any vertex \(p \in X^0 \) we consider two maps

\[
 f_p : X^0 \to W \quad \varphi_p : \Gamma \to W
\]

and

\[
 q \mapsto \delta_W(p,q) \quad \gamma \mapsto \delta_W(p,\gamma p)
\]

Lemma 5.7. (1) \(\varphi_p \) is a morphism and \(\varphi_q = \delta(p,q)^{-1}\varphi_p\delta(p,q) \).

2. \(f_p \) defines a simplicial map \(X^1 \to \Sigma^1(W, S) \).

3. \(f_p \) is \(\varphi_p \)-equivariant.
ON SOME CONVEX COCOMPACT GROUPS IN REAL HYPERBOLIC SPACE

Proof. We use Corollary 5.6.
1) We have $\varphi_p(\gamma_1 \gamma_2) = \delta_W(p, \gamma_1 \gamma_2 p) = \delta_W(p, \gamma_1 p)\delta_W(\gamma_1 p, \gamma_1 \gamma_2 p) = \varphi_p(\gamma_1) \varphi_p(\gamma_2).

For two vertices p, q in X and for $\gamma \in \Gamma$ we have
$$\varphi_q(\gamma) = \delta_W(q, \gamma q) = \delta_W(q, p)\delta_W(p, \gamma p)\delta_W(\gamma p, \gamma q) = \delta_W(p, q)^{-1} \varphi_p(\gamma) \delta_W(p, q)$$

2) Assume q, q' are the endpoints of an edge e. If H is the ramified hyperplane dual to e then $\delta_W(q, q') = s_{[H]}$. Thus $f_p(q') = \delta_W(p, q') = \delta_W(p, q)\delta_W(q, q') = f_p(q)s_{[H]}$. It follows that $f_p(q), f_p(q')$ are the endpoints of an edge of $\Sigma(W, S)$.

3) We have $f_p(\gamma q) = \delta_W(p, \gamma q) = \delta_W(p, \gamma p)\delta_W(\gamma p, \gamma q) = \varphi_p(\gamma)f_p(q)$. \hfill \Box

Thus for each choice of a basepoint p in X we get a morphism $\varphi_p : \Gamma \to W$, which we call a special representation.

5.2.5. Naturalness of the construction.

Theorem 5.8 (normalizer extension). Let X be a CAT(0) even-gonal complex with $\mu(X) \geq 4$. Assume $\Gamma \subset \text{Aut}(X)$ has a normal subgroup Γ whose action on X has no ambiguous intersections.

Let (W, S) be the Coxeter group associated with the Γ-action on X. Then for each choice p of a base vertex in X there is a natural action of Γ onto $\Sigma(W, S)$ with the following properties:

1) The morphism $\varphi_p : \Gamma \to \text{Aut}(\Sigma(W, S))$ extends $\varphi_p : \Gamma \subset \text{Aut}(X) \to W \subset \text{Aut}(\Sigma(W, S))$

2) The image of φ_p in $\text{Aut}(\Sigma(W, S))$ normalizes W.

3) $f_p : X^1 \to \Sigma^1(W, S)$ is φ_p-equivariant.

Proof. Since Γ is normal in Γ it follows that Γ acts on the set S of Γ-orbits in the set \mathcal{R} of ramified hyperplanes. For each $\gamma \in \Gamma$ let $\rho(\gamma)$ be the corresponding permutation of S. If $[H], [K]$ have representative H, K such that $N(H) \cap N(K)$ is a $2m$-gon P then for $\gamma \in \Gamma$ we have $N(\gamma H) \cap N(\gamma K) = \gamma P$, a $2m$-gon again. Thus the permutation morphism $\rho : \Gamma \to \mathcal{S}(S)$ extends to a morphism $\rho : \Gamma \to \text{Aut}(W, S)$. Note $\rho = \text{id}_W$ on Γ. Note also that for any combinatorial path π and any element $\gamma \in \Gamma$ we have
$$\text{length}_W(\gamma \pi) = \rho(\gamma)(\text{length}_W(\pi))$$

It follows that $\delta_W(\gamma p, \gamma q) = \rho(\gamma)(\delta_W(p, q))$.

Let p denote a fixed vertex inside X. For each $\gamma \in \Gamma$ we define an automorphism $\varphi_p(\gamma) \in \text{Aut}(\Sigma(W, S))$. We first define $\varphi_p(\gamma)$ as a permutation of $\Sigma^0(W, S) = W$, by setting
$$\varphi_p(\gamma)(w) = \delta_W(p, \gamma p)\rho(\gamma)(w).$$

Observe
$$\varphi_p(\gamma_1 \gamma_2)(w) = \delta_W(p, \gamma_1 \gamma_2 p)\rho(\gamma_1 \gamma_2)(w) = \delta_W(p, \gamma_1 p)\delta_W(\gamma_1 p, \gamma_1 \gamma_2 p)\rho(\gamma_1)\rho(\gamma_2) = \delta_W(p, \gamma_1 p)\rho(\gamma_1)\delta_W(p, \gamma_2 p)\rho(\gamma_1)[\rho(\gamma_2)(w)] = \varphi_p(\gamma_1)[\varphi_p(\gamma_2)(w)].$$

Thus $\varphi_p : \Gamma \to \mathcal{S}(W)$ is indeed a morphism. We then note that for each $\gamma \in \Gamma$ the permutation $\varphi_p(\gamma)$ defines a simplicial automorphism of $\Sigma^1(W, S)$. Indeed for $s = s_{[H]} \in S$ we have
$$\varphi_p(\gamma)(ws) = \delta_W(p, \gamma p)\rho(\gamma)(ws) = \delta_W(p, \gamma p)\rho(\gamma)(w)\rho(\gamma)(s) = \varphi_p(\gamma)(w)s_{[H]}$$

\hfill \Box
This computation indeed shows that two edges having the same S-label (say: s) are mapped to two edges with the same label \((\rho(\gamma))(s)\). Thus \(\overline{\varphi_p}(\gamma)\) extends to a unique automorphism of the Davis complex \(\Sigma(W, S)\), and moreover \(\overline{\varphi_p} : \overline{\Gamma} \to \text{Aut}(\Sigma(W, S))\) is a morphism.

Note that for any \(\gamma \in \Gamma\) and any \(w \in W\) we have \(\overline{\varphi_p}(\gamma)(w) = \delta_W(p, \gamma p)\rho(\gamma)(w) = \delta_W(p, \gamma p) = \varphi_p(\gamma)w\). Thus \(\overline{\varphi_p}\) extends \(\varphi_p\).

It remains to check that \(\overline{\varphi_p}(\gamma)\) normalizes \(W \subset \text{Aut}(\Sigma(W, S))\). So let \(w \in W \subset \text{Aut}(\Sigma(W, S))\) and let us compute the \(\overline{\varphi_p}(\gamma)\)-conjugate of \(w\). For \(g \in W = \Sigma^0(W, S)\) we have:

\[
[\overline{\varphi_p}(\gamma) \circ w \circ \overline{\varphi_p}(\gamma)^{-1}](g) = \overline{\varphi_p}(\gamma)(w\overline{\varphi_p}(\gamma)^{-1})(g) = \overline{\varphi_p}(\gamma)(w\delta_W(p, \gamma^{-1}p)\rho(\gamma^{-1})(g)) = \\
\delta_W(p, \gamma p)\rho(\gamma)(w\delta_W(p, \gamma^{-1}p)\rho(\gamma^{-1})(g)) = \delta_W(p, \gamma p)\rho(\gamma)(w)(\delta_W(p, \gamma^{-1}p))g
\]

Thus \(\overline{\varphi_p}(\gamma) \circ w \circ \overline{\varphi_p}(\gamma)^{-1}\) acts on \(\Sigma^0(W, S)\) as the multiplication by an element of \(W\) (namely \(\delta_W(p, \gamma p)\rho(\gamma)(w)\rho(\gamma)(\delta_W(p, \gamma^{-1}p))\)). It follows that \(\overline{\varphi_p}(\gamma)\) normalizes \(W\) inside \(\text{Aut}(\Sigma(W, S))\).

Remark 5.9. The naturality statement above holds also for virtually special actions on \(\text{CAT}(0)\) cube complexes. In other words if \(\overline{\Gamma}\) acts geometrically on a \(\text{CAT}(0)\) cube complex \(X\) and has a finite index subgroup \(\Gamma\) whose action is special (\(C\)-special in the sense of [16]), then each special representation \(\varphi_p : \Gamma \to W(\Gamma, X)\) extends naturally to a morphism \(\overline{\varphi_p} : \overline{\Gamma} \to \text{Aut}(\Sigma(W(\Gamma, X)))\) whose image is contained in the normalizer of \(W(\Gamma, X)\).

\(\square\)

5.3. The special representation is faithfull and convex cocompact when the action is special.

Proposition 5.10. Let \(X\) be a \(\text{CAT}(0)\) even-gonal complex with \(\mu(X) \geq 4\). Let \(\Gamma \subset \text{Aut}(X)\) be a group acting without ambiguous intersections. Let \((W, S) (= (W(\Gamma, X), S(\Gamma, X)))\) be the associated Coxeter system.

Then (for each vertex \(p \in X^0\)) the map \(f_p : X^1 \to \Sigma^1(W, S)\) extends to a local isometry \(f_p : X \to \Sigma(W, S)\) if and only if the \(\Gamma\)-action is special.

Proof. The argument is the same as for actions on \(\text{CAT}(0)\) cube complexes. Here are more details.

Claim 1 : \(f_p : X^1 \to \Sigma^1(W, S)\) is locally injective iff the \(\Gamma\)-action on the set of ramified hyperplanes has no self-intersection and no self-osculation.

Indeed let \(a, b\) be two distinct edges through some vertex \(q \in X^0\). Let \(x, y\) denote the endpoints of \(a, b\) distinct from \(q\). Recall \(f_p(x) = f_p(q)\delta_W(q, x)\) and \(f_p(y) = f_p(q)\delta_W(q, y)\). Thus \(f(a) = f(b) \iff \delta_W(q, x) = \delta_W(q, y)\). And by construction of \(\delta_W\) we have \(\delta_W(q, x) = \delta_W(q, y)\) if and only if the ramified hyperplanes dual to \(a, b\) are in the same \(\Gamma\)-orbit. According to Lemma 2.22 this corresponds either to a self-intersection (when \(a, b\) are adjacent in \(\text{link}(q, X)\)) or to a self-osculation (when \(a, b\) are not adjacent in \(\text{link}(q, X)\)).

Now assume that \(f_p : X^1 \to \Sigma^1(W, S)\) is locally injective. For any \(2m\)-gon \(P\) of \(X\) let \(H, K\) be the two ramified hyperplanes through the center of \(P\). Since \(\Gamma\) has no self-intersection we have \([H] \neq [K]\), and thus a boundary path \(\pi\) winding once around
∂P is mapped under f_p to a closed edge path of length $2m = 2m[H][K]$, whose edge-labels alternate between $s[H]$ and $s[K]$. Thus $f_p(\pi)$ is the boundary path of some 2-cell of $\Sigma(W,S)$. In other words $f_p : X^1 \to \Sigma^1(W,S)$ extends to a polygonal map $f_p : X \to \Sigma(W,S)$.

Claim 2 : Assuming that $f_p : X^1 \to \Sigma^1(W,S)$ is locally injective, the polygonal extension $f_p : X \to \Sigma(W,S)$ is a local isometry if and only if the Γ-action on the set of ramified hyperplanes has no inter-osculation.

Indeed f_p fails to be a local isometry at some vertex q exactly if there are two edges a, b containing q s.t. a, b are not contained in a polygon of X but $f_p(a), f_p(b)$ are contained in a polygon of $\Sigma(W,S)$. This latter condition exactly means that there exists $g \in \Gamma$ such that gH crosses K, where H, K denote the ramified hyperplanes dual to a, b. Since a, b are not contained in a polygon of X the ramified hyperplanes H, K are osculating by Lemma 2.22). Thus Γ has an inter-osculation at H, K.

Combining Corollary 5.4, Proposition 5.10 and Theorem 5.8 we obtain :

Corollary 5.11. Let X be a Gromov-hyperbolic $\text{CAT}(0)$ even-gonal complex with $\mu(X) \geq 4$. Assume $\Gamma \subset \text{Aut}(X)$ is a discrete cocompact subgroup and that Γ is virtually cubically special. Then

1. $\overline{\Gamma}$ has a finite index normal subgroup Γ whose action on X has no ambiguous intersections and whose action on the set of ramified hyperplanes of X is special and strongly clean.
2. Let (W,S) be the Coxeter group associated with the Γ-action on X. Then (for each base vertex $p \in X$) there is a monomorphism $\overline{\varphi_p} : \Gamma \to \text{Aut}(\Sigma(W,S))$ and there is a $\overline{\varphi_p}$-equivariant isometric embedding $f_p : X \to \Sigma(W,S)$. Moreover the image of $\overline{\Gamma}$ is contained in the normalizer of W inside $\text{Aut}(\Sigma(W,S))$.

Observe that so far we have proved the first part of Theorem 1.4. Yet the target Coxeter group W is not 2-spherical in general. The additional property of strong cleanliness will be used to remedy this. But let us first make the following

Remark 5.12 (equivalence of the two notions of virtually special). Let X be a $\text{CAT}(0)$ even-gonal complex with $n(X) \geq 8$ and $\mu(X) \geq 4$ and let Γ be a discrete cocompact subgroup. Then Γ is virtually cubically special if and only if Γ has a finite index subgroup whose action on X has no ambiguous intersections and whose action on the set of ramified hyperplanes of X is special.

The \Rightarrow direction follows from the Corollary 5.11 above. The \Leftarrow direction follows since by Proposition 5.10 the group Γ is virtually convex cocompact in a Coxeter group with all m_{ij} at least 4, and by [17] every hyperbolic Coxeter group is virtually cubically special.

5.4. **Constructing a convex cocompact 2-spherical representation.** The goal of this section is to complete the proof Theorem 1.4.

Lemma 5.13 (embedding a subcomplex in a Coxeter quotient). Let (W,S) be a Coxeter system all of whose finite m_{ij}’s are ≥ 3, so that $\Sigma(W,S)$ is a $\text{CAT}(0)$ polygonal complex.

Let $X \subset \Sigma(W,S)$ be a convex subcomplex. Assume that for any i, j with $m_{ij} = +\infty$ the connected components of the forest $X \cap \Sigma_{ij}^1(W,S)$ have diameter $\leq D_{ij} - 1$.

\[\text{}\]
Choose arbitrary numbers \(M_{ij} \geq D_{ij} \) for each pair \(i,j \) with \(m_{ij} = +\infty \). If \(m_{ij} < \infty \) set \(M_{ij} = m_{ij} \). Let \((V,S)\) be the Coxeter system with Coxeter matrix \((M_{ij})\). Then the polygonal map \(\Sigma(W,S) \to \Sigma(V,S) \) induces an isometric embedding \(X^1 \to \Sigma^1(V,S) \).

Here \(\Sigma^1_{ij}(W,S) \) denotes the subgraph of the 1-skeleton \(\Sigma^1(W,S) \) whose edges have label either \(i \) or \(j \). Since \(m_{ij} = \infty \) each component of \(\Sigma^1_{ij}(W,S) \) is a line.

Proof. The polygonal map \(X \to \Sigma(V,S) \) has no missing half-cell and thus we may apply Proposition 3.2.

Lemma 5.14 (geometry of strongly clean). Let \(\Gamma \) denote a uniform lattice of a CAT(0) even-gonal complex \(X \), with \(\mu(X) \geq 4 \). Assume \(\Gamma \) acts on \(R \) in a special and strongly clean way.

Let \((W,S)\) be the Coxeter system associated with the \(\Gamma \)-action and consider the polygonal embedding \(f_p : X \to \Sigma(W,S) \) (for some fixed vertex \(p \in X^0 \)).

Then for any \(i,j \) with \(m_{ij} = +\infty \) the connected components of the forest \(f_p(X) \cap \Sigma^1_{ij}(W,S) \) have diameter \(\leq 2 \).

Proof. Let \((a,b,c)\) be an edge path of length 3 in \(\Sigma^1_{ij}(W,S) \). Assume the labels of \(a, c \) are \(i \), and the label of \(b \) is \(j \), and assume moreover that \(a = f_p(a), b = f_p(b) \) are contained in \(f_p(X) \). Let \(v \) be the vertex of \(b \) not contained in \(a \). We denote by \(H [H'] \) the ramified hyperplane dual to \(a \) \([b]\). The label \(i \) \([j]\) corresponds to the \(\Gamma \)-orbit of \(H [H'] \).

To conclude we claim that the ramified hyperplane \(K \) dual to any edge \(e \) containing \(v \) does not receive the label \(i \). Indeed if \(a \cup e \) is contained in some polygon of \(X \), then \(a \cup b \) is contained in the same polygon and this contradicts \(m_{ij} = \infty \). So \(a \cup e \) is contained in no polygon of \(X \), and (since \(e \) is connected to \(a \) through the edge \(b \)) this implies that \(e \) is not in the polygonal neighborhood \(N(H) \) of \(H \). Then since the action of \(\Gamma \) is strongly clean and \(N(K) \) is connected to \(N(H) \) by the edge \(b \) we deduce that \(K \) is not in the same \(\Gamma \)-orbit as \(H \).

Proof of Theorem 1.4. Let \(\Gamma \) denote a uniform lattice of a CAT(0) even-gonal complex \(X \), with \(\mu(X) \geq 4 \) and \(n(X) \geq 6 \). Assume \(\Gamma \) is virtually cubically special.

Apply Corollary 5.11 to produce a finite index normal subgroup \(\Gamma \) whose action on \(X \) is special (with associated Coxeter system \((W,S)\)) and strongly clean. Extend the \(\Gamma \)-action on \(\Sigma(W,S) \) to a \(\Gamma \)-action as in Corollary 5.11.

Choose some finite natural number \(m \geq 3 \); for example set \(m = \frac{n(X)}{2} \). Observe that when all polygons of \(X \) have the same number of sides - say \(2m \geq 6 \) - the previous formula yields precisely \(m \).

Let \((V,S)\) be the 2-spherical Coxeter system obtained by replacing by \(m \) each infinite \(m_{ij} \) in the Coxeter matrix of \((W,S)\). Any automorphism of the diagram of \((W,S)\) is still an automorphism of the diagram of \((V,S)\), and thus the quotient map \(W \to V \) induces a surjection of the semi-direct product of \(W \) with \(\text{Aut}_{\text{diag}}(W,S) \) onto the semi-direct product of \(V \) with \(\text{Aut}_{\text{diag}}(V,S) \). In other words the morphism \(W \to V \) extends to a morphism \(\text{Normalizer}(W,\text{Aut}(\Sigma(W,S))) \to \text{Normalizer}(V,\text{Aut}(\Sigma(V,S))) \) (see Lemma 2.29). And thus we can extend the composition \(\Gamma \to W \to V \) to a morphism \(\overline{\Gamma} \to \text{Normalizer}(W,\text{Aut}(\Sigma(W,S))) \to \text{Normalizer}(V,\text{Aut}(\Sigma(V,S))) \). By applying successively Lemma 5.14 and Lemma 5.13 we deduce th at the composition
\[X \to \Sigma(W,S) \to \Sigma(V,S) \] is injective. By equivariance it follows that the morphism \(\Gamma \to \text{Aut}(\Sigma(V,S)) \) is also injective.

When \(n(X) \geq 8 \) then \((V,S)\) is hyperbolic and thus convex cocompactness follows since \(\Gamma \) preserves the quasi-isometrically embedded subcomplex \(X \).

\[\] 6. Wall-defined representations and virtual specialness.

Let \(X \) be a \(CAT(0) \) even-gonal complex. Let \(\Gamma < \text{Aut}(X) \) be a subgroup. We say a representation \(\Gamma \to \text{Isom}(\mathbb{H}^p) \) is \textit{wall-defined} provided there is a map \(X^{(1)} \to \mathbb{H}^p \) that is equivariant w.r.t. \(\Gamma \to \text{Isom}(\mathbb{H}^p) \), and moreover \(X^{(1)} \to \mathbb{H}^p \) is wall-defined: edges are mapped isometrically to segments, and for any two opposite edges \(a \) and \(a' \) of a polygon of \(X \), the images of \(a, a' \) inside \(\mathbb{H}^p \) have the same bisecting hyperplane. For example the 1-skeleton of any regular planar polygon is a wall-defined subgraph of \(\mathbb{H}^p \), thus any polygonal representation is wall-defined. Wall-definition allows a priori more general representations, where the geometric companion \(X^{(1)} \to \mathbb{H}^p \) does not necessarily send all edges of a given polygon inside the same totally geodesic plane.

In the \(CAT(0) \) even-gonal complex \(X \) there are natural \textit{hyperplanes}: these are disconnecting totally geodesic subtrees which avoid the 0-skeleton of \(X \), and their intersection with a polygon of \(X \) is either empty, or consists in a straight segment joining orthogonally two opposite edges (at their midpoints). Any such hyperplane \(H \) of \(X \) corresponds to the set of edges it crosses, which we call a \textit{wall} of \(X \). Let \(X^{(1)} \to \mathbb{H}^p \) be any wall-defined map, then the edges of any wall of \(X \) are mapped to segments of \(\mathbb{H}^p \) with a common bisecting hyperplane \(\mathcal{H} \). It follows that we have a natural map \(H \to \mathcal{H} \) mapping a hyperplane \(H \) of \(X \) to the linear hyperplane \(\mathcal{H} \) of \(\mathbb{H}^p \) bisecting the images of all edges crossed by \(H \). We say that \(\mathcal{H} \) is the \textit{image} of \(H \) under \(X^{(1)} \to \mathbb{H}^p \).

We say that a wall-defined map \(X^{(1)} \to \mathbb{H}^p \) is \textit{locally wall-injective} provided the following holds:

1. Let \(e, e' \) be distinct adjacent edges of \(X \). Let \(H, H' \) be the hyperplanes dual to \(e, e' \) (note that \(H \neq H' \)). Then the images \(\mathcal{H}, \mathcal{H}' \) of \(H, H' \) under \(X^{(1)} \to \mathbb{H}^p \) are distinct.

2. Let \(P \) be a polygon of \(X \), and let \(H, H' \) be distinct hyperplanes of \(X \) through the center of \(P \). Then the images \(\mathcal{H}, \mathcal{H}' \) of \(H, H' \) under \(X^{(1)} \to \mathbb{H}^p \) are distinct.

We will say that a wall-defined representation \(\Gamma \to \text{Isom}(\mathbb{H}^p) \) is \textit{locally wall-injective} provided the equivariant wall-defined map \(X^{(1)} \to \mathbb{H}^p \) is locally wall-injective.

We then observe the following:

Theorem 6.1. Let \(\Gamma \) be a uniform lattice of a simply-connected even-gonal complex \(X \) with \(n(X) \geq 8 \), or \(n(X) \geq 6 \) and \(\mu(X) \geq 4 \).

If \(\Gamma \) has a locally wall-injective, wall-defined representation \(\Gamma \to \text{Isom}(\mathbb{H}^p) \), then \(\Gamma \) is virtually special.

\[\] \textit{Sketch of proof.} Let \(\bar{\Gamma} < \text{Isom}(\mathbb{H}^p) \) be the image of \(\Gamma \). We use the separability properties of \(\bar{\Gamma} \) to show that \(\bar{\Gamma} \) is virtually special.

The stabilizer of any linear hyperplane \(\mathcal{H} \) is a separable subgroup of \(\bar{\Gamma} < \text{Isom}(\mathbb{H}^p) \) (see for example Lemma 10.3 in [15]). Assume now \(g \in \Gamma \) self-intersects the hyperplane \(H \) of \(X \), in the sense that \(gH \) intersects \(H \) transversally at the center of some polygon \(P \). Let \(\mathcal{H} \) be the linear hyperplane corresponding to \(H \) under the wall-defined map
$X^{(1)} \to \mathbb{H}^p$. Then we deduce that $g \mathcal{H}$ intersects \mathcal{H} transversally, and in particular $g \not\in \text{Stabilizer}(\mathcal{H}, \Gamma)$. There are only finitely many Stabilizer(\mathcal{H}, Γ)-double cosets of elements $g \in \Gamma$ that self-intersect \mathcal{H}. So there is a first finite index subgroup $\Gamma_\mathcal{H} < \Gamma$ such that no element of $\Gamma_\mathcal{H}$ self-intersects \mathcal{H}.

Using the cocompactness of Γ on X it follows that Γ has a finite index subgroup Γ' acting without any self-intersection of hyperplanes on X. Thus Γ' has a malnormal hyperplane hierarchy, and applying Remark 8.4 of [15] we deduce Γ is virtually special. (In case Γ has torsion one must use the version of malnormal hierarchy using Theorem 8.5.)

proof of Theorem 1.7. The result is a consequence of Theorem 6.1 since polygonal representations are well-defined and locally wall-injective.

REFERENCES

Laboratoire de théorie de l'information, INR 140 (Bâtiment INR), EPFL, Station 14, CH-1015 Lausanne, Suisse,
E-mail address: marc.desgroseilliers@epfl.ch

Laboratoire de Mathématiques, Université de Paris XI (Paris-Sud), 91405 Orsay, France,
E-mail address: frederic.haglund@math.u-psud.fr