Wavelet-based hyperparameter estimation for solving inverse problems

Caroline Chaux 1 Laure Blanc-Féraud 2
2 MORPHEME - Morphologie et Images
CRISAM - Inria Sophia Antipolis - Méditerranée , IBV - Institut de Biologie Valrose : U1091, SIS - Signal, Images et Systèmes
Abstract : We consider the problem of image restoration/reconstruction where the acquisition system is modeled by a linear operator with additive Gaussian noise. A variational approach is adopted for image inversion in order to compute a restored/reconstructed image, consisting in minimizing a convex criterion composed of two parts: a data fidelity term (e.g. quadratic) and a regularization term (e.g. ℓ1-norm) expressed in the wavelet domain. The purpose of this paper is to estimate the regularization hyperparameters (one per subband) based on a Maximum Likelihood (ML) estimator, only knowing the observed data. A difficult task in such estimation is to compute the expectation according to the a posteriori probability as there is no analytical form. This expectation must be approximated numerically by sampling the distribution. However, sampling the a posteriori distribution is a difficult task because of pixel interactions introduced by the linear operator (image acquisition) in the same time as the wavelet transform (regularization). Moreover, the possible different nature (ℓ2, ℓ1-norm ...) of the fidelity and regularization terms does not allow to easily process them simultaneously. We show that both operators can be separated using an auxiliary (hidden) variable and splitting the a posteriori probability in two parts which are sampled alternately using MCMC (Gibbs sampling and Metropolis-Hastings). We show the equivalence between both formulations of the a posteriori distribution. Then a gradient method is used to estimate the hyperparameters. Simulation results demonstrate the good performance and behavior of the proposed approach.
Type de document :
Rapport
[Research Report] INRIA; I3S. 2012
Liste complète des métadonnées

Littérature citée [17 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00668807
Contributeur : Caroline Chaux <>
Soumis le : vendredi 10 février 2012 - 14:14:55
Dernière modification le : vendredi 16 septembre 2016 - 15:19:35
Document(s) archivé(s) le : vendredi 11 mai 2012 - 02:46:26

Fichier

RR_LBF_CC.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00668807, version 1

Citation

Caroline Chaux, Laure Blanc-Féraud. Wavelet-based hyperparameter estimation for solving inverse problems. [Research Report] INRIA; I3S. 2012. 〈hal-00668807〉

Partager

Métriques

Consultations de
la notice

483

Téléchargements du document

203