

Relationship between body mass index and mortality among Europeans

Xin Song, Janne Pitkäniemi, Weiguo Gao, Robert Heine, Kalevi Pyörälä, S Soderberg, Coen D.A. Stehouwer, Björn Zethelius, Jaakko Tuomilehto, Qing Qiao

► To cite this version:

Xin Song, Janne Pitkäniemi, Weiguo Gao, Robert Heine, Kalevi Pyörälä, et al.. Relationship between body mass index and mortality among Europeans. European Journal of Clinical Nutrition, 2011, 10.1038/ejcn.2011.145 . hal-00668567

HAL Id: hal-00668567 https://hal.science/hal-00668567

Submitted on 10 Feb 2012 $\,$

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

1	Relationship between body mass index and mortality among Europeans
2	Xin Song ^{1,2} , Janne Pitkäniemi ¹ , Weiguo Gao ^{1,2} , Robert J. Heine ^{3,4} , Kalevi Pyörälä ⁵ , Stefan
3	Söderberg ^{6,7} , Coen D.A. Stehouwer ⁸ , Björn Zethelius ⁹ , Jaakko Tuomilehto ^{1,2} , Tiina
4	Laatikainen ² , Adam G Tabák ^{10,11} , Qing Qiao ^{1,2} for the DECODE Study Group
5	¹ Department of Public Health, Hjelt Institute, University of Helsinki, Helsinki, Finland; ²
6	Department of Chronic Disease Prevention, National Institute for Health and Welfare,
7	Helsinki, Finland; ³ VU University of Meical Center, Amsterdam, The Netherlands; ⁴ Eli
8	Lilly and Company, Indianapolis, USA; ⁵ Institute of Clinical Medicine, Faculty of Health
9	Sciences, University of Eastern Finland, Kuopio, Finland; ⁶ Department of Public Health
10	and Clinical Medicine, Cardiology, Umeå University Hospital, Umeå, Sweden; ⁷ Baker IDI
11	Heart and Diabetes Institute, Melbourne, Australia; 8 Department of Internal Medicine and
12	Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical
13	Centre, Maastricht, The Netherlands; ⁹ Department of Public Health/Geriatrics, Uppsala
14	University Hospital, Uppsala, Sweden; ¹⁰ Department of Epidemiology and Public Health,
15	University College London, London, UK; ¹¹ Semmelweis University Faculty of Medicine,
16	1 st Department of Medicine, Budapest, Hungary.
17	Correspondance to: Xin Song, Department of Public Health, Hjelt Institute, University of
18	Helsinki, Helsinki, Finland; Mannerheimintie 172, KTTL, 6krs, PL 41, FIN-00014 Helsinki,

- 19 Finland.
- 20 Tel. +358 9 19127320
- 21 Fax. +358 9 19127313
- 22 E-mail: xin.song@helsinki.fi

23 This study was supported by a grant from Academy Finland (129197).

25 Abstract

Background/Objectives: To investigate the relationship between body mass index (BMI) 26 and mortality from various causes. 27 28 Subjects/Methods: Data of 72 947 European men and 62 798 women aged 24-99 years at baseline were collaboratively analyzed. Both absolute and relative mortality risks were 29 30 estimated within each BMI categories. The hazard ratio (HR) was estimated using Cox 31 regression analysis adjusting for age, cohort, and smoking status. Results: Over a median follow-up of 16.8 years, 29 071 participants died, 13 502 from 32 CVD and 8 748 from cancers of all types. All-cause and cancer mortality showed a 33 U-shaped relationship: decreased first, leveled off, and then increased with increasing BMI 34 with the lowest mortality risk approximately between 23.0 to 28.0 kg/m² of BMI in men 35 and 21.0 to 28.0 kg/m² in women. The U-shaped relationship hold for all-cause mortality 36 37 but disappeared for cancer mortality among non-smokers. The CVD mortality was constant until a BMI of approximately 28.0 kg/m² and then increased gradually in both men and 38 women, which was independent of age, cohort and smoking status. 39 Conclusions: A U-shaped relationship of BMI with all-cause mortality but a graded 40 relationship with CVD mortality at BMI greater than 28.0 kg/m² was detected. The 41 42 relationship between cancer mortality and BMI largely depended on smoking status, and 43 need to be further investigated with site-specific cancers.

44 Keywords: body mass index, cause of death, mortality, obesity

45 Introduction

Obesity had become the sixth most important risk factor contributing to the overall burden 46 of various diseases worldwide (Ezzati et al., 2002) according to the World Health Organization 47 (WHO) 2002 report. It has been well recognized that obesity defined as having a body 48 mass index (BMI) equal or higher than 30 kg/m² is associated with many diseases that 49 contribute to premature death, such as cardiovascular disease (CVD), diabetes and certain 50 types of cancers (Hubert et al., 1983; Kurth et al., 2002; Nyamdorj et al., 2009; Colditz et al., 1990; 51 52 Batty et al., 2005; Calle et al., 2003). However, the association of BMI with mortality of various causes is controversial: a positive(Lee et al., 1993), a J-shaped(Manson et al., 1995; Calle et 53 54 al.,1999; Moore et al.,2008) or U-shaped(Seidell et al.,1996; Shaper et al.,1997; Rosengren et al.,1999; Baik et al.,2000; Flegal et al.,2005; Breeze et al.,2006; Pischon et al.,2008; Klenk et al.,2009) relation 55 56 with all-cause mortality; a positive(Lee et al., 1993; Seidell et al., 1996; Kivimaki et al., 2008; Flegal et al., 2007), or a J-shaped(Jonsson et al., 2002) relation with CVD mortality; a positive(Calle et 57 58 al.,1999; Calle et al.,2003; Hu et al.,2004; Berrington de Gonzalez et al., 2010), a J-shaped(Reeves et 59 al.,2007) relation, and no association(Baik et al.,2000; Meyer et al.,2002; Batty et al.,2005; Flegal et 60 al.,2007) with cancer mortality have all been reported.

Recently, the WHO definition for overweight has been questioned by several studies which showed that overweight (BMI between 25.0 and 30 kg/m²) was not associated with increased risk of death (Flegal *et al.*,2005; Lenz *et al.*,2009; McGee & Diverse Populations Collaboration,2005). The controversy between previous studies may be due to differences in study design and study populations. To clarify shape of the relationship of BMI with mortality of various causes may extend our understanding on the role of underweight,

67 overweight and obesity in relation to the development of diseases and mortality of various causes, and could help to improve the definition of underweight and obesity. This is 68 important considering the increase in the prevalence of obesity and its adverse health 69 70 consequences worldwide. In the current study, the BMI-mortality relationship is 71 investigated based on the data of the large Diabetes Epidemiology: Collaborative analysis 72 Of Diagnostic criteria in Europe (DECODE) study. 73 Subjects and methods 74 Study population Data were collected from 33 prospective studies in 11 European countries and the study 75 76 population comprised 142 885 Europeans including 76 226 men and 66 659 women aged 77 24-99 at baseline. This involved the completion of a self-reported questionnaire on 78 smoking and participation in a medical examination to measure body weight and height, described in detail in previous DECODE publications (DECODE, 2001). Participants with 79 missing data on body weight and height (n=2588), and on smoking status (n=4490) were 80 81 excluded. Subjects who had emigrated but the dates of the emigration were recorded were 82 treated as censored cases. Individuals without exact date of emigration or completely lost to 83 follow-up were also excluded (n=50). Thus the final sample for this analysis included a 84 total of 135 745 participants (72 947 men and 62 798 women) with a median follow-up of 85 16.8 years. Individual participant data from each cohort was sent to the Diabetes Prevention Unit of 86

analyses. Each study was approved by the local ethics committees and the analysis plan

the National Institute for Health and Welfare in Helsinki, Finland for collaborative data

89 was approved by the ethics committee of the National Institute for Health and Welfare.

90 Definition of covariates

BMI at baseline was calculated as body weight in kilograms divided by the square of height 91 in meters. Smoking status at baseline was classified based on responses to the questionnaire 92 into three categories of never smokers, current smokers and former smokers in most of the 93 studies but not in all. The mortality risk of former smokers was checked against never- and 94 current- smokers within each BMI category, and the results showed that the mortality risk 95 among former smokers was similar to that of never smokers within each BMI category. In 96 addition, the mean BMI of former smokers was similar to that of never smokers, both 97 higher than that of current smokers. Thus in the final data analysis we combined never 98 smokers with former smokers to form a currently non-smoking category to increase 99 100 statistical power and to harmonize and standardize the smoking variables received from 101 different studies.

102 Definition of fatal events

Vital status and cause of deaths were recorded in all of the studies included. CVD mortality
was defined according to the International Classification of Disease (ICD) codes 331, 420
(7th revision), 401-448 (8th or 9th revision), and codes 110-179 (10th revision). Cancer
mortality was defined as cancers of all types by ICD codes 158, 162, 181, 193, 199, 200,
204 (7th revision), 140-239 (8th or 9th revision) and codes C00-C97, D00-D09 (10th
revision).

109 Statistical analysis

110 Participants were classified into the following 18 BMI categories of <19.0, 19.0-19.9,

111	20.0-20.9, 21.0-21.9, 22.0-22.9, 23.0-23.9, 24.0-24.9, 25.0-25.9, 26.0-26.9, 27.0-27.9,
112	28.0-28.9, 29.0-29.9, 30.0-30.9, 31.0-31.9, 32.0-32.9, 33.0-33.9, 34.0-34.9, and \geq 35.0
113	kg/m ² . Crude mortality was calculated and plotted for each BMI category. The category
114	with the lowest mortality rate was chosen as the reference category to estimate the relative
115	risk or hazard ratio (HR) using Cox proportional hazards models adjusting for age, cohort,
116	and smoking status. A sensitivity analysis by excluding the participants who died in the
117	first five-year follow-up was performed to assess the reverse causation. Because current
118	smokers were leaner and had increased mortality compared to current non-smokers in this
119	study, a further analysis was performed stratified by currrent smoking status using nine
120	BMI categories of <19.0, 19.0-21.0, 21.0-23.0, 23.0-25.0, 25.0-27.0, 27.0-29.0, 29.0-31.0,
121	31.0-33.0 and \geq 33.0 kg/m ² to explore to what extent smoking has contributed to the
122	increased mortality in the low BMI categories. The formal interaction between smoking
123	status and the BMI categories was also tested. In addition, we performed analyses for
124	competing risks using STATA 11.0 to estimate the probability of the CVD mortality in the

125 presence of competing risk of cancer mortality, or vice versa.

126 Results

Baseline characteristics of the cohorts are presented in table 1. Over a median follow-up of 16.8 years, 29 071 participants died, 13 502 from CVD and 8 748 from cancers. Old age was associated with both CVD and cancer mortality (table 2). Current smoking was associated with cancer mortality in both genders and with CVD mortality in men but not in women. Mean BMI was significantly higher in individuals who died of CVD but not in those who died of cancers compared with those who were still alive.

Crude mortality rates per 1000 person-years and HRs (95% confidence intervals) for 133 134 mortality from various causes adjusted for age, cohort and further adjusted for smoking status are shown in figure 1 and online tables 1-2. All-cause and cancer mortality decreased 135 first, leveled off, and then increased with increasing BMI levels (kg/m²), a U-shaped 136 relationship with the lowest all-cause mortality in the BMI interval of 23.0 to 28.0 kg/m² in 137 men and 21.0 to 28.0 kg/m² in women approximately. The mortality from CVD was 138 approximately constant up to a BMI of 28 kg/m² and then increased gradually in both men 139 140 and women. The relationship between BMI and mortality from various causes did not change substantially after exclusion of deaths occurring during the first five-year follow-up 141 142 (online tables 1-2).

143 Adjustment for smoking status lowered the HRs in the lower BMI categories but 144 increased the HRs associated with higher BMI levels (figure 1). Smokers tended to have 145 low BMI (table 3). The smoking-BMI interaction was significant for mortality from various 146 causes in both men and women. Our analysis stratified by smoking status showed that among non-smokers the U-shaped relationship between BMI and all-cause mortality held, 147 but it disappeared for cancer mortality. CVD mortality increased gradually at the upper 148 149 BMI distribution among non-smokers. Among current smokers the HRs for mortality of 150 various causes were constantly higher across the entire range of BMI than non-smokers 151 within the same BMI category. Because the deaths from CVD and cancers are mutually 152 exclusive, a competing risk analysis was also performed which did not alter the observed 153 relationship between BMI and mortality of CVD and cancers (online tables 1-2).

154 Discussion

155	In this European population, a U-shaped relationship between BMI and mortality from
156	all-cause and from all cancers was observed, however the increased risk associated with
157	low BMI disappeared for cancer mortality among non-smokers. Mortality from CVD
158	increased positively with increasing BMI levels at the upper BMI distribution, which was
159	independent of smoking status.
160	Almost all studies investigating all-cause mortality have found significantly increased
161	risk at both the lower and the upper ends of the BMI distributions, with constant lower risk
162	of mortality in the middle of the BMI distribution(Manson et al., 1995; Calle et al., 1999; Moore et
163	al.,2008; Seidell et al.,1996; Rosengren et al.,1999; Flegal et al.,2005; Breeze et al.,2006; Kivimaki et
164	al.,2008; Klenk et al.,2009; Prospective Studies Collaboration et al.,2009). Thus, these studies
165	claimed a J- or a U-shaped relationship of BMI with all-cause mortality, but the ideal BMI
166	range where the mortality risk was low has not been consistently defined partly due to
167	differences in BMI classifications, methods used to estimate mortality risk and partly by
168	diffenret smoking rates within different populations. There was, however, one study
169	reporting a positive relationship between all-cause mortality and BMI in men(Lee et al., 1993),
170	without any excess mortality among lean individuals (BMI< 22.5kg/m ²). It worths to
171	mention that the BMI cut-off to define "lean" was set higher in this study compared with
172	ours that might obscure a risk increase at low BMI levels. As shown in the table 3, more
173	current smokers than non-smokers had a low BMI category, and smoking has largely
174	contributed to the high mortality risk observed in the lean individuals. This is consistent
175	with a previous study by Lawlor et al. (Lawlor et al., 2006).

For CVD mortality, most studies have consistently reported a positive relationship at the

177	upper BMI levels, with varying cutoff values from 22.5 to 30.0 kg/m ² (Lee et al.,1993; Seidell
178	et al.,1996; Kivimaki et al.,2008; Prospective Studies Collaboration,2009; Flegal et al.,2007). There
179	were two studies, however, showing a U-shaped relationship with the lowest CVD
180	mortality at the BMI interval of 20.0 to 29.9 kg/m ² in Swedish men(Jonsson et al.,2002), and
181	22.5 to 24.9 kg/m ² in Austrian adults(Klenk <i>et al.</i> ,2009). Our study with a large sample size
182	showed a strong positive relationship between CVD mortality and BMI among
183	non-smokers at BMI levels above approximately 28.0 kg/m^2 in both men and women.
184	A limited number of studies have reported a linear(Calle et al., 1999; Calle et al., 2003; Hu et
185	al.,2004; Berrington de Gonzalez et al., 2010), or no relationship(Seidell et al.,1996; Baik et al.,2000;
186	Meyer et al.,2002; Batty et al.,2005; Flegal et al.,2007) between BMI and cancer mortality. We
187	found a vague U-shaped relationship between BMI and cancer mortality which confirmed
188	the findings of Reeves GK et al.(Reeves et al., 2007). Stratified analysis by smoking status,
189	however, revealed that the high cancer mortality in lean individuals was mainly attributable
190	to smoking. As shown in our study, current smokers were more commonly found in the low
191	BMI categories compared to non-smokers in both genders. Further investigations are
192	required to study site-specific cancer mortality in men and women.

This study was based on data from large European population- or occupational-based studies and should be representative of the general population. Thus, a large number of middle-aged and elderly European men and women followed for a median 16.8 years led to a relatively large number of deaths from all causes, CVD and cancers that gave power to investigate the association between BMI and risk of mortality with small BMI intervals.

198 A relative limitation of the study is the lack of information on weight changes before the

~

study, that makes it impossible to exclude the "reverse causation" possibility which is 199 200 inherently existing in any study of mortality(Willett et al., 1999) because the weight changes 201 before the baseline examination could be a consequence of underlying diseases before 202 enrolment rather than a cause of deaths. However, after excluding the deaths arisen within 203 the first 5-year follow-up the results were not changed substantially. Another limitation of 204 the study is that no information on physical activity (a potential confounder in our analysis) 205 at baseline is available, furthermore physical activity and fitness is an independent 206 predictor of death and the effect of obesity on morbidity and mortality could be largely diminished by higher levels of physical fitness(Hu et al., 2004). Nevertheless, the effect of 207 physical activity on longevity is still controvesial and needs further investigation. Other 208 209 potential confounders were also unavailable such as menopuse status at baseline and body 210 composition that could be very different between men and women and changes with 211 menopause(Poehlman et al., 1995; Hoover et al., 2000). 212 In spite of a decrease in mortality, BMI has increased slightly during the last three decades in Europe(Flegal et al., 2002; Hedley et al., 2004; Vartiainen et al., 2010) that might 213 214 suggest that cohort effects may play a role in our findings, however the increase in BMI in 215 the current study is too small to substantially affect the results (mean BMI 25.6 kg/m² in the 1970s, 25.6 kg/m² in the 1980s and 26.3 kg/m² in the 1990s). The shift of the BMI 216 217 distribution towards the right in the general population can increase the risk of 218 obesity-related disorders such as diabetes and CVD, but its direct impact on mortality is not straight forward, since mortality is a complex outcome of many factors including 219

220 occurrence of a disease and its treatment. Therefore, obesity defined by BMI maybe a

221	useful indicator for intervention for diabetes and CVD, but a poor measure of mortality
222	from all-causes and certain cancers. Considering the complex underlying causes of cancer
223	deaths and the vague relationship found in our study, further investigations are required to
224	study site-specific cancer mortality.
225	In conclusion, a U-shaped relationship between BMI and mortality from all-cause and
226	from cancer was observed, but the relationship disappeared for cancer mortality among
227	non-smokers. Mortality from CVD increased positively with increasing BMI levels at the
228	upper BMI distribution, which was independent of smoking status.
229	Conflict of interest
230	There are no conflicts of interest.
231	Studies and investigators included in this collaborative study are:
232	Denmark Glostrups Study: T. Jørgensen ^{1,2} , K. Borch-Johnson ³ . 1. Research Centre for
233	Prevention and Health, Glostrup University Hospital; 2. Faculty of Health Science,
234	University of Copenhagen; 3. Steno Diabetes Center, Gentofte.
235	Finland East-West Study: A. Nissinen, ¹ J. Pekkanen, ¹ J. Tuomilehto ^{1,2,3} . 1. Department of
236	Chronic Disease Prevention, National Institute for Health and Welfare, Helsinki, Finland; 2.
237	Department of Public Health, University of Helsinki, Helsinki, Finland; 3. South
238	Ostrobothnia Central Hospital, Seinäjoki.
239	Helsinki Policemen Study: M. Pyörälä, K. Pyörälä. Institute of Clinical Medicine,
240	Faculty of Health Sciences, University of Eastern Finland, Kuopio.
241	National FINRISK 1972-1997 Cohorts: J. Tuomilehto ^{1,2,3} , P. Jousilahti ² , J. Lindström ² . 1.
242	Department of Public Health, University of Helsinki, Helsinki; 2. Department of Chronic

Disease Prevention, National Institute for Health and Welfare, Helsinki; 3. South

Ostrobothnia Central Hospital, Seinäjoki.

245	National FINRISK 2002 Study: J. Tuomilehto ^{1,2} , T. Laatikainen ² , M. Peltonen ² , J.
246	Lindström ² . 1. Department of Public Health, University of Helsinki, Helsinki; 2.
247	Department of Chronic Disease Prevention, National Institute for Health and Welfare,
248	Helsinki.
249	Oulu Study: S Keinänen-Kiukaanniemi ^{1,2,3} , U. Rajala ¹ , M. Laakso ^{1,3} .1. The Institute of
250	Health Sciences, University of Oulu, Oulu; 2. Oulu Health Centre; 3. Oulu University
251	Hospital, Unit of General practice.
252	Vantaa Study: R. Tilvis ¹ , J. Tuomilehto ^{2,3} . 1. Division of geriatrics, Department of
253	medicine, University of Helsinki, Helsinki; 2. Diabetes Prevention Unit, Department of
254	Chronic Disease Prevention, National Institute for Health and Welfare, Helsinki; 3.
255	Department of Public Health, University of Helsinki, Helsinki.
256	Iceland Reykjavik Study: G. Sigurdsson ^{1,2} . 1. University of Iceland, Reykjavik, Iceland;
257	Icelandic Heart Association, Kopavogur; 2. Landspitali-Universiity Hospital, Reykjavik.
258	Israel GOH-I Study: R. Dankner ^{1,2} . 1. Unit for Cardiovascular Epidemiology, The
259	Gertner Institute, Sheba Medical Center, Tel Hashomer, Israel; 2. Division of Epidemiology
260	and Prevention, School of Public Health, Sackler School of Medicine, Tel Aviv University,
261	Israel.
262	Italy Cremona Study: M.P. Garancini ¹ , G. Calori ¹ , G. Ruotolo ^{1,2} , S. Mannino ³ , M. Villa ³ .
263	1. Division of Metabolic and Cardiovascular Diseases, San Raffaele Scientific Institute,
264	Milan; 2. AstraZeneca R&D Mölndal, Sweden; 3. ASL Provincia di Cremona, Cremona.

265	Poland POLMONICA: A. Pajak, E. Kawalec. Department of Epidemiology and
266	Population Studies, Institute of Public Health, Unit of Health Care, Collegium Medicum
267	Jagiellonian University, Krakow.
268	Spain Catalonia Study: C. Castell. Division of Public Health, Department of Health,
269	Generalitat of Catalonia, Barcelona.
270	Sweden Northern Sweden MONICA Survey: S. Söderberg ^{1,2} , M. Eliasson ¹ . 1.
271	Department of Public Health and Clinical Medicine, Cardiology, Umeå University Hospital,
272	Umeå; 2. Baker IDI Heart and Diabetes Institute, Melbourne, Australia.
273	The Uppsala Longitudinal Study of Adult Men (ULSAM): B. Zethelius, Department of
274	Public Health/Geriatrics, Uppsala University Hospital, Uppsala.
275	Malmo Preventive Project: PM. Nilsson and G. Berglund. Department of Clinical
276	Sciences, Lund University, University Hospital, Malmö.
277	The Netherlands Hoorn Study: J.M. Dekker ¹ , G. Nijpels ¹ , C.D.A. Stehouwer ² . 1.
278	Department of Epidemiology and Biostatistics and the EMGO Institute for Health and Care
279	Research, VU University Medical Center, Amsterdam; 2. Department of Internal Medicine
280	and Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical
281	Centre, Maastricht.
282	Zutphen Study: Ed. Feskens. Department of Chronic Disease and Environmental
283	Epidemiology, National Institute of Public Health and Environmental Protection,
284	Bilthoven.
285	Turkey Turkish Adult Risk Factor Study: A. Onat ^{1,2} . 1. Turkish Society of Cardiology,

286 Istanbul; 2. Department of Cardiology, Cerrahpasa Medical Faculty, Istanbul University,

United Kingdom Isle of Ely Diabetes Project: N.J. Wareham, MRC Epidemiology Unit,

287	Istanbul.
-----	-----------

288

289	Strangeways Research Labs, Cambridge.
290	Newcastle Heart Project: N. Unwin ¹ , N. Ahmad ¹ , K.G.M.M. Alberti ² , L. Hayes ¹ . 1.
291	Department of Medicine and Epidemiology and Public Health, University of Newcastle,
292	Newcastle; 2. Imperial College, St Mary's Campus, St Mary's Hospital, London.
293	Goodinge Study: R. W. Morris, J. S. Yudkin, M. Gould, A. Haines, Department of
294	Primary Care & Population Sciences, Royal Free and University College Medical School,
295	London.
296	Whitehall II Study: M.G.Marmot ¹ , A.G. Tabák ^{1,2} , M. Kivimäki ^{1,3} , E.J. Brunner ¹ , D.R.
297	Witte ^{1,4} . 1. Department of Epidemiology and Public Health, University College London,
298	London; 2. Semmelweis University Faculty of Medicine, 1st Department of Medicine,
299	Budapest; 3. Finnish Institute of Occupational Health, Helsinki; 4. Steno Diabetes Center,
300	Gentofte.
301	Sources of funding

This study was supported by a grant from Academy Finland (129197).

304	References
305 306	Baik I, Ascherio A, Rimm EB, Giovannucci E, Spiegelman D, Stampfer MJ <i>et al.</i> (2000). Adiposity and mortality in men. <i>Am J Epidemiol</i> 152, 264-271.
307 308 309	Batty GD, Shipley MJ, Jarrett RJ, Breeze E, Marmot MG,Smith GD,(2005). Obesity and overweight in relation to organ-specific cancer mortality in london (UK): Findings from the original whitehall study. <i>Int J Obes (Lond)</i> 29 ,1267-1274.
310 311 312	Berrington de Gonzalez A, Hartge P, Cerhan JR, Flint AJ, Hannan L, MacInnis RJ <i>et al.</i> ,(2010). Body-mass index and mortality among 1.46 million white adults. <i>N Engl J Med</i> 363 ,2211-2219.
313 314 315	Breeze E, Clarke R, Shipley MJ, Marmot MG,Fletcher AE(2006). Cause-specific mortality in old age in relation to body mass index in middle age and in old age: Follow-up of the whitehall cohort of male civil servants. <i>Int J Epidemiol</i> 35 ,169-178.
316 317	Calle EE, Thun MJ, Petrelli JM, Rodriguez C,Heath CJ(1999). Body-mass index and mortality in a prospective cohort of U.S. adults. <i>N Engl J Med</i> 341 ,1097-1105.
318 319 320	Calle EE, Rodriguez C, Walker-Thurmond K, Thun MJ(2003). Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults. <i>N Engl J Med</i> 348 ,1625-1638.
321 322	Colditz GA, Willett WC, Stampfer MJ, Manson JE, Hennekens CH, Arky RA <i>et al.</i> ,(1990). Weight as a risk factor for clinical diabetes in women. <i>Am J Epidemiol</i> 132, 501-513.
323 324 325	DECODE Study Group, the European Diabetes Epidemiology Group (2001). Glucose tolerance and cardiovascular mortality: Comparison of fasting and 2-hour diagnostic criteria. <i>Arch Intern Med</i> 161, 397-405.
326 327 328	Ezzati M, Lopez AD, Rodgers A, Vander Hoorn S, Murray CJ,Comparative Risk Assessment Collaborating Group (2002). Selected major risk factors and global and regional burden of disease. <i>Lancet</i> 360 ,1347-1360.
329 330	Flegal KM, Carroll MD, Ogden CL, Johnson CL, (2002). Prevalence and trends in obesity among US adults, 1999-2000. <i>JAMA</i> 288 , 1723-1727.
331 332	Flegal KM, Graubard BI, Williamson DF, Gail MH (2005). Excess deaths associated with underweight, overweight, and obesity. <i>JAMA</i> 293 , 1861-1867.
333 334	Flegal KM, Graubard BI, Williamson DF, Gail MH (2007). Cause-specific excess deaths associated with underweight, overweight, and obesity. <i>JAMA</i> 298 , 2028-2037.

335 336 337	Hedley AA, Ogden CL, Johnson CL, Carroll MD, Curtin LR,Flegal KM,(2004). Prevalence of overweight and obesity among US children, adolescents, and adults, 1999-2002. <i>JAMA</i> 291 ,2847-2850.
338 339	Hoover LW and Boote EJ,(2000). Longitudinal assessment of intra-abdominal fat in postmenopausal women. <i>Ann N Y Acad Sci</i> 904 ,520-525.
340 341 342	Hu FB, Willett WC, Li T, Stampfer MJ, Colditz GA, Manson JE, (2004). Adiposity as compared with physical activity in predicting mortality among women. <i>N Engl J Med</i> 351 , 2694-2703.
343 344 345	Hubert HB, Feinleib M, McNamara PM, Castelli WP, (1983). Obesity as an independent risk factor for cardiovascular disease: A 26-year follow-up of participants in the framingham heart study. <i>Circulation</i> 67 , 968-977.
346 347 348	Jonsson S, Hedblad B, Engstrom G, Nilsson P, Berglund G, Janzon L(2002). Influence of obesity on cardiovascular risk. twenty-three-year follow-up of 22,025 men from an urban swedish population. <i>Int J Obes Relat Metab Disord</i> 26, 1046-1053.
349 350 351	Kivimaki M, Ferrie JE, Batty GD, Davey Smith G, Elovainio M, Marmot MG <i>et al.</i> (2008). Optimal form of operationalizing BMI in relation to all-cause and cause-specific mortality: The original whitehall study. <i>Obesity (Silver Spring)</i> 16, 1926-1932.
352 353	Klenk J, Nagel G, Ulmer H, Strasak A, Concin H, Diem G <i>et al.</i> (2009). Body mass index and mortality: Results of a cohort of 184,697 adults in austria. <i>Eur J Epidemiol</i> 24, 83-91.
354 355	Kurth T, Gaziano JM, Berger K, Kase CS, Rexrode KM, Cook NR <i>et al.</i> ,(2002). Body mass index and the risk of stroke in men. <i>Arch Intern Med</i> 162 ,2557-2562.
356 357 358	Lawlor DA, Hart CL, Hole DJ,Davey Smith G (2006). Reverse causality and confounding and the associations of overweight and obesity with mortality. <i>Obesity (Silver Spring)</i> 14, 2294-2304.
359 360	Lee IM, Manson JE, Hennekens CH, Paffenbarger RJ(1993). Body weight and mortality. A 27-year follow-up of middle-aged men. <i>JAMA</i> 270, 2823-2828.
361 362	Lenz M, Richter T, Muhlhauser I (2009). The morbidity and mortality associated with overweight and obesity in adulthood: A systematic review. <i>Dtsch Arztebl Int</i> 106, 641-648.
363 364	Manson JE, Willett WC, Stampfer MJ, Colditz GA, Hunter DJ, Hankinson SE <i>et al.</i> (1995). Body weight and mortality among women. <i>N Engl J Med</i> 333 ,677-685.
365 366 367	McGee DL and Diverse Populations Collaboration (2005). Body mass index and mortality: A meta-analysis based on person-level data from twenty-six observational studies. <i>Ann Epidemiol</i> 15, 87-97.

368 369	Meyer HE, Sogaard AJ, Tverdal A,Selmer RM,(2002). Body mass index and mortality: The influence of physical activity and smoking. <i>Med Sci Sports Exerc</i> 34 ,1065-1070.
370 371	Moore SC, Mayne ST, Graubard BI, Schatzkin A, Albanes D, Schairer C <i>et al.</i> (2008). Past body mass index and risk of mortality among women. <i>Int J Obes (Lond)</i> 32, 730-739.
372 373 374	Nyamdorj R, Qiao Q, Soderberg S, Pitkaniemi JM, Zimmet PZ, Shaw JE <i>et al.</i> ,(2009). BMI compared with central obesity indicators as a predictor of diabetes incidence in mauritius. <i>Obesity (Silver Spring)</i> 17, 342-348.
375 376 377	Pischon T, Boeing H, Hoffmann K, Bergmann M, Schulze MB, Overvad K <i>et al.</i> ,(2008). General and abdominal adiposity and risk of death in Europe. <i>N Engl J Med</i> 359, 2105-2120.
378 379 380	Poehlman ET, Toth MJ,Gardner AW,(1995). Changes in energy balance and body composition at menopause: A controlled longitudinal study. <i>Ann Intern Med</i> 123, 673-675.
381 382 383	Prospective Studies Collaboration, Whitlock G, Lewington S, Sherliker P, Clarke R, Emberson J <i>et al.</i> (2009). Body-mass index and cause-specific mortality in 900 000 adults: Collaborative analyses of 57 prospective studies. <i>Lancet</i> 373 ,1083-1096.
384 385 386	Reeves GK, Pirie K, Beral V, Green J, Spencer E, Bull D <i>et al.</i> (2007). Cancer incidence and mortality in relation to body mass index in the million women study: Cohort study. <i>BMJ</i> 335, 1134.
387 388 389	Rosengren A, Wedel H, Wilhelmsen L (1999). Body weight and weight gain during adult life in men in relation to coronary heart disease and mortality. A prospective population study. <i>Eur Heart J</i> 20, 269-277.
390 391 392	Seidell JC, Verschuren WM, van Leer EM,Kromhout D (1996). Overweight, underweight, and mortality. A prospective study of 48,287 men and women. <i>Arch Intern Med</i> 156, 958-963.
393 394 395	Shaper AG, Wannamethee SG, Walker M (1997). Body weight: Implications for the prevention of coronary heart disease, stroke, and diabetes mellitus in a cohort study of middle aged men. <i>BMJ</i> 314 ,1311-1317.
396 397 398	Vartiainen E, Laatikainen T, Peltonen M, Juolevi A, Mannisto S, Sundvall J <i>et al.</i> ,(2010). Thirty-five-year trends in cardiovascular risk factors in finland. <i>Int J Epidemiol</i> 39, 504-518.
399 400	Willett WC, Dietz WH,Colditz GA (1999). Guidelines for healthy weight. <i>N Engl J Med</i> 341, 427-434.

-

403 Figure legends

Figure 1 Crude mortality rate per 1000 PY (person-years) (open circles), age- and cohortadjusted hazard ratios (open triangles), and age-, cohort- and smoking- adjusted hazard ratios (solid circles) with their 95% confidence intervals (vertical bars) for mortality corresponding to a one unit increase in body mass index (BMI, kg/m²). In men, the BMI reference category was 23.0-23.9 kg/m² for all-cause mortality, 20.0-20.9 kg/m² for CVD mortality and 25.0-25.9 kg/m² for cancer mortality. In women, the BMI reference category for all these three was 20.0-20.9 kg/m².

Table 1 Baseline chara	cteristics	of the co	horts and th	ne data of f	ollow-up						
Study	Nu	Number		Body mass index(kg/m ²)		Current smokers	Non-smokers	Median of follow-up	Number of deaths		
Study	Men	Women	(years)	Men	Women	(%)	(%)	(maximum)	CVD	Cancer	All-cause
Denmark,											
Glostrup-1897	229	208	70.0(-)	24.5(3.4)	23.7(4.9)	58.1	41.9	12.5(27.0)	212	101	424
Glostrup-1914	360	306	60.2(0.4)	24.6(3.4)	23.6(4.7)	60.5	39.5	19.0(19.8)	132	89	290
Glostrup-1936	504	548	40.4(0.4)	25.4(3.3)	24.1(3.8)	54.8	45.2	17.1(17.7)	17	29	71
Finland,											
East-west men	437	0	76.4(4.6)	24.8(3.9)	-	14.0	86.0	7.8(17.1)	172	73	390
FINRISK-1972	5341	5616	41.3(9.9)	26.0(3.3)	27.0(4.6)	31.4	68.6	36.7(36.9)	2630	1242	4903
FINRISK-1977	5376	5763	44.0(11.0)	26.2(3.5)	26.7(4.7)	27.4	72.6	31.8(32)	2409	1048	4359
FINRISK-1982	4179	4326	43.9(11.4)	26.5(3.7)	26.4(4.7)	28.8	71.2	26.8(27)	1158	709	2344
FINRISK-1987	2638	2936	44.0(11.4)	26.9(3.8)	26.8(5.0)	26.7	73.3	21.8(22)	458	288	955
FINRISK-1992	2578	2831	44.2(11.4)	26.8(3.9)	26.3(4.9)	28.4	71.6	16.9(17)	208	182	531
FINRISK-1997	3848	3902	47.6(13.3)	26.9(3.9)	26.5(5.0)	24.1	75.9	11.8(12)	292	233	634
FINRISK-2002	3891	4518	47.4(13.1)	27.3(4.1)	26.7(5.1)	26.5	73.5	6.8(7.0)	96	84	239
Helsinki Policemen	1136	0	44.7(8.0)	25.9(2.8)	-	48.6	51.4	32.8(36.8)	327	178	668
Oulu-55	328	415	55.0(-)	26.4(3.4)	25.7(4.3)	23.4	76.6	16.8(17.3)	42	39	115
Vantaa	272	339	65.1(0.4)	26.0(3.7)	25.3(4.6)	16.5	83.5	17.2(17.9)	105	41	204
Iceland,											
Reykjavik	8975	9437	52.5(8.5)	25.6(3.5)	24.5(4.2)	47.0	53.0	17.7(27.1)	1941	1482	4274
Israel,				. ,							
GOH-I	2324	2370	43.6(8.4)	25.1(3.7)	26.1(4.7)	35.6	64.4	27.9(27.9)	474	283	1331
Italy,											
Cremona	909	1153	58.7(10.8)	26.2(3.8)	24.9(4.8)	22.2	77.8	15.0(15.8)	203	204	511
The Netherlands,			. /	· · /	~ /						
Hoorn study	1137	1340	61.7(7.4)	25.5(3.0)	25.1(4.0)	33.5	66.5	8.9(10.2)	114	117	330
Zutphen study	480	0	75.8(4.6)	24.1(3.1)	-	22.9	77.1	4.7(4.8)	53	21	119

Body mass index and mortality among Europeans											
Poland.											
MONICA-Krakow	166	192	58.0(8.4)	25.8(4.0)	28.2(4.9)	25.1	74.9	6.5(6.6)	16	6	29
Spain,											
Catalonia	912	1184	55.3(13.9)	25.9(3.4)	25.4(4.4)	21.3	78.7	5.0(5.0)	31	29	91
Sweden,											
Northern Swedish- MONICA 1986	815	789	45.2(11.2)	25.8(3.5)	25.5(4.4)	24.4	75.6	20.5(20.6)	80	70	256
Northern Swedish- MONICA 1990	767	799	45.3(11.4)	26.0(3.3)	25.5(4.4)	24.5	75.5	16.5(16.6)	45	33	134
Northern Swedish MONICA 1994	924	954	49.9(14.0)	26.1(3.6)	25.6(4.6)	21.2	78.8	12.5(14.5)	60	59	207
Northern Swedish MONICA 1999	1070	1104	50.8(13.9)	26.7(3.5)	26.1(4.7)	16.7	83.3	7.4(13.5)	22	27	99
Northern Swedish MONICA 2004	882	923	50.8(14.1)	27.1(4.0)	26.4(5.1)	13.9	86.1	2.5(2.6)	0	0	13
MPP	13016	5277	49.5(4.9)	25.1(3.3)	24.5(4.4)	44.2	55.8	23.9(30.3)	1816	1739	4582
Uppsala study	1181	0	71.0(0.6)	25.1(3.4)	-	20.7	79.3	10.0(12.4)	142	127	333
Turkey,											
TARFS	1588	1630	53.0(12.4)	26.2(4.0)	28.3(5.6)	11.8	88.2	7.9(8.0)	91	NA	167
UK,											
Ely	451	624	54.0(7.8)	25.8(3.2)	25.3(5.0)	17.2	82.8	14.5(15.7)	28	49	99
Goodinge	452	582	54.7(10.3)	25.2(4.1)	25.1(5.2)	37.4	62.6	8.7(9.7)	42	47	114
Newcastle	402	378	54.9(12.5)	26.0(3.9)	25.7(5.0)	27.7	72.3	8.9(10.6)	36	34	97
Whitehall II	5379	2354	49.6(6.1)	25.1(3.2)	25.5(4.7)	13.8	86.2	5.9(7.9)	50	85	158
Total	72947	62798	48.6(11.5)	25.6(3.6)	25.9(4.8)	31.5	68.5	16.8(36.9)	13502	8748	29071

CVD, cardiovascular diseases; NA, not available.

Data are means (standard deviation) or as noted.

Table 2 Baseline ch	naracterist	tics of partic	cipants by mo	ortality from	n all-cause,	cardiovaso	cular diseas	ses and ca	ncer				
			Me	en			Women						
	All-cause		Cardio dise	Cardiovascular diseases		Cancer		All-cause		Cardiovascular diseases		ncer	
	Yes	No	Yes	No	Yes	No	Yes	No	Yes	No	Yes	No	
Number (%)	19170	53777	9175	63772	5536	65823	9901	52897	4327	58471	3212	57956	
	(26.3)	(73.7)	(12.6)	(87.4)	(7.8)	(92.2)	(15.8)	(84.2)	(6.9)	(93.1)	(5.3)	(94.7)	
Age (years)	53	47	54	48	53	48	54	48	56	48	53	48	
	$(0.08)^{a}$	(0.05)	$(0.11)^{a}$	(0.05)	(0.13) ^a	(0.04)	$(0.10)^{a}$	(0.05)	$(0.13)^{a}$	(0.05)	(0.17) ^a	(0.05)	
Current smokers (%)	10222	18170	4793	23599	3104	24968	2613	11782	978	13417	985	13349	
	(53.3) ^a	(33.8)	(52.2) ^a	(37.0)	(56.1) ^a	(37.9)	(26.4) ^a	(22.3)	(22.6)	(22.9) ^a	(30.7) ^a	(23.0)	
Non-smokers (%)	8948	35607	4382	40173	2432	40855	7288	41115	3349	45054	2227	44607	
	(46.7)	(66.2)	(47.8)	(63.0)	(43.9)	(62.1)	(73.6)	(77.7)	(77.4)	(77.1)	(69.3)	(77.0)	
Body mass index	25.8	25.9	26.2	25.8	25.2	25.8	25.6	25.8	26.4	25.7	25.5	25.6	
(kg/m^2)	(0.07)	(0.03)	$(0.09)^{a}$	(0.03)	(0.12)	$(0.03)^{a}$	(0.13)	(0.05)	$(0.23)^{a}$	(0.03)	(0.18)	(0.04)	

Body mass index and mortality among Europeans

^a*P*<0.05 for differences between Yes and No.

Data are cohort- and age- adjusted mean (standard error) or as noted.

Table 3 Hazard ratios (95% confidence interval) of mortality of various causes in relation to body mass index categories in non-smokers (NS) and current smokers (CS)*

	Body mass index (kg/m ²)									
	<19.0	19.0-20.9	21.0-22.9	23.0-24.9	25.0-26.9	27.0-28.9	29.0-30.9	31.0-32.9	≥33.0	P value for
										interaction
Men										
Number (%)										
NS	365	1785	5385	10080	10694	7772	4572	2121	1781	
	(39.4)	(46.4)	(53.3)	(60.1)	(63.6)	(65.4)	(67.4)	(66.1)	(68.5)	
CS	562	2062	4713	6684	6129	4117	2215	1090	820	
	(60.6)	(53.6)	(46.7)	(39.9)	(36.4)	(34.6)	(32.6)	(33.9)	(31.5)	
Cardiovascular disease										
No. of deaths (NS/CS)	17/79	101/283	332/705	749/998	1007/1041	877/803	653/467	345/214	301/203	
Hazard ratios (95% CI)										
NS	0.85	1.00	0.95	1.02	1.15	1.25	1.60	2.05	2.56	
	(0.51-1.43)	(Reference)	(0.76-1.18)	(0.83-1.25)	(0.94-1.42)	(1.02-1.54)	(1.30-1.98)	(1.64-2.57)	(2.04-3.20)	
CS	2.27	1.97	2.11	1.97	2.27	2.59	3.09	2.98	4.18	P<0.001
	(1.69-3.05)	(1.57-2.47)	(1.71-2.60)	(1.61-2.42)	(1.85-2.78)	(2.10-3.18)	(2.49-3.84)	(2.35-3.78)	(3.29-5.31)	
Cancer										
No. of deaths (NS/CS)	17/84	73/258	261/581	511/718	554/609	477/441	287/228	152/109	100/76	
Hazard ratios (95% CI)										
NS	1.17	1.00	1.09	0.98	0.91	1.00	1.05	1.32	1.21	
	(0.69-1.98)	(Reference)	(0.79-1.34)	(0.76-1.25)	(0.71-1.16)	(0.78-1.28)	(0.81-1.36)	(0.99-1.74)	(0.90-1.64)	
CS	3.26	2.53	2.48	2.03	1.90	2.08	2.21	2.23	2.35	P<0.001
	(2.38-4.47)	(1.95-3.28)	(1.94-3.16)	(1.59-2.59)	(1.49-2.42)	(1.62-2.66)	(1.69-2.87)	(1.66-3.00)	(1.70-3.24)	
All-cause										
No. of deaths (NS/CS)	75/262	301/796	827/1683	1691/2270	2010/2086	1724/1512	1183/859	634/418	503/336	
Hazard ratios (95% CI)										

Body mass index and mortality among Europeans										
NS	1.52	1.25	1.00	0.99	1.01	1.09	1.30	1.66	1.86	
	(1.20-1.93)	(1.09-1.42)	(Reference)	(0.91-1.08)	(0.93-1.09)	(1.01-1.19)	(1.19-1.42)	(1.49-1.84)	(1.67-2.08)	
CS	3.09	2.37	2.16	1.93	1.96	2.12	2.47	2.54	3.00	P<0.001
	(2.69-3.55)	(2.15-2.61)	(1.99-2.35)	(1.78-2.09)	(1.80-2.12)	(1.95-2.31)	(2.25-2.72)	(2.25-2.72)	(2.64-3.41)	
Women										
Number (%)										
NS	966	3967	7969	9515	8142	6206	4381	2930	4327	
	(58.3)	(67.5)	(72.0)	(76.5)	(78.7)	(81.5)	(83.2)	(84.7)	(85.3)	
CS	692	1910	3095	2922	2210	1405	885	529	747	
	(41.7)	(32.5)	(28.0)	(23.5)	(21.3)	(18.5)	(16.8)	(15.3)	(14.7)	
Cardiovascular disease										
No. of deaths (NS/CS)	29/44	104/106	264/162	433/194	503/147	532/116	482/88	376/49	626/72	
Hazard ratios (95% CI)										
NS	1.15	1.00	0.88	0.97	1.00	1.23	1.32	1.58	2.16	
	(0.77-1.74)	(Reference)	(0.70-1.11)	(0.79-1.21)	(0.81-1.24)	(1.00-1.52)	(1.06-1.63)	(1.27-1.96)	(1.75-2.66)	
CS	2.57	2.39	2.23	2.43	2.26	2.26	3.04	2.56	3.55	P<0.001
	(1.81-3.67)	(1.82-3.13)	(1.74-2.86)	(1.91-3.09)	(1.76-2.91)	(1.74-2.95)	(2.29-4.04)	(1.82-3.60)	(2.63-4.80)	
Cancer										
No. of deaths (NS/CS)	30/75	115/116	264/222	398/186	403/151	325/94	232/67	178/27	282/47	
Hazard ratios (95% CI)										
NS	1.14	1.00	0.95	1.06	1.09	1.10	1.02	1.23	1.47	
	(0.77-1.71)	(Reference)	(0.76-1.18)	(0.86-1.30)	(0.88-1.34)	(0.89-1.36)	(0.81-1.28)	(0.97-1.56)	(1.18-1.83)	
CS	3.29	1.90	2.24	1.87	1.96	1.77	2.25	1.48	2.15	P<0.001
	(2.46-4.41)	(1.47-2.47)	(1.79-2.81)	(1.48-2.36)	(1.54-2.50)	(1.35-2.33)	(1.66-3.04)	(0.97-2.25)	(1.53-3.01)	
All-cause										
No. of deaths (NS/CS)	102/171	330/324	739/507	1114/494	1180/387	1097/277	887/195	691/97	1154/161	
Hazard ratios (95% CI)										

	Body mass index and mortality among Europeans										
NS	1.30	1.00	0.86	0.91	0.91	1.01	1.02	1.23	1.61		
	(1.04-1.63)	(Reference)	(0.76-0.98)	(0.80-1.03)	(0.81-1.03)	(0.89-1.15)	(0.89-1.16)	(1.08-1.41)	(1.42-1.82)		
CS	2.91	2.10	2.02	1.88	1.82	1.78	2.21	1.73	2.50	P<0.001	
	(2.42-3.51)	(1.80-2.45)	(1.75-2.32)	(1.63-2.16)	(1.57-2.11)	(1.51-2.08)	(1.85-2.64)	(1.38-2.17)	(2.07-3.03)		

*Adjusted for age and cohort.

