Frequency allocation problem in a SDMA satellite communication system
Laurent Houssin, Christian Artigues, Erwan Corbel

To cite this version:
Laurent Houssin, Christian Artigues, Erwan Corbel. Frequency allocation problem in a SDMA satellite communication system. 39th International Conference on Computers Industrial Engineering (CIE39), Jul 2009, Troyes, France. pp.1611-1616, 2009. <hal-00667933>
Frequency allocation problem in a SDMA satellite communication system

Laurent Houssin1,2, Christian Artigues1,2, Erwan Corbel3

1CNRS ; LAAS ; 7 avenue du colonel Roche, F-31077 Toulouse, France (\{houssin,artigues\}@laas.fr)
2Université de Toulouse ; UPS, INSA, INP, ISAE ; LAAS ; F-31077 Toulouse, France
3Thales Alenia Space, Advanced Telecom & Navigation Systems Research, 26 av. J.F. Champollion, 31037 Toulouse, France (erwan.corbel@thalesaleniaspace.com)

ABSTRACT

SDMA (Spatial Division Multiple Access) is a principle of radio resource sharing that relies on the division of the space dimension into separated communication channels. It can be used with common Frequency Division Multiple Access (FDMA), Time Division Multiple Access (TDMA) or Code Division Multiple Access (CDMA) techniques. Main terrestrial communication standards already implement SDMA. SDMA basically relies on adaptive and dynamic beam-forming associated to a clever algorithm in charge of resource allocation.

As satellite communication systems move towards an increasing number of users and a larger throughput for each of them, SDMA is one of the most promising techniques that can reach these two goals. This paper studies static Frequency Allocation Problems (FAP) in a satellite communication system involving a gateway connected to a terrestrial network and some user terminals located in a service area. Two scenarios are considered: one based on SDMA and the other based on usual spot coverage. We propose original integer linear programming formulations and greedy allocation algorithms for the FAP which involve unusual cumulative interference constraints. By considering the link budget of each user, the objective is to maximize the number of users that the system can serve. We show through computational experiments on realistic data that the FAP associated with the SDMA system can be solved efficiently, yielding substantial improvement compared to the traditional system.

Keywords: SDMA system, frequency allocation problem, radio resource management.

1. Introduction

Satellite communication systems move towards greater capacity, higher flexibility (with respect to the position of the users) and better service to the end-user. SDMA (Spatial Division Multiple Access) appears to be one way to achieve these requirements at the same time [7]. SDMA is a principle of radio resource sharing that relies on the division of the space dimension into separated communication channels. It can be used with common Frequency Division Multiple Access (FDMA), Time Division Multiple Access (TDMA) or Code Division Multiple Access (CDMA) techniques. Main future terrestrial communication standards (such that WIMAX, 3GPP, LTE) implement SDMA. SDMA basically relies on adaptive and dynamic beam-forming associated to a clever algorithm in charge of resource allocation. The satellite beam-former optimizes the antenna diagram with respect to the positions of the users in order to maximize the gain while mitigating interferences. The resource allocation algorithm carefully designs a frequency plan that

- prevents or limits interferences between users,
- tailors the allocated bandwidth to the user need in order to save the spectrum.

Today SDMA is currently used by IRIDIUM system in L-band, a constellation of 66 Low-Earth Orbit satellites, thanks to time beam-switching. SDMA is also foreseen as a key enabling technique to increase the capacity of future two-way satellite communications systems in low-frequency bands (typically lower than 5-6 GHz) through the interference mitigation and high frequency reuse [3].

It is also expected to play an important role in future systems devoted to Public Protection and Disaster Relief (PPDR) and Global Monitoring for Environment and Security (GMES) missions which require on-demand beam-forming [5].

The satellite telecommunication system that we study in this paper aims at establishing bi-directional communications involving a gateway connected to a terrestrial network and some user terminals located in a service area. This paper studies static Frequency Allocation Problems (FAP) in this system and two scenarios are considered: one based on SDMA and the other based on “traditional” spot coverage. We propose original Integer Linear Programming (ILP) formulations and greedy allocation algorithms for these problems. The difficulty for solving the FAP is increased by considering cumulative interference constraints. We then compare the performance of the two scenarios.

The remainder of the paper is organized as follow: Section 2 is dedicated to the telecommunication system and the description of the scenarios. In Section 3, we present a cumulative formulation of the FAP interference constraints. In Section 4, ILP formulations and greedy algorithms proposed for both scenarios are described. Section 5 presents the results obtained by the different algorithms on the scenarios. Concluding remarks are drawn in Section 6.

2. Telecommunication system and scenarios for frequency allocation

2.1. System description

The service area is a rectangular grid where users position is uniformly distributed and where beams are directed. The grid size is $u = [-0.043980, 0.048870]$ and $v = \ldots$
Beams have two particular characteristics which are the direction that we consider through the position of the beam center in the service area, and the radiation pattern. An analytic representation of the radiation pattern enables to compute the directive gain of the antennas for a considered direction. This description is such that

\[G_{Sat}(u, v, u_0, v_0) = G_1 \times G_2(u, v, u_0, v_0) \times G_3(u, v, u_0, v_0) \]

(1)

with \[G_1 = \eta \left(\frac{\pi D}{\lambda} \right)^2, \]

\[G_2(u, v, u_0, v_0) = \left(\frac{2J_1}{\pi d} \sqrt{(u - u_0)^2 + (v - v_0)^2} \right)^2 \]

and \[G_3(u, v, u_0, v_0) = \left(\frac{2J_1}{\pi d} \sqrt{u^2 + v^2} \right)^2, \]

where \(J_1(x) \) is the Bessel functions of the first kind. We use the notation

\[u, v \quad \text{Cartesian coordinates of the user terminal;} \]
\[u_0, v_0 \quad \text{Cartesian coordinates of the beam center;} \]
\[\eta \quad \text{antenna gain;} \]
\[D \quad \text{antenna diameter;} \]
\[d \quad \text{primary source diameter;} \]
\[\lambda \quad \text{wavelength.} \]

The term \(G_1 \) corresponds to the maximum gain antenna whereas \(G_2 \) depends on the distance between the user and the beam center, \(i.e. \sqrt{(u - u_0)^2 + (v - v_0)^2} \) and \(G_3 \) depends on user position related to the satellite, \(i.e. \sqrt{u^2 + v^2} \). The product \(G_2(u, v, u_0, v_0) \times G_3(u, v, u_0, v_0) \) is illustrated in fig.1 where the left pattern is the pattern of beam centered in (0.03,-0.03) and the right one is centered in (0,0), \(i.e \) directly under the satellite. It emphasizes that

A minimum quality for a communication between a user and the gateway is required. It corresponds to \(\frac{C}{N + I} \) \(\text{RsModCod} \) that depends on the modulation scheme and the code scheme (the digital communication scheme considered here is a phase key shifting). More precisely, a user will be served if

\[\frac{C}{N + I} \geq \frac{C}{N} \text{RsModCod} \]

(2)

where \(\frac{C}{N+I} \) is the user Signal-to-Interference-plus-Noise Ratio (SINR) which determines quantitatively the signal quality.

The link budget enables to compute the SINR:

\[\left(\frac{C}{N+I} \right)^{-1} = \left(\frac{C}{N} \right)^{-1} + \left(\frac{C}{T} \right)^{-1} + \left(\frac{C}{I} \right)^{-1} \]

(3)

in which

\[\left(\frac{C}{N} \right)^{-1} \text{User} = K_1 \times \frac{G_{Sat}(User Beam \rightarrow User)}{K_2} \]

and

\[\left(\frac{C}{T} \right)^{-1} \text{User} = \sum_{j \in \text{Interf}} \left(G_{Sat}(User Beam \rightarrow User) \right) \]

Terms \(K_1 \) and \(K_2 \) involve technical parameters, such as the atmospheric loss, the antenna temperature and the Equivalent Isotropically Radiated Power (EIRP) which are considered as constant. Consequently, \(\left(\frac{C}{N} \right) \text{User} \) and \(\left(\frac{C}{T} \right) \text{User} \) only depends on user position and beam center position. Indeed, \(G_{Sat}(User Beam \rightarrow User) \) describes the gain.
for a user terminal and its beam (see equation (1)). The set Interf is the set of users sharing the same channel. Moreover, $\left(\frac{C}{T}\right)_{\text{feeder}}$ and $\left(\frac{C}{T}\right)_{\text{user}}$ which are gateway characteristics, and $\left(\frac{C}{T}\right)_{\text{satellite}}$ that is a satellite characteristic are also constant.

Specifications of the system are the following:

- Beams are only adaptive in direction and not in shaping (although it is technically feasible).
- For the first scenario (involving SDMA), each user has a beam directly centered on him. It leads to consider as many beams as users in the system.
- We only focus on the case of users-to-feeder (gateway) link.

2.2. Scenarios description

In the users-to-feeder link, interferences can occur in the link budget when several users share the same frequency. We illustrate this phenomena in fig. 2 where black diamonds are users sharing the same frequency. It shows that users u_3 and u_2 are interferers for user u_1.

![Fig. 2: Users-to-feeder link.](image)

In the first scenario, named ”scenario 1”, we consider that each user has a beam directly centered on him (which is possible thanks to SDMA). The number of available channels is 8. In this case, $G_2(u, v, u_0, v_0)$ is always equal to the maximum value (that is $G_2(u, v, u_0, v_0) = 1$) since $(u, v) = (u_0, v_0)$.

Contrary to scenario 1, the second scenario involves fixed beams, however the frequency assignment is variable according to the demand (the channel number can be adjusted for a beam). The service area is composed of 40 fixed beams which form a spot-based coverage. We also have 8 available channels. Consequently, (since no channel can be used more than once in a spot) we can not serve more than 8 users in a spot.

For both scenario, the FAP considered in this paper consists in finding and interference-free frequency allocation to the users maximizing the number of served users. This problem is static: the set of users is known in advance and we do not take dynamic arrivals and departures of users into account.

3. A cumulative interference representation

In a FAP where channels are limited, results depend on the ability of the system to allocate the same channel to several users.

In this section, we show that it is possible to obtain a cumulative representation of interferences from equations (2) and (3).

Involving the link budget, constraint (2) for a user i, becomes

$$A + B_i + \frac{1}{\sum_{j \in \text{Interf}(i)} G_{\text{sat}}(\text{User Beam}(i) \rightarrow \text{User}(j))} \geq D$$

where

$$A = \left(\frac{C}{N}\right)^{-1}_{\text{feeder}} + \left(\frac{C}{T}\right)^{-1}_{\text{feeder}} + \left(\frac{C}{TM}\right)^{-1}$$

and

$$B_i = \left(\frac{C}{N}\right)^{-1}_{\text{user}, i} = \frac{K_2}{K_1 \times G_{\text{sat}}(\text{User Beam}(i) \rightarrow \text{User}(i))}$$

Previous inequation leads to

$$1 \geq AD + DB_i + \frac{1}{\sum_{j \in \text{Interf}(i)} G_{\text{sat}}(\text{User Beam}(i) \rightarrow \text{User}(j))} \sum_{j \in \text{Interf}(i)} G_{\text{sat}} (\text{User Beam}(i) \rightarrow \text{User}(j)) \leq G_{\text{sat}} (\text{User Beam}(i) \rightarrow \text{User}(i)) (1 - AD - B_i D).$$

For scenario 1, we write last constraint

$$\sum_{j \in \text{Interf}(i)} \delta_{ij} \leq \alpha_i,$$

where

$$\alpha_i = G_{\text{sat}} (\text{User Beam}(i) \rightarrow \text{User}(i)) (1 - AD - B_i D)$$

and

$$\delta_{ij} = \sum_{j \in \text{Interf}(i)} G_{\text{sat}} (\text{User Beam}(i) \rightarrow \text{User}(j)).$$

Let the system with n users, α is a n-row vector and δ is a $n \times n$ matrix.

We can deduce that α_i represents the maximum level of interferences that the user i can support. In this way, δ_{ij} describes the interference level of user j if users j and i share the same frequency. The cumulative representation
is motivated by a linear representation (although constraint (2) was not linear) that enable the use of integer linear programming (see §4.2).

Concerning scenario 2, we denote the interference inequality by

$$\sum_{j \in \text{Interf}(i)} \gamma_{ij} \leq \beta_i.$$ \hspace{1cm} (5)

It is worth emphasizing that α_i and β_i are different since the center of the beam related to user i does not correspond to user i coordinates in scenario 2 whereas in scenario 1, it does. The same remark can be done for δ_{ij} and γ_{ij}.

4. Modeling and solving scenarios 1 and 2 FAP

4.1. FAP literature overview

Most approaches dealing with interference minimization FAP consider binary interference constraints, i.e., involving only two users. Because of the strong links between graph coloring and frequency allocation with binary interference constraints, most methods found in the literature are inspired by coloring algorithms. We also know unfortunately the graph coloring problems, and consequently the FAP, are NP-hard. Among the proposed methods, the constructive (greedy) algorithms are widely used since they are simple, fast and also able to solve dynamic FAP. In this category, we find the generalization of DSATUR procedure [2]. Other more sophisticated algorithms, such as local search, metaheuristics, ILP and constraint programming approaches, are frequently encountered, see [1] for a comprehensive review of the state-of-the-art methods for the FAP with binary interference constraints.

One of the difficulties appearing in the telecommunication system considered in this study (for both scenarios 1 and 2) lies in the explicit consideration of non-binary interference constraints. In terms of graph coloring, deciding whether a given coloring is feasible or not cannot be made anymore by checking pairwise user color assignments. Instead, for a given user, the cumulative interferences of the users assigned to the same color has to be computed. Then, the coloring is feasible if this cumulative interference remains under a user-dependent threshold (see Section 3). In the literature, only a few approaches take account explicitly of such interferences for frequency assignment [4, 8, 9]. This study is partly based on integer linear programming formulations proposed in [9].

4.2. Integer linear programming formulations (ILP)

Taking account of hypothesis and simplifications presented in Section 2, FAP corresponding to scenarios 1 and 2 can be described as coloring problems and thus formalized as the corresponding combinatorial optimization problems. Each user has to be assigned a color, representing the allocated carrier.

For the SDMA FAP, (scenario 1), the following data are considered. n denotes the number of users. $U = \{1, \ldots, n\}$ is the set of users. C is the number of colors (channels). α_i denotes the interference threshold for user i.

δ_{ij} is the interference component from user j on user i, if i and j are assigned the same color.

Binary decision variables x_{ic} are defined for $i \in \{1, \ldots, n\}$ and $c \in \{1, \ldots, C\}$ with n, the number of users and C the number of available colors. $x_{ic} = 1$ if color c is allocated to user i and $x_{ic} = 0$ otherwise. The problem can be represented by the following ILP:

$$\text{max} \sum_{i=1}^{C} \sum_{c=1}^{n} x_{ic}$$ \hspace{1cm} (6)

$$\sum_{i=1}^{C} x_{ic} \leq 1 \quad i = 1, \ldots, n$$ \hspace{1cm} (7)

$$\sum_{j=1}^{n} \delta_{ij} x_{ic} \leq \alpha_i + M_i (1 - x_{ic})$$ \hspace{1cm} (8)

$$x_{ic} \in \{0,1\} \quad i = 1, \ldots, n \quad c = 1, \ldots, C$$ \hspace{1cm} (9)

Objective (6) consists in maximizing the number of accepted users. Constraints (7) state that at most one color has to be selected for each user. Constraints (8) are the cumulative interference constraints. They represent, in case color c is allocated to user i, the respect of the threshold for user i taking account of users that are assigned color c, i.e., possible interferers. Constant M_i has to be large enough to withdraw the constraint if i is not assigned color c ($x_{ic} = 0$). More precisely, we set $M_i = \sum_{j=1}^{n} \delta_{ij} - \alpha_i$.

For the fixed beam FAP (scenario 2), the data are similar with additional features concerning the spots (a spot designing the area covered by a given beam): m denotes the number of spots. $S = \{1, \ldots, m\}$ is the set of spots. U_s is set of users covered by spot $s \in S$. β_i denotes the interference threshold for user i. γ_{ij} is the interference component from user j on user i if i and j are assigned the same color.

We define the fixed beam FAP as a combinatorial optimization problem resembling the SDMA FAP preventing two users covered by the same spot from being assigned the same non-zero color. We obtain the following ILP:

$$\text{max} \sum_{i=1}^{n} \sum_{c=1}^{C} x_{ic}$$ \hspace{1cm} (10)

$$\sum_{c=1}^{C} x_{ic} \leq 1 \quad i = 1, \ldots, n$$ \hspace{1cm} (11)

$$\sum_{i \in U_s} x_{ic} \leq s \quad s = 1, \ldots, m \quad c = 1, \ldots, C$$ \hspace{1cm} (12)

$$\sum_{j=1}^{n} \gamma_{ij} x_{jc} \leq \beta_i + N_i (1 - x_{ic})$$ \hspace{1cm} (13)

$$x_{ic} \in \{0,1\} \quad i = 1, \ldots, n \quad c = 1, \ldots, C$$ \hspace{1cm} (14)

Scenario 2 ILP differs with the scenario 1 ILP via constraints (12) and (13). Constraints (12) prevent any color from being allocated more than once in a given spot. Hence a maximum number of C users may be served in the same spot. In constraints (13), values β_i and γ_{ij} differ from α_i and δ_{ij} since beams are not centered on the users (see Section 3). As for scenario 1, N_i has to be large enough to ensure the constraint is verified when color c is not allocated.
to user i. For this purpose, we set $N_i = \sum_{j=1}^{n} \gamma_{ij} - \beta_{ij}$. Both above-defined ILP can be solved by an integer linear programming solver, via branch and bound.

4.3. Greedy algorithms

Solving the ILP formulations provides optimal solutions only for small problems. For large-sized problems it is necessary to use a heuristic. We propose greedy algorithms to solve scenarios 1 and 2 FAP. For both scenarios, the principle of the greedy algorithms is, first, to consider the users sequentially according to a given criterion named the user priority rule. Second, either the selected user is assigned a frequency or rejected according to a second criterion, the frequency priority rule. Let Q denote the set of users that have not been assigned a color yet. Initially, we have $Q = U$. At each step of the greedy algorithm, a user i is removed from Q and is either rejected or assigned a color. We describe hereafter the rules selected for scenario 1.

For both priority rules, we use the frequency margin, where the margin $M(i, c)$ of a user $i \in Q$ for a color c is given by $M(i, c) = \alpha_i - \sum_{j \in U \setminus Q, c(j) = c} \delta_{ij}$ where $c(j)$ denote the color allocated to user j. Namely, this margin corresponds to the positive or negative slack of the cumulative interference constraint for user i terminal if it is assigned color c.

The principle of the user priority rule is to select first the most constrained users in terms of available colors, as for the well-known DSATUR algorithm for standard graph coloring problems. The proposed rule selects the user having the smallest number of available colors, a color c being available for user $i \in Q$ if $M(i, c) \geq 0$ and if for all users $j \in U \setminus Q$ having already been assigned color c, $M(j, c) \geq 0$. In case of a tie, we select the user having the smallest total margin for all its available colors.

The frequency priority rule selects a frequency for the selected user with the aim to minimize the impact of the assignment on other users. To that purpose, we simulate the assignment of each available color for the selected user and compute the margin of the users that have not been assigned a color yet. Initially, we have $Q = U$. At each step of the greedy algorithm, a user i is removed from Q and is either rejected or assigned a color. We describe hereafter the rules selected for scenario 1.

For both priority rules, we use the frequency margin, where the margin $M(i, c)$ of a user $i \in Q$ for a color c is given by $M(i, c) = \alpha_i - \sum_{j \in U \setminus Q, c(j) = c} \delta_{ij}$ where $c(j)$ denote the color allocated to user j. Namely, this margin corresponds to the positive or negative slack of the cumulative interference constraint for user i terminal if it is assigned color c.

The principle of the user priority rule is to select first the most constrained users in terms of available colors, as for the well-known DSATUR algorithm for standard graph coloring problems. The proposed rule selects the user having the smallest number of available colors, a color c being available for user $i \in Q$ if $M(i, c) \geq 0$ and if for all users $j \in U \setminus Q$ having already been assigned color c, $M(j, c) \geq 0$. In case of a tie, we select the user having the smallest total margin for all its available colors.

The frequency priority rule selects a frequency for the selected user with the aim to minimize the impact of the assignment on other users. To that purpose, we simulate the assignment of each available color for the selected user and compute the margin of the users that have not been assigned a color yet. Initially, we have $Q = U$. At each step of the greedy algorithm, a user i is removed from Q and is either rejected or assigned a color. We describe hereafter the rules selected for scenario 1.

For both priority rules, we use the frequency margin, where the margin $M(i, c)$ of a user $i \in Q$ for a color c is given by $M(i, c) = \alpha_i - \sum_{j \in U \setminus Q, c(j) = c} \delta_{ij}$ where $c(j)$ denote the color allocated to user j. Namely, this margin corresponds to the positive or negative slack of the cumulative interference constraint for user i terminal if it is assigned color c.

The principle of the user priority rule is to select first the most constrained users in terms of available colors, as for the well-known DSATUR algorithm for standard graph coloring problems. The proposed rule selects the user having the smallest number of available colors, a color c being available for user $i \in Q$ if $M(i, c) \geq 0$ and if for all users $j \in U \setminus Q$ having already been assigned color c, $M(j, c) \geq 0$. In case of a tie, we select the user having the smallest total margin for all its available colors.

The frequency priority rule selects a frequency for the selected user with the aim to minimize the impact of the assignment on other users. To that purpose, we simulate the assignment of each available color for the selected user and compute the margin of the users that have not been assigned a color yet. Initially, we have $Q = U$. At each step of the greedy algorithm, a user i is removed from Q and is either rejected or assigned a color. We describe hereafter the rules selected for scenario 1.

For both priority rules, we use the frequency margin, where the margin $M(i, c)$ of a user $i \in Q$ for a color c is given by $M(i, c) = \alpha_i - \sum_{j \in U \setminus Q, c(j) = c} \delta_{ij}$ where $c(j)$ denote the color allocated to user j. Namely, this margin corresponds to the positive or negative slack of the cumulative interference constraint for user i terminal if it is assigned color c.

5. Computational experiments and simulations

The ILP formulations have been solved using ILOG CPLEX 11.1 [6] and the greedy algorithms have been coded in C++. We tested the proposed algorithms with $C = 8$, increasing stepwise the numbers of users by 20 from 20 to 200 users (which corresponds to reuse rates from $20/8 = 2.5$ to $200/8 = 25$). For each number of users, a set of 100 FAP data instances was obtained by randomly generating the user positions on the service area. The results were obtained on an Intel Core 2 Duo processor with 2.33GHz. The CPU time for the ILP resolution has been limited to 60 seconds after which the best obtained integer solution is returned. The CPU times for the greedy algorithms were negligible.

Fig 3 displays, for each scenario/algorithm/number of users, the average number of accepted users in the computed frequency allocation plans.

6. Analysis

Fig 3 clearly shows that the best results in terms of quality of service using the proposed algorithms are obtained for scenario 1 (SDMA-based system). ILP-based algorithms obtain significantly better results than the simple greedy algorithms for both scenarios. However, the greedy algorithm for scenario 1 performs better than the ILP-based algorithm for scenario 2. This numerical example with real parameters for the simulation shows qualitatively the benefits of scenario 1. We can also note that beyond 80 users, which correspond to a reuse rate of 10, differences between algorithms increase.

7. Conclusion

In this paper we have developed some integer linear programming formulations involving cumulative interferences. The cumulative approach enables to take into account the non linear characteristics of interferences. Combining the SDMA system and the cumulative approach, we proved in section 6 the efficiency of scenario 1 with the two algorithms. Even better results and system optimizations using SDMA could be obtained by allowing shifts of the beam centers around the users and adjusting the EIRP parameters, yielding as a counterpart harder FAP. These features, together with consideration of dynamic aspects, constitutes the basis for further research.

REFERENCES

