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ABSTRACT 
In this paper, a reduced elasto-dynamic model of the 

robotic based milling process is presented. In contrast to 

previous works, it takes into account the interaction between 

the milling tool and the workpiece that depends on the end-

effector position, process parameters and cutting conditions 

(spindle rotation, feed rate, geometry of the tool, etc.). To 

reduce the dimension of the problem, the robot dynamics is 

described as an equivalent mass-spring-damper system with six 

dimensions. This approach, based on the Rayleigh-Ritz 

approximation, aims at decreasing computational cost and at 

avoiding inaccuracy due to ill-conditioning in the full size 

model. To achieve a realistic modelling of the milling process, 

the machining efforts due to the interaction between robot, tool 

and working material are introduced into the robot model and 

calculated at each time instant. Using this global model that 

integrates the robot dynamics and the milling process 

particularities, it is possible to obtain the movement of the robot 

end-effector and corresponding quality of the final product 

(profile, macro and micro geometry, roughness, etc.). In 

addition, this model allows selecting the best process 

parameters and avoiding the vibratory behavior of this 

machining system which can dramatically affect the milling 

quality. 

The developed model is applied to the behavior analysis of 

KUKA KR240 robot used for milling of an aluminum 

workpiece for automobile industry. This allows finding 

acceptable range for robot motion profile parameters. 

1. INTRODUCTION 
Parallel robots have increasingly been used in industry in 

the last few years, mainly for pick-and-place applications or 

high-speed machining [1], [2]. This interest is due to their main 

properties, i.e. their higher rigidity and dynamic capacities 

compared with their serial manipulator counterparts. 

Having a good knowledge of the elasto-dynamic behavior 

of a manipulator plus its interactions is a crucial point. In this 

sense, accurate elasto-dynamic models are necessary at both the 

control stage [3]–[5] and design stage [6]–[8], in order to 

optimize the geometry, as well as the shape of the elements of 

the manipulator. This will lead to the creation of a mechanism 

in which vibrations will be minimized.  

Several elasto-dynamic models have been proposed and 

used in the literature. Three main general methods can be 

distinguished: 

 Finite element analysis (FEA); the FEA method is proved to 

be the most accurate and reliable, since the links/joints are 

modeled with its true dimension and shape [7], [9]–[12], but 

is highly time-consuming. This method is usually applied at 

the final design stage for the verification and component 

dimensioning.  

 Matrix structural analysis (MSA) method is a common 

technique in mechanical engineering [13], [14]; it 

incorporates the main ideas of the FEA but operates with 

rather large flexible elements (beams, arcs, cables, etc.). This 

obviously yields reduction of the computational expense and, 

in some cases, allows analytical stiffness matrix to be 

obtained. However, this method can only be applied to links 

with simple shapes and requires improved skills in FEA. 

 Virtual joint methods (VJM) [8], [15], which is also referred 

to as ‘‘lumped modeling”, is based on the expansion of the 

traditional rigid model by adding virtual joints (localized 

springs), which describe the elastic deformations of the 

manipulator components (links, joints and actuators). 



 2  

Generally, lumped modeling is simpler to use than MSA and 

provides acceptable accuracy in reduced computational time.  

The main limitations of these models are: 

 Because of the large number of elements they use, they are 

still highly time-consuming and can lead to few accurate 

results because of the problem dimension;  

 They do not incorporate accurate modeling of the robot 

interactions, especially regarding the milling process. 

The purpose of this paper is to propose a reduced elasto-

dynamic modeling approach on parallel robots, based on VJM, 

combined with an accurate modeling of the milling process 

efforts. This approach is validated on a KUKA KR240 robot 

used for milling of an aluminum workpiece for automobile 

industry. 

2. REDUCED ELASTO-DYNAMIC MODELING OF 
ROBOTS 

2.1 Problem Statement 
Let us consider a general robot made of n elements and m 

actuators. Considering that the robot is in an equilibrium 

position, its elastic potential energy is given by [9] 

1 2 T

e totV  q K q , where Ktot is the global stiffness matrix of 

size p×p, p being the number of elastic coordinates taken into 

account, and q the vector of elastic generalized coordinates. 

The robot kinetic energy is given by 1 2 T

totT  q M q , where 

Mtot is the global mass matrix of size p×p. Starting from these 

definitions, and considering that external forces F are applied, it 

can be demonstrated that the system is governed by the relation 

[9], [15]: 

 
tot tot M q K q F  (1) 

Solving this problem involves finding the p generalized of 

the problem and also inverting the p×p matrix Mtot, which is 

highly time-consuming and can lead to few accurate results 

because of the problem dimension. In order to avoid such kind 

of drawbacks [16] has recently proposed a new procedure to 

compute the deformations of the robot when a force is applied 

at the end-effector. This procedure computes a stiffness (and 

also compliance) matrix Kr (and Sr, resp.) of dimension six that 

represents the behavior of the robot in terms of deformations. 

Moreover, during the procedure, only inversions of 6 

dimensional matrices are involved, which considerably reduces 

computational time and avoids accuracy problems due to ill-

conditioning of the large global stiffness matrix. Thus, the 

global p dimensional problem defined with respect to all 

variables q has been reduced to a 6 dimensional problem 

defined with respect to platform deflections t only. As a result, 

the entire robot can locally be seen as a virtual spring of 

dimension six that deforms when applying a wrench on the 

end-effector. 

Starting from these considerations, it would be interesting 

to reduce the dimension of the problem by expressing equation 

(1) as a function of the reduced stiffness matrix Kr, of the 

platform deflections t and, also, as a function of a reduced 

mass matrix that will be denoted as Mr, which could represent 

the global behavior of the robot in terms of natural frequencies. 

The first section of the paper will be focused on this problem. 

2.2 Computation of the Robot Natural Frequencies – 
Rayleigh-Ritz Approximation 

Considering the robot with free oscillations, equation (1) 

becomes 
tot tot M q K q 0 . A solution ql of this equation can 

be found by solving the system: 

  2

l tot tot l  M K q 0 , with 2l lf   (2) 

where ql represents the vectors of the shape of free vibrations of 

the system for the l-th natural mode, fl and l are their 

corresponding natural frequency and pulsation, respectively. 

If the matrix 2

l tot tot M K  is singular (which is always the 

case when l is one of the modal pulsation of the robot), ql 

becomes non-null and is the eigenvector corresponding to the 

pulsation l. There is an infinity of vectors ql validating (2) (for 

a given l), but all are proportional to the others. Vector ql is 

not necessarily dependent of time, but almost represents the 

amplitude of the vibrations. Therefore, when only the l-th mode 

of the system is excited, the displacements of all springs may 

be written under the form: 

  * sinl l l lt  q q  (3) 

where l is a phase difference corresponding to the mode l. 

When all modes are excited, the displacement q of all spring 

centers may be written in the form: 

  *

1 1

sin
p p

l l l l

l l

t 
 

   q q q  (4) 

The most common way to find the values of the pulsation 

l is to solve the eigenvalue problem 

  2 1det 0l tot tot  I M K  (5) 

where I is an identity matrix of dimension p. 

Another way to find the natural pulsation l of the mode l 

would be to know the exact amplitude l of the displacements 

ql for this mode. For the natural mode l, the potential and 

kinetic energies of the system are given by: 

 
 

 

* * 2

* * 2 2

1 2 1 2 sin

1 2 1 2 cos

T T

e l tot l l tot l l l

T T

l tot l l l tot l l l

V t

T t

 

  

  

  

q K q q K q

q M q q M q
 (6) 

From the principle of energy conservation, it follows that 

    max max 0eV T  , i.e.  2 0T

l l tot tot l  q M K q  (7) 

It is obvious that the exact knowledge of the amplitude ql 

is an impossible task without a direct measure on the system of 

all the displacements of the robot nodes. However, this vector 

may be approximated by another denoted as ˆ
lq  that is close to 

the exact amplitude ql. Introducing this approximated vector ˆ
lq  

into (7) will allow us to find a corresponding value of ˆ
l  and, 

as a result, ˆ
lf  which is the approximated natural frequency of 
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the system. Such kind of elasto-dynamic problem resolution is 

called the Rayleigh-Ritz method [17]. 

The better the approximation, the more accurate the value 

of ˆ
l . The designer’s skills in terms of understanding and 

analysis of robot physical behavior here are of the utmost 

importance. In this sense, let us recall that the first natural 

frequencies are associated with the highest level of energy due 

to vibrations, and represent the highest displacements of the 

structure. 

Using the Rayleigh-Ritz approximation in order to 

compute the first natural frequencies, the stresses for which the 

maximal displacements appear have to be found. From our 

experience in elastic behavior of robots, it is assumed that a 

good approximation of these maximal displacements will be the 

deformation of the robot with a load applied at the end-effector, 

and it can be shown in the following that this hypothesis is 

valid. Using this assumption, the displacements ql of all springs 

can be computed as a function of the end-effector 

displacements t, i.e. it is possible to define a matrix Jq such as: 

 l  p
q J δt  (8) 

As a result, introducing (8) into (7) will lead to 

  2T T T

l tot tot  q p q qδt J M J J K J δt 0  (9) 

where the matrices 
T

totq pJ M J  and 
T

totq qJ K J  are now of 

dimension 6. It should be mentioned here that, in the case 

where an external load is applied at the end-effector only, the 

term 
T

totq qJ K J  is equal to the reduced stiffness matrix Kr of the 

robot. Therefore, (9) can be rewritten as: 

  2T

l  
r r

δt M K δt 0 , with 
T

totr q qM J M J  (10) 

In the following sections it is explained how to obtain 

expressions (8) and (10). 

2.3 Reduction of the Link Mass Matrix 

It is possible to decompose the previously cited task into 

two sub-problems. First, the displacements of a beam j can be 

expressed as a function of the displacement of its extremities. 

Then, one can express the beam extremity displacements as a 

function of the platform displacements t. Using this approach 

will allow for a reduction in the size of the link mass matrices, 

and thus avoiding creating global mass matrices Mtot with very 

large dimension. 

Two main ways can be followed to reduce the size of the 

link mass matrices. The first one consists in discretizing the 

beam j into pj rigid links and springs and to express their 

displacements as a function of the beam extremity 

displacements. However, such numerical method must be 

repeated for each link and, thus, increases the size of the 

algorithm and decreases its efficiency. As a result, it is preferred 

to use the following procedure which allows analytical 

expressions to be obtained for the reduced link mass matrices. 

 
 

Figure 1: Displacements and elastic deformations of a beam. 

Let us consider the link j, modeled as a beam (Figure 1). At 

this beam is attached a local frame represented by the vectors 

xj, yj and zj. Before any deformation of the system, the beam j 

is linked (rigidly or by a passive joint) to beams (j–1) and (j+1) 

at points Oj and O(j+1), respectively (Figure 1). After 

deformation of the robot, the beam extremity located at Oj is 

displaced from 1 1 1

1 2 6, , ,
T

j j jq q q   
1

j
q  and the one located at 

O(j+1) is displaced from 2 2 2 2

1 2 6, , ,
T

j j jq q q   j
q , where the three 

first components of each vector correspond to the translational 

displacements along local xj, yj and zj axes, respectively, and 

the three last components to the rotational displacements along 

the same axes. It should be mentioned that in the remainder of 

the paper, the left superscript “0” will stand for the coordinates 

expressed in the global frame. If no left superscript is 

mentioned, the vector is expressed in the local frame attached 

to the link j. 

The general formula for the kinetic energy of an elastic 

Bernoulli beam is equal to [14]: 

 

 
0

1 2

diag , , , , ,

jL

T

ij j

p y z

j j j j j j

T dx

A A A I I I





 j j j

j

q Q q

Q

 (11) 

In this expression, jq  represents the velocity of the beam 

cross-section located at position x from the local reference 

frame (Figure 1), Lj is the length of the beam j, j the mass 

density at cross-section x, Aj its area, 
p

jI  its torsional constant 

and 
y

jI , 
z

jI , the quadratic momentums along yj and zj, 

respectively. 

For the l-th natural mode, and from (4), the kinetic energy 

can be rewritten as: 

  2 2

0

1 2 cos

jL

T

j l l l jT t dx      j j j
q Q q  (12) 

qj being the amplitude of the displacement of the beam cross-

section located at position x from the local reference frame 

(Figure 1). 

In the Rayleigh-Ritz approximation, considering that the 

deformations due to the natural vibrations are similar to those 

obtained when an external load is applied at the robot end-

effector only, each link of the structure will deform due to the 

stresses transmitted through the robot joints at points Oj. As a 
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result, the deformations j of the beam cross-section (Figure 1) 

can be approximated by the deformations of a tip-loaded beam, 

given by [14] 

  diag , , , , ,j j j j j jf g g f h h 2

j j
δ δ  (13) 

where  2

jx L j jδ δ  represents the deformation of the beam 

at its tip and 

 
     

   

2 3

2

, 0.5 3 ,

0.5

j j j j j

j j j

f x x L g x x L x L

h x x L x L

  

 
 (14) 

As a result, the global displacement qj of the beam cross-

section at x can be expressed as a sum of two terms: 

 
 3

3 3

 
  
  

1

j j j

I D
q q δ

0 I
, with  

0 0 0

0 0

0 0

D x

x



 
 

 
 
  

 (15) 

In this sum, the left terms corresponds to the displacement 

of the undeformed beam due to the displacement of the node 

located at Oj. 

Introducing (13) to (15) into (12) leads to the following 

equation: 

  2 2 0 0 0 0 01 2 cos
T

red

j l l l jT t           
1 2 1 2

j j j j
q q M q q (16) 

where the expressions of each components of matrix 
0 red

jM  are 

given in [18]. 

2.4 Reduction of the Robot Mass Matrix 
Using the results of the previous section, the total kinetic 

energy of the system is given by: 

  21 2 cos T

j l l l tot

j

T T t     q M q  (17) 

with  0 0 0

1 2diag , , ,red red red

tot pM M M M  and 

            0 1 0 2 0 1 0 2 0 1 0 2

1 1 2 2, , , , , ,
T T T T T T

T

p pq  
  

q q q q q q
  

It is necessary to express the relationship linking all vectors 
0 v

jq  (v = 1, 2) to the end-effector displacements t. For a robot 

composed of k legs and using the VJM [16], this displacement 

is equal to: 

 i i pi i δt J θ J p  (18) 

where i represents the deformations of all virtual springs of the 

leg i and pi the displacements of its passive joints, and Ji and 

Jpi are Jacobian matrices relying these displacements to the 

displacement t. These matrices can be obtained by the 

differentiation of the global transformation matrix T
i
 of the 

chain i including rigid, passive and elastic coordinates [16].  

After several mathematical derivations extracted from [16], 

the displacement pi of the passive joints of leg i can be expres- 

 
Figure 2 : Architectural representation of a general parallel 

manipulator 

sed as a function of t [18] and it can finally be shown that the 

relation between q and t can be written as: 

 
q

q J δt  (19) 

where the expression of Jq is detailed in [18]. 

Introducing this relation into (17) will lead to: 

  2 21 2 cos T

l l lT t    rδt M δt  (20) 

where the expression of Mr is given at (10). 

As a result, from (10), finding the robot natural frequencies 

relies on solving the 6 dimensional eigenvalues problem 

  2 1

6det 0l
 
r r

I M K  (21) 

2.5 Reduced Elasto-Dynamic Model 
To conclude this section, it is necessary to mention that, 

from the previous obtained results, the robot free dynamic 

behavior can be modeled using the following expression: 

  
r r

M δt K δt 0  (22) 

As a result, if external milling forces F are applied on the 

tool, (22) becomes:  

  
r r

M δt K δt F  (23) 

This expression will be used in the following sections in 

order to analyze the robot behavior during milling process. It 

should be mentioned that in order this model to be valid, the 

displacements of the robots should be sufficiently slow so that 

the vibratory phenomenon are mainly due to the milling process 

excitations. Let us now define the expressions for the 

computation of the milling forces. 

3. CUTTING FORCE MODEL 
In milling process, the cutting force F that appears in 

equation (23) is caused by the interaction between the tool and 

the workpiece. It is a contact force and it is distributed along 

the affected area of the tool cutting part [19]–[21]. In robotic 

machining, the tool is mounted on the robot end-effector. In that 

case, the cutting force serves as a source of an additional 

external loading for robot and influences its motion. To 
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evaluate this influence and to correctly analyze the robot 

behavior while machining, model of cutting force should be 

defined. 

3.1 Basic Expressions 
Most of existing works in the area of machining are based 

on Merchant’s model of cutting, where he assumed that the 

tool/workpiece contact force is distributed uniformly along the 

tool cutting edge [20]. Based on this hypothesis, a complex 

three-dimensional process of cutting can be analyzed referred 

to the one separated tool cross-section. In this cross-section the 

distributed cutting force can be presented as an equivalent point 

force Fc applied to the cutting edge. 

In general, the cutting force Fc has a nonlinear nature and 

depends on many factors such as cutting conditions, properties 

of workpiece material and tool cutting part, etc. [22], [23]. But, 

for given tool/workpiece combination, the force Fc could be 

approximated as a function of an uncut chip thickness h, which 

represents the desired thickness to cut. 

The typical diagram Fc(h) is presented in Fig. 3 [24]. To 

describe it analytically, different models (linear, exponential, 

fractional, etc.) can be found in literature. The linear model 

perfectly suits to conventional CNC based machining 

(especially with single-tip tools). Here, usually the high rate 

removal of working material produces large chip thickness and 

the relation Fc(h) could be correctly approximated with a linear 

function [19], [24] (Fig. 3-a): 

     , 0c T EF h k h k L h    (24) 

where kT is the so called tool/workpiece cutting energy, kE is the 

tool/workpiece edge force, L is the width of cut. The model 

parameters kT, kE are estimated experimentally for a given 

combination of tool/working material. 

However, in robotic based machining the robot compliance 

could be the source of considerable relative tool/workpiece 

displacement. Even, the loss of tool/workpiece contact can be 

observed. As a result of such behavior, the material removal 

rate and the corresponding cutting force depend on current 

position of the tool on its path. So, the linear model Fc(h) 

cannot be applied correctly and some nonlinear approximations 

are required (exponential, fractional, etc.). 

The exponential model [21] corresponding to Fig. 3-b is 

based on the equation 

   , 0m

c FF h k h L h   (25) 

where kF is the so called specific cutting force and the power 

m<1 depends on the properties of the workpiece and the tool 

cutting part. The parameters kF, m are also estimated 

experimentally for a given combination of tool/working 

material. This model is quite popular in industrial applications 

with machines CNC to analyze different machining operations 

with multi-edge tools [25]. But the exponential approximation 

does not fit well the physical phenomena of cutting process in 

case of small removal of material (i.e. for small h). The main 

reason for this is that the function (25) has infinite derivative 

when h tends to zero, which does not correspond to the reality. 

In order to avoid this drawback, the fractional model [26] was 

proposed, that corresponds to Fig. 3-c and is based on the 

expression 

  
 

2

0 , 0
1

s s

c

s

h h r h h
F h k L h

h h


 


 (26) 

where 
0 1r k k   depends on the parameters k∞, k0 that 

define the so called stiffness of the cutting process for large and 

small h respectively (see Fig. 3-c) and hs is a specific chip 

thickness, which depends on the current state of the tool cutting 

edge. The parameters k0, hs, r are evaluated experimentally for a 

given combination of tool/working material. 

In this work, the cutting force will be computed using the 

fractional model (26). To take into account the latter 

phenomena, it is allowed for h to be either positive or negative, 

assuming that 

   0, if 0cF h h   (27) 

For multi-edge tool the machining surface could be formed 

by means of several edges simultaneously. The number of 

working edges varies during machining and depends on the 

relative tool/workpiece position. Thus, the total force Fc of such 

interaction is a superposition of forces Fc,i generated on each 

tool edge i, which is currently in contact with the workpiece. 

Due to the presence of two different types of tool motion 

(spindle rotation, feed) the contact force Fc,i can be described 

with its radial Fr,i and tangential Ft,i components. In accordance 

with Merchant’s model [20], the t-component of cutting force 

Ft,i can be computed with the equation (26). The r-component 

Fr,i is related with Ft,i by following expression [27] 

 , ,r i r t iF k F  (28) 

where the ratio factor kr depends on the tool/workpiece 

characteristics. 

In robotic machining it is more suitable to operate with 

forces expressed in the robot tool frame {x,y,z}. Then, the 

corresponding components Fx, Fy of the machining force Fc are 

expressed as follows 

 

, ,

1 1

, ,

1 1

cos sin

sin cos

z z

z z

n n

x r i i t i i

i i

n n

y r i i t i i

i i

F F F

F F F

 

 

 

 

  

 

 

 

 (29)  

where nz is the number of currently working cutting edges, φi is 

the angular position of the i-th cutting edge (the cutting force in 

z direction Fz is negligible here) 

It should be stressed that the cutting force components Fr,i, 

Ft,i mentioned in equation (29) are computed regarding the 

corresponded chip thickness hi, which should be also evaluated. 

Using mechanical approach of analysis of machining operation, 

the parameter hi is computed in general as the geometrical 

distance between the position of the given tooth i and the 

current machining profile. 
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Figure 3: Linear (a), exponential (b) and fractional (c) cutting force 
models Fc(h). 
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Figure 4: The force interaction between the i-th tooth and 
workpiece and corresponding kinematics. 

Let us present algorithms for the computation of hi during 

process of robotic milling for three different types of tool 

fixation, assuming that machining is performed in aluminum 

workpiece with straight borders. The cutter of the external 

radius R=10mm with Nz=4 teeth distributed uniformly over the 

tool is used. This tool/workpiece combination corresponds to 

the following cutting force model parameters k0=
65 10 N/m, 

hs=
51.8 10 m, r=0.1, kr=0.3. Let us suppose that the feed is 

applied only in x direction (robot base frame). Below, the 

instant t=0 corresponds to the tool position when one of the 

teeth is in contact with the working material. Also, it will be 

supposed that the feed rate vf and the spindle rotational speed Ω 

are constant during whole machining process. 

3.2. Case A: Rigid Tool Fixation 
The objective of this case study is to understand the 

mechanics of the tool/workpiece interaction, while any 

dynamic aspect related to the robot compliance is excluded 

from the analysis. In that case the applied feed rate and spindle 

rotational speed totally determine the position {xi, yi}, 1, zi N  

of all tool cutting edges referred to robotic base frame at each 

instant of machining t 

 
  

cos , sin

2 1 , 1,

i f i i i

zi z

x v R y R

N i i N

  

  

   

 W   
 (30) 

The orientation αi of the i-th tooth velocity vi can be 

defined by the feed rate vf and the spindle rotational speed Ω at 

each instant as   atan2i f x yv +v va W W  with 

sin , cosx i y iv R v R W W W  W . The angle αi provides 

computing the chip thickness hi as the displacement of TCP 

corresponding to the one tooth period 2 zN W  and referenced 

 

   

   
(a) (b) (c) 

Figure 5: Different phases of tool/workpiece interaction (case Nz=4) and corresponding machining forces; (a) – process of tool 
engaging into the workpiece, only one tooth can be in contact with workpiece at the same time, (b) – process of tool engaging into the 

workpiece, several teeth could be in contact with workpiece at the same time, (c) – machining with fully engaged tool. 
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to the i-th tooth, when it is situated inside the working material. 

If the given tooth is located outside the working material, the 

corresponding chip thickness hi is equal to zero. The following 

expressions allow evaluating hi for all possible positions of the 

i-th tooth on its path while machining 

 

0,

sin , 2 , 1,

2 sin , 2

i

zi i i i f z

f z i i f z

x R

h x R x v N i N

v N x v N

a 

 a 

 


   W 
 W  W

 (31) 

The advantage of the presented algorithm of computing the 

chip thickness is that different phases of tool/workpiece 

interaction illustrated in Fig. 5 can be identified. 

It should be mentioned that the phase of tool approaching 

to the workpiece corresponding to the zero machining force is 

not considered here. For the remaining phases a detailed 

analysis is presented below: 

 The phase of tool engaging into the working material (phase 

I) corresponds to the variable contact area between the tool 

and the workpiece. The TCP during this phase is located 

always outside the workpiece. In fact, the phase I can be 

divided into two sub phases: 

 Phase Ia: In the beginning of milling operation a small 

area of workpiece is affected by the machining 

process. This fact and presence of two types of motion 

(feed, spindle rotation) form the case, when only one 

tooth can participate in cutting at the same time (Fig. 

5-a). Such behavior produces intermittent machining 

forces Fx and Fy with the frequency 2zN W  Hz. The 

sub phase 1 is very limited in time and its duration 

depends on the feed rate, the spindle rotational speed 

and the number of teeth Nz. For example, if 

vf=4m/min, Ω=10
4
rpm, Nz=4 the duration of phase Ia 

is only 0.04sec. 

 Phase Ib: It corresponds to a case, when several teeth 

can participate in cutting at the same time, but the TCP 

does not reach the workpiece border (Fig. 5-b). As a 

result an oscillatory periodic behavior in machining 

forces Fx and Fy is observed. But, because of different 

number of currently working teeth, the force patterns 

are not homogenous. 

 The phase of machining with fully engaged tool (Phase II) 

starts when TCP reaches the workpiece border (Fig. 5-c). In 

that case always the same number of teeth (nc=2 for the tool 

with Nz=4) is working at every instant of cutting process. It 

produces harmonic periodic machining forces Fx and Fy 

with the frequency 2Z W  Hz. 

So, even with the analysis of tool motion during machining 

without any dynamic aspect, the oscillatory behavior of 

machining forces can be detected for whole process. The high 

frequency of such oscillation (for example, Ω=10
4
rpm, Nz=4 

give frequency of 667Hz) does not affect the motion of robot 

but it can be crucial for robot control system and should be 

considered in design of robotic machining process. 
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Figure 6: Machining force patterns with average forces referenced 

to the frame {x,y}. 

3.3 Case B: Tool Fixation with Compliance in x 
Direction 

In contrast to Case A, the dynamic aspect of tool motion 

associated with the robot compliance is considered here. Thus, 

at each instant of machining, the position xTCP is defined as a 

superposition of tool displacement xf due to feed and a dynamic 

displacement δx due to compliance of the fixation: 

TCP fx x x  . The first component f fx v   is known at each 

instant of process while the second one depends on the current 

position of the tool regarding to the machining profile. In this 

case, the dynamic displacement δx can be obtained by reducing 

the equation (23) to a one-dimensional problem and by 

introducing the damping related to the machining process and 

robot control algorithms 

 
x x xM x C x K x F      (32) 

where M is the equivalent mass of the tool fixation, Kx and Cx 

are its stiffness and damping respectively and Fx is the 

machining force in x direction. The damping 2x xc k m  is 

related to the damping factor ζ, which can be estimated 

experimentally. 
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Figure 7: Evaluating the tool/workpiece intersection Ai and 

computing the corresponding chip thickness hi. 
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Figure 8: Machining force patterns and TCP dynamic displacement 

in case of 1DOF model (M=100 kg, Kx=
53 ×10  N/m, ζ=0.05, Nz=4, 

Ω=10
4
 rpm, vf=4 m/min). 

 

 
Table 1: Influence of tool fixation parameters on the tool motion; τs 
is the settling time, PO is the overshoot, f1 is the first frequency of 
the tool dynamic displacement in feed direction; ζ=0.05, Nz =4, 
Ω=10

4
 rpm, vf=4 m/min 

M, kg Kx, N/m τs, sec |xs|, mm PO, % f1, Hz 

100 60.05 10  1.2 0.80 52 3.5 

100 60.30 10  0.6 0.13 30 8.8 

100 60.60 10  0.5 0.07 23 12.4 

100 61.00 10  0.4 0.04 17 15.6 

100 62.00 10  0.4 0.02 11 22.6 

150 62.00 10  0.5 0.02 14 18.3 

200 62.00 10  0.5 0.02 18 15.6 

 

Next, the position of the i-th tooth in the robot base frame {x,y} 

can be easily determined: 

 sin , cos , 1, zi TCP i i ix x R y R i N     .  

Comparative analysis of this position with respect to the 

current machining profile defines the chip thickness hi 

removing by i-th tooth. But, the main issue here is to define 

whether i-th tooth participates in cutting for given instant of 

process. For this reason, it is proposed to create a mesh on the 

workpiece, where each node j ( 1, wj N , Nw is the number of 

nodes) can be filled with “1” or “0”: “1” corresponds to nodes 

situated in the workpiece area with material, “0” corresponds to 

nodes situated in workpiece area that was cut away. 

In order to define the number of currently cut nodes by the 

i-th tooth, the previous instant of machining process should be 

considered. Let us define Ai as an amount of working material 

that is currently cut away by the i-th tooth. So, if node j filled 

with “1” is located inside the sector, it changes to “0” and Ai is 

increasing by x ys sD D  (Δsx, Δsy are node steps in x and y 

directions respectively). Analyzing all potential nodes and 

computing Ai, the chip thickness hi, removed at given instant of 

process by the i-th tooth, can be estimated by ,i i ih A R a D  

1, zi N . The angle Δαi determines the current angular position 

of the i-th tooth regarding to its position at the instant τ-Δτ (Δτ 

is the time step) and referred to the position of TCP at τ-Δτ. 

Here, in contrast to the previous case, the dynamic aspect 

of the tool motion allows 

 estimating of deviation in tool motion from the desired one 

because of the robot compliance in the feed direction. It 

should be mentioned that this deviation affects the Cartesian 

stiffness of robot but does not influence the machining 

profile quality. For example, following parameters M=100 

kg, Kx=
53 10  N/m, ζ=0.05, Nz=4, Ω=10

4
 rpm, vf=4 m/min 

provide deviation in the feed direction of 0.13mm (Fig. 8). 

But it is not essential for this application. 

 detecting of vibratory behavior of tool motion while it is 

engaging into the workpiece. In some cases the low 

frequency of such motion can excite robot natural 

frequency, destabilize machining operation and even 

damage the tool or/and workpiece. For example, the milling 

process with following parameters M=100 kg, Kx=
53 10  

N/m, ζ=0.05, Nz =4, Ω=10
4
 rpm, vf=4 m/min generates 

vibration of f1=8.8Hz from the beginning of cutting process 

in addition to the frequency 667Hz related to the spindle 

rotation. 

More details on influence of the tool fixation parameters 

(M, Kx) on the dynamics of its motion during machining are 

presented in Table 1, which covers the range of values for M, Kx 

computed for different configurations of the robot KUKA KR 

240 using equations presented in Section 2. 

As it can be observed from the table, changing the fixation 

parameters (i.e. the robot configuration) influences low 

frequencies (about 10 – 20 Hz) of the tool motion. 
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Figure 9: Machining force patterns and TCP dynamic 

displacements in case of 2DOF model (Mr,xx=Mr,yy=100 kg, 

Kr,xx=Kr,yy=
53 ×10  N/m, Nz=4, Ω=10

4
 rpm, vf=4 m/min). 

 

Table 2: Influence of the tool fixation parameters on tool dynamic 
behavior; f1x, f1y are first frequencies of the tool dynamic 
displacement in x and y directions respectively; Nz =4, Ω=10

4
 rpm, 

vf=4 m/min 

M r,xx=M r,yy, 

kg 

K r,xx=K r,yy, 

N/m 

|xs|, 

mm 

|ys|, 

mm 

f1x, 

Hz 

f1y, 

Hz 

100 60.05 10  0.80 2.61 3.2 2.2 

100 60.30 10  0.13 0.43 8.2 7.3 

100 60.60 10  0.07 0.22 12.4 11.4 

100 61.00 10  0.04 0.13 15.6 14.6 

100 62.00 10  0.02 0.06 22.4 21.5 

150 62.00 10  0.02 0.06 18.3 17.4 

200 62.00 10  0.02 0.06 15.6 15.6 

 

Suitable robot configurations to perform given machining 

operation could be defined. But, it should be mentioned that 

this one dimensional equivalent model presented here allows 

analysis of machining process dynamics in the feed direction 

only. In order to evaluate behavior of the tool motion more 

closely to the real machining operation, this model should be 

extended. 

3.4 Case C: Tool Fixation with Compliance in x and y 
Directions 

In this case, a dynamic aspect of tool motion in feed 

direction (x) and orthogonal to it (y) is considered. Then, 

similarly to the Case B, at each instant of machining process, 

the position of TCP is determined by 

,TCP f TCP fx x x y y y     , where , ,,f f x f f yx v y v   . 

The dynamic displacements δx, δy could be obtained from the 

equation (23) which, in this case, is reduced to 

 
x

y

Fx x x

Fy y y

  

  

      
         

       
r rΜ C Κ  (33) 

where Mr (2×2) is the equivalent mass matrix of the tool 

fixation, the matrices Kr (2×2) and C (2×2), where 

, , , ,2i j i j i j i jC K M  characterize the fixation stiffness and 

damping respectively (which can be estimated experimentally), 

Fx and Fy are the machining forces in x and y directions. 

In contrast to the previous case, the position of the i-th 

tooth at each process instant t includes dynamic components in 

both directions: sin ,i TCP ix x R    cos ,i TCP iy y R    

1, zi N . The algorithm of computing the chip thickness hi for 

given position of tooth {xi, yi} is similar to Case B. 

In order to illustrate the advantages of this two dimensional 

model and its ability to detect some phenomena (that are not 

visible in Cases A, B) the robotic milling process is simulated 

for KUKA KR 240 robot with the following parameters 

5

5

100 0 550 03 10 0
, kg, , , ,

0 100 0 550 sec0 3 10

N kg

m

    
      

    
r rM K C . 

Here, the equivalent mass matrix Mr is computed in accordance 

with the method presented in the Section 2 of this paper. The 

stiffness Kr is the structural stiffness of the robot, referred to its 

end-effector. It should be noted that in practice the non diagonal 

elements in these matrices are non zero. But, with this 

simplified case it is possible to identify qualitatively the 

dynamic nature of the tool behavior in the direction (y) 

orthogonal to the feed. Simulation results corresponding to this 

case study are presented in Fig. 9. 

It should be also stressed that the tool dynamic behavior in 

the feed direction (x) is similar to the results, which were 

obtained in the Case B. The displacement in y-direction has an 

essential dynamic component during the phase of tool 

engagement (Phase I) into the workpiece and becomes constant 

while machining with fully engaged tool. The corresponding 

frequency f1y=7.3Hz is comparable with the frequency 

f1x=8.2Hz of the tool dynamic displacement in feed direction. 

More details on the tool motion during milling process 

regarding to the parameters of the tool fixation are presented in 

Table 2 (it covers the range of values for Mr,xx, Mr,yy, Kr,xx, Kr,yy 

computed for different configurations of the robot KUKA KR 

240 using the methodology presented in Section 2) 

It should be noted that changing the robot configuration 

affects the tool dynamics in y direction which is crucial 

regarding to the quality of the final product. Hence, considering 

the tool displacement orthogonal to the feed direction is 

essential and the Case C gives more realistic results comparing 

Cases A and B. As it is shown in Fig. 9, the deviation (0.31 – 

0.56mm) in machining profile from the desired one has a 

vibratory behavior during the phase of tool engagement into the 

workpiece. Thus it cannot be suppressed by straightforward 

compensation methods and other compensation techniques 

should be proposed.
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4. CONCLUSION 
In this paper, a reduced elasto-dynamic model of the 

robotic based milling process has been presented. In contrast to 

previous works, it takes into account the interaction between 

the milling tool and the workpiece that depends on the end-

effector position, process parameters and cutting conditions 

(spindle rotation, feed rate, geometry of the tool, etc.). To 

reduce the dimension of the problem, the robot dynamics have 

been described as an equivalent mass-spring-damper system 

with six dimensions. This approach aims at decreasing 

computational cost and at avoiding inaccuracy due to ill-

conditioning in the full size model. To achieve a realistic 

modeling of the milling process, the machining efforts due to 

the interaction between robot tool and working material have 

been introduced into the robot model and calculated at each 

time instant. This model has allowed selecting the best process 

parameters and avoiding the vibratory behavior of this 

machining system which can dramatically affect the milling 

quality. 

The developed model has been applied to the elasto-

dynamic behavior analysis of KUKA KR240 robot used for 

milling of an aluminum workpiece for automobile industry. 

This allowed us estimating the deviation in motion of the robot 

end-effector during machining caused by the flexibilities in 

robot links and joints, which essentially influence the quality of 

the final product. 
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