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Abstract—Seeders (peers that do not request anything but
contribute to the system) allow to leverage the capacities of a P2P
system. While seeding is a natural idea for filesharing or Video-
on-Demand applications, it seems somehow counter-intuitive in
the context of live streaming. This paper aims at describing the
feasibility and performance of P2P live seeding.

After a formal definition of “live seeding” and efficiency,
we consider the theoretical performance of systems where the
overhead is neglected. We then propose a realistic overhead model
and extend the results for this model. The performance of a single
seeder and a set of seeders are considered, as it is not always
possible to perfectly aggregate individual efficiencies.

In details, we provide an explicit upper bound of seeders’
achievable efficiency in a P2P system with linear overhead.
We also propose and study two simple mechanisms that allow
to deploy a live seeding architecture while handling seeders
aggregation, providing near-optimal seeding.

I. INTRODUCTION

Upload bandwidth is one of the main bottleneck in peer-
to-peer (P2P) content distribution, which relies on the upload
capacity of its participants to achieve its purpose. The upload
resource is all the more critical since most todays high speed
Internet access are asymmetric DSLs connections that are not
designed to handle P2P traffic and offer relatively low upload
capacity, with typical uplink/downlink ratios between 1/4 and
1/20. The democratization of very high speed, symmetric,
Internet access like FTTH is expected to improve the upload
capacity of P2P systems but, on the other hand, the evolution
of content quality standards makes the requirements in terms
of content size and rate higher and higher: earlier video feeds
on the Internet were low quality, requiring streamrates of a
few hundred kbps, whereas HDTV implies rates of up to 20
Mbps, possibly more with the upcoming of 3D video content.
It is therefore likely possible that upload will remain a major
bottleneck of tomorrow’s P2P content distribution.

A. Motivation

In order to increase the available resources, a standard
P2P technique is to leverage the capacity of the system by
using seeders, i.e. peers that contribute to the system but are
(currently) not needing anything. Using seeders is quite natural
for filesharing (FS) or Video-on-Demand (VoD): after a peer
has downloaded a given file or video, it becomes a natural
seeder for that content. However, seeding is counter-intuitive
for live streaming (LS) systems: as “live” content is created on
the fly, it cannot be pro-actively possessed by peers. Therefore,
for a peer to act as a seeder, it has to receive at least a part

of the corresponding content, which it does not want to watch
by definition.

B. Scope and contribution

The goal of this paper is to describe the feasibility and
performance one can expect from P2P live seeding from a
bandwidth budget perspective. This generic theoretical frame-
work can be used to derive simple dimensioning rules and
recommendations for the design of P2P live streaming with
seeders.

In details, we analyze the seeders’ efficiency, which is the
goodput (i.e. the useful throughput) they add to the system,
compared to their upload capacity. We provide explicit, tight,
upper bounds for efficiency, taking the overhead explicitly into
account. We also address the aggregation issues that come
from using several seeders. We give conditions and simple
diffusion schemes that allow to nearly achieve the theoretical
bounds, and provide a few simple examples that illustrate the
potential of our findings.

Remark: We made the deliberate choice to focus on a
single scenario (live streaming) and a single type of peer
(seeders). The reason was to get a clean framework for
investigating theoretical performance, especially with regards
to the overhead modeling aspects. This does not preclude of
possible extensions of the approach presented here to other
use cases.

C. Roadmap

The next Section introduces the models we use throughout
the article. The related work with respect to P2P bandwidth
dimensioning is briefly exposed in Section III. Section IV
proposes a formal definition of seeders’ efficiency. Section V
gives a preliminary study of efficiency for two overhead-free
models. It serves as a starting point for the main results of this
paper, which derive the efficiency of seeders in a model with
explicit overhead (Section VI). Applications of the results are
discussed in Section VII. Section VIII concludes.

II. MODEL

We consider a live content that needs to be streamed to a
set of users at a constant rate r. The delivery is handled by
a P2P live streaming system. In contrast to FS or VoD, LS
content cannot be prefetched. A play-out buffer may tolerate
some jitter, but the live constraints usually limit the size of that
buffer to less than a few seconds. It is therefore conservative,
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yet realistic, to assume that LS content must received at exactly
the rate r during the whole watching experience. To compare
with, FS content usually requires no minimal rate, while VoD
content may be prefetched at a rate greater than r.

A. C/S/L systems

We classify the nodes of the system into three categories:
• Central servers are in charge of injecting initial copies

of the stream into the system. We assume they have a
cumulated bandwidth capacity that allows to inject NC
copies of the stream, with NC ≥ 1.

• Leechers are peers that want to watch the live content.
• Seeders1 are peers that do not want to watch the live

content, but can provide bandwidth to the system.
In this model, the main difference between servers and seed-

ers is that servers have implicit access to the feed. For instance,
nodes of a content delivery system should be classified as
servers if you do not consider how the feed is transmitted to
them in the bandwidth budget, or as seeders otherwise.

Remark: we do not focus on the way seeders could be
enforced in a real live streaming system. However, most of
the ideas used in FS or VoD systems should apply to live
streaming. For instance:
• Some idle peers may remain connected to the system.
• In a multi-channel system, leechers from an overprovi-

sioned channel may act as seeders for another channel
that lacks resources.

• A share-ratio policy be used: peers that do not offer
enough instant bandwidth may have to act as seeders for
a while in order to “pay” their bandwidth debt. That kind
of policy can be enforced through penalties (no service
guarantee, reduced catalog) and rewards (higher QoS,
access to premium content).

• In the case of CDNs or ISP-managed networks, nodes
may be deployed by a provider (of content or network)
to enhance the system performance.

We denote by C, L and S the sets of servers, leechers and
seeders respectively. The number of leechers (resp. seeders)
is denoted by NL (resp. NS). Every peer p in L or S has an
upload capacity up ≥ 0 devoted to the service. We assume
that the download capacity is always sufficient to support
the content rate r and a possible overhead. UX and ūX are
respectively the total and average upload bandwidths of set X
(ūX = UX

NX
).

Note that the bandwidth distribution of the seeders may
differ from the one of the leechers. For instance, if seeders are
former leechers forced to remain because of some share-ratio
policy, low bandwidth peers will have to seed longer [2], so the
average seeders’ bandwidth will be lower than the leecher’s
one. One the other hand, seeders deployed by some content or
network provider are expected to deliver higher bandwidths.

A diffusion scheme for the system is a policy that describes
how the content is distributed. We assume here static diffusion
schemes: between any two peers (or servers) p and q, the

1 The terms leecher and seeder come from the BitTorrent vocabulary [1].

scheme gives a stream of goodput 0 ≤ rp,q ≤ r that is sent
from p to q. If 0 < rp,q < r, rp,q is called a substream. For
convenience, we consider that the substreams received by a
given peer are non-overlapping, so a peer p receives an input
of rate

ip =
∑

q∈{L,S,C}

rq,p. (1)

Remark: overlapping substreams can always be seen as
non-overlapping ones: if rp,q and rs,q are overlapping, with
redundant data of rate rp∩s,q , we just have to consider r̃p,q :=
rp,q − rp∩s,q and see a rate rp∩s,q from p to q as overhead.
Choosing p or s as sender of the redundant data is arbitrary.

Servers apart, a node cannot send something it doesn’t
possess, so a diffusion scheme verifies the condition

∀p, q ∈ {L, S}, rp,q ≤ ip. (2)

A scheme is a solution of the live diffusion if it ensures that
all leechers can view the content, i.e.

∀p ∈ {L}, ip = r. (3)

B. Connectivity

In this work, we use an explicit linear overhead to account
for connectivity constraints. We also propose two simpler
models that will serve for didactic purposes: perfect systems
and limited fanout systems.

1) Perfect systems: In perfect systems, peers can arbitrarily
use the upload capacity devoted to the service at no cost [3]. In
particular, a perfect system possesses the following properties:
• No overhead: all the bandwidth capacity can be used to

effective data transfer (goodput);
• Unlimited fanout: one peer can send data to an arbitrary

numbers of other peers simultaneously;
• Stream continuity: the live stream can be divided into

arbitrary small substreams of constant rate.
2) Limited fanout: As we will see in Section V, optimizing

perfect systems often leads to full mesh solutions, which are
not realistic. A first idea to obtain more viable solutions,
without explicitly considering the overhead, is to assume that
the number of non-null substreams rp,q is limited: each peer
p has a limit cp on the number of outgoing connections it
can sustain. This limited fanout implicitly acknowledges that
managing a connection has a cost. Perfect systems correspond
to the extreme case cp =∞, for all p ∈ {L, S}.

3) Explicit linear overhead: In order to increase the realism
of our model, we propose to assume that the overhead is linear:
the actual bandwidth used to transmit at a rate e from one peer
to another is (1+a)e+b, for some constants a, b ≥ 0. a is the
proportional cost and b the additive cost. For simplicity, we
consider that all the overhead cost is supported by the sender
(this assumption will be discussed in VI-B5).

The motivation for this model is that most existing sources
of overhead are, at least in a rough approximation, proportional
or additive:
• Periodic signaling messages (keep-alive, overlay mainte-

nance) are additive;
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• In chunk-based systems, the stream is split into atomic
units of data (the chunks) that are distributed indepen-
dently. The signaling per transmitted chunk is expected
to be constant, inducing a proportional overhead if chunks
are homogeneous;

• The cost for initiating a connection, averaged over the
lifetime of that connection, can be considered as additive;

• Some randomized diffusion scheme can have a non-null
probability to send useless data, because it is outdated or
redundant [4]. This can be seen as proportional overhead.

With this model, a peer of bandwidth u maintaining c
outgoing connections has a useful output limited to u−bc

1+a . For
b > 0, bub c is the maximal sustainable fanout. For b = 0, the
model is indeed equivalent to perfect systems, except that all
bandwidth capacities have to be normalized by 1

1+a .
The notation used is summarized in Table I.

TABLE I
TABLE OF NOTATION

r Streamrate of the content (constant)
up Available upload bandwidth of peer p

UX/ūX Total/average upload capacity of population X
NX Number of nodes in X
NC Normalized capacity of servers (UC = NCR)
ip Input rate of node p
rp,q Substream from p to q
ηd(X) Efficiency of set X in diffusion scheme d
cp Fanout of peer p
a Proportional cost of a connection
b Constant cost of a connection

R := (1 + a)r + b Bandwidth consummed by goodput r

III. RELATED WORK

Understanding the bandwidth dimensioning is a crucial
question in P2P systems, as upload bandwidth is a scarce
resource. The bandwidth conservation law [2] tells that, if all
available bandwidth resources can be used to useful content
transfer, then the condition for a live streaming system to admit
a solution is

αL + βαS +
NC
NL
≥ 1, with

{
αX = ūX

r ,
β = NS

NL
. (4)

In reality, not all bandwidth can be used all the time.
Overhead issues aside, several phenomena can prevent from
using all available bandwidth. For instance, a peer may have
nothing to give at a given time; or some bandwidth may be
required for other purposes than feeding the leechers. This can
be modeled by an efficiency parameter. Taking efficiency into
account, equation (4) becomes

η(L)αL + η(S)βαS + η(C)
NC
NL
≥ 1, (5)

where η(X) is the efficiency of set X .
Efficiency was introduced by Qiu and Srikant [5] for

BitTorrent-like filesharing systems [1]. Its role was to quantify
the fact that leechers may lack the content required by others,
preventing them to upload at full bandwidth capacity.

In the case of standard peer-assisted live streaming, with no
seeders (S = ∅), Liu et al. have shown that one can reach
η(L) = η(C) = 1 for perfect and limited fanout systems. In
other words, for overhead-free systems, a perfect use of the
available bandwidth can be achieved [3].

IV. DEFINING SEEDERS’ EFFICIENCIES

We propose to extend the concept of efficiency to seeders
as follows: in a given diffusion scheme d, the efficiency ηd(s)
of a seeder s is the ratio between the data bandwidth it adds
to the system and its upload bandwidth us. Note that the input
rate is received by s is “wasted” in the bandwidth budget, as
s does not need to receive any of the content. We say that s
“removes” is from the pool of useful resources, in a matter
of speaking2. Formally, if, in a scheme d, s transmits at rates
rs,p1 , . . . , rs,pc to c other peers (cf Figure 1), its efficiency is

ηd(s) :=

∑c
k=1 rs,pk − is

us
. (6)

Seeder/
Leecher

Seeder/
Leecher

Seeder/
Leecher/
Server

is // Seeder s

rs,p1

99

rs,p2

44

rs,p3

//

rs,pc

((

Seeder/
Leecher

Seeder/
Leecher

Fig. 1. Basic principle of live seeding

The efficiency of a set X ⊆ S is defined in the same way:
we consider the difference between what comes out of X and
what enters, all reported to capacity:

ηd(X) :=

∑
s∈X,q∈{L,S\X} rs,q −

∑
p∈{C,L,S\X},s∈X rp,s

UX
.

(7)
By considering (1), (6), (7) and

∑
s,t∈X rs,t, we obtain a

more compact expression for ηd:

ηd(X) =

∑
s∈X ηd(s)us

UX
. (8)

Equation (8) tells that ηd(X) can be seen as the weighted
average of the seeders individual efficiencies.

2Deciding which peers involved in is are responsible for the “waste” is
arbitrary, and one could decide to subtract is from the bandwidth of the
sending peers. However, making the receiving seeder responsible for its own
input rate makes the analysis simpler.
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A. Optimal efficiency

The optimal efficiency ηOPT (s) of a seeder s in a given
system is defined as the supremum of the efficiencies it can
get over all possible diffusion schemes.

ηOPT (s) = sup
d

(ηd(s)) (9)

ηOPT (s) is an upper bound for the proportion of the upload
bandwidth that can be useful for that system.

The same definition stands for the optimal efficiency of any
subset X ⊆ S:

ηOPT (X) = sup
d

(ηd(X)) (10)

There is no guarantee that the individual optimal efficiencies of
seeders can be aggregated, because they may be reached for
distinct schemes (a counter-example is given in Section V).
As a consequence, Equation (8) becomes an inequality when
considering optimal efficiency:

ηOPT (X) ≤
∑
s∈X ηOPT (s)us

UX
. (11)

For convenience, subscripts may be omitted when there is
no ambiguity. We may also use metonymic notation in order
not to clutter notation: η(y) may denote the efficiency of a
seeder characterised by some property y (like the input rate,
upload bandwidth, fanout, . . . ).

V. PERFECT AND LIMITED FANOUT SYSTEMS

In this section, we derive the optimal efficiency of seeders
when there is no explicit overhead.

A. Perfect systems

The optimal performance of seeders in a perfect system is
given by the following theorem:

Theorem 1. The optimal efficiency of a subset X ⊆ S of
seeders is

η(X) = (1− 1

NL
) min(1,

NLr

UX
). (12)

Proof: First we give a scheme that achieves the efficiency
given by (12). The scheme is the following: each seeder
s ∈ X receives from the servers a distinct substream of rate
us

NL
(if UX ≤ NLr) or us

US
r (otherwise), and broadcasts that

substream to the NL leechers. Under that scheme, the input
received by X from nodes outside X is min(UX

NL
, r), and the

output given to leechers is min(UX , NLr). Subtracting the
input from the output and dividing by UX gives the efficiency
η(X) from (12).

Then, we need to prove that η(X) cannot be greater than
(1− 1

NL
) min(1, NLr

UX
). If IX is the input received by X in a

given scheme, the corresponding useful output cannot be more
that min(UX ,min(IX , r)NL) because :
• UX is the capacity of X;
• min(I, r) is the maximal rate of information that X can

get. The best it can achieve is to send that rate to the NL
leechers: sending it to more peers, for instance seeders

outside X , would be ineffective because all leechers
already get the information received by X .

Given the input and output rates, and according to Equation
(7), the efficiency of X for a given input IX is bounded by

min(1, IX
NL
UX

, r
NL
UX

)− IX
UX

.

We deduce that the optimal efficiency is bounded by

sup
IX≥0

(
min(1, IX

NL
UX

, r
NL
UX

)− IX
UX

)
.

If UX ≤ NLr, we get a maximal efficiency 1− 1
NL

for IX =
UX

NL
, and if UX ≥ NLr, we get r(NL−1)

UX
for IX = r. Therefore

the efficiency is never more than (1− 1
NL

) min(1, NLr
UX

). This
concludes the proof.

Note that the condition UX > NLr corresponds to an
overprovisioned system, where seeders from X have more
bandwidth than required to feed the stream r to all leechers
by themselves. In the definition we proposed, efficiency is
normalized by the dedicated upload bandwidth, so overprovi-
sioned systems naturally have lower efficiencies.

If we restrict to non-overprovisioned subsets X , Equation
(12) simplifies to

η(X) = 1− 1

NL
. (13)

In other words, seeders are asymptotically optimal in a
perfect P2P live streaming system. The explanation is that the
only bandwidth waste boils down to at most one streamrate
redirected to them for replication.

B. Limited fanout
Each seeder s has now a limited fanout cs. Without loss of

generality, we assume that ∀s ∈ S, cs ≤ NL.

Theorem 2. The optimal efficiency of a single seeder s ∈ S
with limited connections cs is

η(s) = (1− 1

cs
) min(1,

rcs
us

). (14)

In particular, if rcs ≥ us (the fanout is high enough for
allowing to use all the upload of s), we just have

η(s) = 1− 1

cs
. (15)

Proof: As s cannot reach more than cs peers, we just
consider a sub-system made of C, s and cs leechers, and we
conclude by applying Theorem 1, with cs instead of NL.

Unlike perfect systems, this result only applies for one
single seeder, with no simple extension for a set of seeders.
Equation (11) can be a strict inequality, meaning that efficiency
is lost in the process of making multiple seeders work together.
Consider for instance a toy system made of NL = 3 leechers
and two seeders s1 and s2 with parameters u1 = 3

2r, c1 = 2,
u2 = r, c2 = 3. Using Equation (14), we get ηOPT (s1) = 1

2
and ηOPT (s2) = 2

3 , so

ηOPT (s1)u1 + ηOPT (s2)u2

u1 + u2
=

17

30
.
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But if we try to find a scheme that maximize the efficiency
of {s1, s2}, the best solution leads to

ηOPT ({s1, s2}) =
8

15
<

17

30
.

The good news is that for specific scenarios, we can guar-
antee that ηOPT (X) =

∑
s∈X ηOPT (s)us

UX
. This is for instance

the case when X is proportionally homogeneous.

Theorem 3. Consider a set X ⊆ S that is proportionally
homogeneous, i.e. there is a rate e so that us = ecs for all
s ∈ X . Then, for NX ≤ b NL−1

maxs∈X(cs)−1cb
r
ec

ηOPT (X) =

∑
s∈X(1− 1

cs
)us

UX
=

∑
s∈X ηOPT (s)us

UX
. (16)

Note that e ≤ r is an implicit condition of Theorem 3:
otherwise, the result only apply for NX ≤ 0 (empty set).

Corollary 1. If all seeders in X have the same upload u,
maximal fanout c, and if NX ≤ bNL−1

c−1 cb
cr
u c, then

ηOPT (X) = 1− 1

c
. (17)

Remark: In the homogeneous case, if we neglect trun-
cation effects, the condition of Corollary 1 corresponds to
UX ≤ (NL − 1)r c

c−1 . As (NL − 1) c
c−1 ≥ NL (because

c ≤ NL), we get the sufficient condition UX ≤ rNL.
Therefore, Corollary 1 can be interpreted as follows: in the
homogeneous limited fanout model, up to truncation effects,
efficiencies can be aggregated without loss for any non-
overprovisionned subset X .

Proof: Given Equations (11) and (15), we just need to
give a diffusion scheme d such that ηd(X) =

∑
s∈X ηOPT (s)us

UX
.

That diffusion scheme is the following: the streamrate r is
divided into b rec distinct substreams of rate e. We then build
up to b rec trees such that: each seeder s in X is an internal
node for exactly one tree, having exactly cs = us

e children;
the leaves are taken among the leechers; a leecher can belong
to several trees, but is contained at most once per tree.

A given tree can have up to NL leaves, but no more.
We deduce that one tree can contain b NL−1

maxs∈X(cs)−1c seeders,
because a tree with k internal nodes (from X) has at most
k(maxs∈X(cs) − 1) + 1 leaves. So the rules of the scheme
can be respected if NX ≤ bNL−1

c−1 cb
cr
u c.

In the corresponding diffusion scheme, where each tree is
used to transmit one of the b rec distinct substreams of rate
e, we verify that each seeder s works at optimal efficiency
1− 1

cs
. Equation (8) concludes the theorem. The corollary is

just a special case where e = u
c and maxs∈X(cs) = c.

Remark: The proof shows that the bound on NX is
actually related to the numbers of seeders that can fit in a
tree with the constraints that each seeder s is an internal node
with exactly cs children and there are no more than NL leaves.
The bound we gave is very conservative, because it assumes
maxs∈X(cs) children for all seeders. It may not be tight,
especially if cs spans a wide range. However, finding out the

tight maximal number of seeders under heterogeneous fanout
is difficult, as it is equivalent to solving a multiple knapsack
problem.

VI. EXPLICIT OVERHEAD

From now on, we will focus on the explicit linear overhead
model, with proportional cost a and additive cost b. Under
this model, the bandwidth required for sending one copy of
the stream through a single connection is R := (1 + a)r + b.
One easily checks that ηmax := r

R is the maximal efficiency
achievable for any peer (leecher or seeder).

Unless otherwise stated, numerical examples will take as
default parameters r = 100 KBytes/s, a proportional overhead
of 10% (a = 0.1), and two possible additive costs, small (b =
1.7 KBytes/s) and large (b = 25 KBytes/s). Most figures will
display the relative efficiency η/ηmax instead of η, in order to
facilitate the comparison between the two overhead settings.

A. Efficiency of a single seeder: main theorem

The following theorem gives the optimal efficiency of one
single seeder when the overhead is linear.

Theorem 4. Assuming a linear overhead supported by the
sender, optimal efficiency of a seeder s is η(s) = (NL−1)r

us
for

us ≥ NLR. For us < NLR, we have

η(s) =


0 if 0 ≤ us ≤ 2b,
(1−

√
b
us

)2

1+a − ε1(us) if 2b ≤ us ≤ R2

b ,
r
R −

r
us
− ε2(us) if us ≥ R2

b , with

(18)

 0 ≤ ε1(us) ≤ 1
1+a

(
b
us

) 3
2

,

0 ≤ ε2(us) ≤ 1
1+a

b
us
≤ 1

1+a

(
b
R

)2
.

Proof: The part us ≥ NLR is straightforward. It cor-
responds to an overprovisioned situation where s alone can
provide the live content to all leechers. This is the optimal
scheme for s, leading to η(s) = (NL−1)r

us
.

Equation (18), which corresponds to the case us < NLR,
can be proved in three steps:
• Finding the maximal efficiency for a given bandwidth u

and fanout c;
• Maximizing the corresponding equations for a continuous
c;

• Bounding the gap induced by the fact that c has to be an
integer.

1) Maximizing η for given u, c: we first notice that for
achieving maximal efficiency, all output rates have to be equal
to the input rate: if it is not the case in a given scheme,
replacing all output rates by their average value allows to
reduce the input rate to that average value (it had to be greater
than the maximal output in the original case), increasing
efficiency. Therefore the optimal efficiency must be of the
form η(s) = (c−1)e

u , for some rate 0 ≤ e ≤ r. It is then
obvious that one have interest to choose the highest value of
e that is feasible.
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Note that if c = 1, the seeder can only replicate its
input and has null efficiency; the seeder needs to maintain
at least 2 connections with spared bandwidth to have a non-
null efficiency. This settles that η = 0 for u ≤ 2b. Otherwise,
two cases are to be considered:
• if c is the bottleneck (this happens for u ≥ Rc), then s

has enough bandwidth to broadcast the whole stream r
to c targets, achieving efficiency (c−1)r

u ;
• if u is the bottleneck (for u < Rc), then the optimal

input rate e is solution of c((1 + a)e + b) = u, leading
to e =

u
c−b
1+a . Corresponding efficiency is

η =
(c− 1)e

u
=

(c− 1)(uc − b)
(1 + a)u

=
1− 1

c −
b
u (c− 1)

1 + a

For u < RNL, the bottleneck is necessary one of the above,
so we deduce that the optimal efficiency for given u and c is

η(u, c) = min(
(c− 1)r

u
,

(1− 1
c )− b

u (c− 1)

1 + a
) (19)

2) Maximizing η for given u: We now see (19) as a function
of c and try to find its maximal value. We propose to first solve
the problem in R before considering integers.

We introduce

η1(c) :=
(c− 1)r

u
and

η2(c) :=
(1− 1

c )− b
u (c− 1)

1 + a
.

The two functions have the following properties:
• η1 is always increasing, and positive for c ≥ 1;
• η2 goes to −∞ for c going to 0 and +∞. It has a unique

maximum
(1−

√
b
us

)2

1+a , which is reached for c =
√

u
b

• η1 = η2 for c = 1 (corresponding efficiency is 0) and
c = u

R (corresponding efficiency is r
R −

r
u ).

We deduce that the optimal efficiency for given c, η =
min(η1, η2) is equal to η1 for 1 ≤ c ≤ u

R and η2 for c ≥ u
R .

Two cases are then to be considered:
• if

√
u
b ≤

u
R (that is u ≥ R2

b ), then η is increasing for 1 ≤
c ≤ u

R , decreasing for c ≥ u
R . The maximal efficiency is

therefore r
R −

r
u , reached for c = u

R ;
• if

√
u
b ≥

u
R (that is u ≤ R2

b ), then the maximal efficiency

is the one of η2,
(1−

√
b
us

)2

1+a , reached for c =
√

u
b .

3) Bounding the quantification gap: While the optimal
value cOPT we found is a real number, only integer value are
eligible. However, as the function η = min(η1, η2) always ad-
mits a unique maximum, the effective optimal efficiency η(s)
is necessarily max(η(bcOPT c), η(dcOPT e)). In particular, we
have η(cOPT +1) ≤ η(s) ≤ η(cOPT ), from which we deduce

η(s) = η(cOPT )− ε, with 0 ≤ ε ≤ η(cOPT )− η(cOPT + 1)

From there, noticing that η = η2 for c ≥ cOPT , we get

η(cOPT )− η(cOPT + 1) =

b
u −

1
cOPT (cOPT +1)

1 + a
.

• If u ≤ R2

b , then cOPT =
√

u
b , so we get

η(cOPT )− η(cOPT + 1) =

b
u (1− 1

1+
√

b
u

)

(1 + a)

≤
( bu )

3
2

(1 + a)
;

• if u ≥ R2

b , we just use

η(cOPT )− η(cOPT + 1) ≤ b

u(1 + a)
,

and note that b
u ≤ ( bR )2. This concludes the proof.

B. Efficiency of a single seeder: discussion

Following theorem 4 and proof, the following remarks can
be made.
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Fig. 2. Validity of the continuous approximation of the optimal efficiency

1) Closed formulas approximation: the ε1 and ε2 terms are
negligible as long as us is big enough compared to the additive
cost b, so in most cases, one can safely use the continuous
optimum η(cOPT ) (step 2) of the proof) instead of the discrete
one max(η(bcOPT c), η(dcOPT e)). In other words,

η(s) ≈

 (1−
√

b
us

)2

1+a if 2b ≤ us ≤ R2

b ,
ηmax − r

us
if us ≥ R2

b .
(20)

To illustrate the validity of this approximation, Figure 2
compares it to the exact efficiency for the two numerical
settings we proposed at the beginning of this Section. We can
see that the difference is barely noticeable for a large additive
overhead, and invisible for a small one.
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2) Low/medium bandwidth: The case us ≤ R2

b can be
interpreted as the upload bandwidth is no more than R

b times
the rate R. In most practical situations, one would expect
b� R, so most seeders would probably fall in this case, which
corresponds to low, medium and reasonably high bandwidths.

Within this range, it is interesting to note that both the
optimal number of connection and corresponding efficiency
are independent of r. Moreover, one can note that the number
of connections,

√
us

b , is quite similar to the empirical formula
used in the current BitTorrent mainline client,

√
0.6u [6]. This

makes us think that the results given here could be adapted
to other scenarios than live seeding (this would need to be
further investigated in a future work). The 0.6 factor would
corresponds to an additive connection cost b ≈ 1.7 KBytes/s,
which explains why we use this value as one of our numerical
settings (the other value, b = 25 KBytes/s, is totally arbitrary).

3) (Very) high bandwidth: For very high bandwidths (cor-
responding for instance to nodes managed by a content dis-
tribution network), the efficiency tends to ηmax as us goes to
infinity under the assumption that the scenario is not overprovi-
sioned (i.e. us

NL
< R): super-seeders can asymptotically reach

the best achievable efficiency given the overhead constraints.
4) Importance of input shaping: Seeders do not need to get

the whole streamrate. This fact allows to adjust their input rate
as desired, which is a key to achieve optimal efficiency.

For instance, under the assumption that the input rate of
a seeder s is r, one easily checks that its best achievable
efficiency is

ηr(s) = max(0,
r(bus

R c − 1)

us
,

1− b
us
dus

R e
1 + a

− r

us
) (21)

(the case 0 corresponds to situations where the best choice is
not to use s, saving the input rate).
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Fig. 3. Impact of a badly shaped input rate

Figure 3 gives a graphical comparison of ηOPT and ηr.
While seeders with optimized input rates can get a decent
efficiency starting from a few b’s of upload bandwidth, if
the input is r, seeders with an upload bandwidth less than
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Fig. 4. General overhead model vs simple overhead model

R are totally inefficient (they cannot give more than they
receive, so the best choice is not to use them). We also notice
that the difference remains important even for higher upload
bandwidth, especially if the additive overhead is small.

5) About receiver-side overhead: In our model, we made
the assumption that the burden of the overhead was only on the
sender. A more general model would consist in assuming that
in addition to the sender overhead of parameters (a, b), there
is a receiver overhead of parameters (ar, br) (if p receives
a streamrate rq,p from q, it has to use an upload bandwidth
arrq,p + br).

Theorem 4 and proof can be adapted to the general model,
at the price of increased complexity. For instance, in the
medium range scenario (2b < us ≤ R2

b ), we have an optimal
(continuous) number of connections

cOPT =

√
us
b

. (22)

In the general model, this would become

cOPT =
−arb+

√
b (a+ ar + 1) (u− bd − abr + arb+ au)

b (a+ 1)
.

(23)
We see that formulas get much more complex in the general

model. However, if one compares the practical values given
by (22) and (23), we see that the general behavior remains
practically the same. This is depicted in Figure 4 (receiver
overhead is assumed to be the same that the sender overhead,
i.e. ar := a and br := b).

As the added complexity does not seem to bring lot of prac-
tical difference, we choose to discard the receiver overhead in
our model. However, the reason we can do that is probably
that the natural use of live seeders is to feed them with a single
input rate, which reduce the impact of receiver overhead. If
we want to extend our framework to leechers, which usually
receive multiple substreams from multiple sources, a proper
modeling of the receiver overhead may become mandatory.
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C. Efficiency of a set of seeders

Like for the limited fanout model, there is no guarantee that
the optimal single efficiencies of seeder can be aggregated in a
common scheme. In the following, we propose two heuristics
that allow to somehow adapt Theorem 3 to the overhead
model: the mono-rate and dichotomic rates diffusion schemes.

1) Mono-rate scheme: The idea of the mono-rate approach
is somehow simple: if a set of seeders agree to a common
substream rate e, they can behave as a proportionally hetero-
geneous set. Their efficiency obeys to the following theorem:

Theorem 5. Consider a set X ⊆ S that verifies:
• ūX ≤ 2R2

b ;

• NX ≤ b NL−1

bmaxs∈X (us)

E c−1
cbR−bE−bc, with E =

√
būX

2 .

Then, if all seeders on X agree on a common rate e := E−b
1+a

used for all inputs and outputs, the efficiency ηe(X) of the
corresponding scheme verifies

(1−
√

2b
ūX

)2

1 + a
< ηe(X) ≤

(1−
√

b
ūX

)2

1 + a
(24)

Proof: Consider a given rate e ≤ r. Call E := (1+a)e+b
the corresponding rate with overhead. The maximal efficiency
of a seeder s having e as input and ouputs is reached when s
opens the maximal number of outgoing connections allowing
to stream e. This leads to

ηe(s) =
(bus

E c − 1)e

us
.

In particular,
e

E
− 2

e

us
< ηe(s) ≤

e

E
− e

us
.

Assume that the number of seeders in X is small enough to
allow perfect aggregation of efficiencies, like for Theorem 3
(the corresponding condition will be derived later). We then
have ηe(X) =

∑
s∈X ηe(s)us

UX
, therefore

e

E
− 2

e

ūX
< ηe(X) ≤ e

E
− e

ūX
.

The maximal value of e
E −

e
ūX

is
(1−

√
b

ūX
)2

1+a , proving the right

part of (24). The maximal value of e
E − 2 e

ūX
is

(1−
√

2b
ūX

)2

1+a ,

and it is reached for E =
√

būX

2 . As we have E ≤ R, this

implies ūX ≤ 2R2

b .
We then need to give a sufficient condition for aggregating

the efficiencies without losses. We can use the condition from
Theorem 3, NX ≤ b NL−1

maxs∈X(cs)−1cb
r
ec. Noticing that cs =

bus

E c allows to conclude.
2) Dichotomic scheme: The dichotomic approach consists

in the diffusion of several substreams whose rates are dividers
of r, instead of using a single rate e. In details, the predeter-
mined substreams are:
• The video stream of rate r, which can be split into
• 2 non-overlapping substreams of rate r

2 , each of which
can be split into 2 substreams
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Fig. 5. Dichotomic vs optimal individual efficiencies

• . . .
• 2kmax non-overlapping substreams of rate r

2kmax
, for some

kmax ≥ 0.
k is called the level of a substream of rate r

2k

A seeder s is said to operate at level k if it behaves as
follows:
• it receives as input a level k substream; let l := k be his

working level;
• As long as s has a residual upload bandwidth greater than
b and l ≤ kmax, do:

– if there is not enough residual upload bandwidth to
establish a new output of level l,

– then l = l + 1 (a children substream of the current
level l substream is chosen),

– else create a new output of level l.
The corresponding efficiency is denoted ηk(s). In order to

optimize the dichotomic approach, each seeder operates at a
level that maximizes its single efficiency, i.e. chooses a level
ks such that ηks(s) = max0≤k≤kmax ηk(s). The corresponding
efficiency is denoted ηBin(s).

As the operating rate is necessarily a divider of r, ηBin(s)
is necessarily suboptimal. However, the different levels allow
enough freedom to get an efficiency close enough to be
optimal. For instance, Figure 5 gives a graphical comparison
of ηBin(s) and ηOPT (s), using kmax = blog2( rb )c (this is an
arbitrary choice that corresponds to stopping the subdivision
when substreams need more overhead that their actual good-
put). One observes that the individual efficiency loss is quite
sustainable, especially for a low additive overhead.

For a given set X of seeders, the construction of a di-
chotomic diffusion scheme is rather simple:
• all seeders operating at level k organize to achieve up to

2k diffusions tree for the level k; each seeder try to join
the level k diffusion tree which currently possesses less
leaves.

• if a level k seeder has outputs of level k′ > k, they can
either be directly transmitted to leechers or serve as root
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for a level k′ diffusion tree;
• if some seeders at level k miss the input streamrate to

build their diffusion scheme, they may use a leaf from a
parent substream diffusion tree (some of parent rate will
be wasted).

Under some conditions, we can evaluate the efficiency of
X under a dichotomic diffusion.

Theorem 6. If, for a given set X ⊆ S, we have UX ≤ NLR,
and if all non-empty diffusion trees can be rooted with proper
input, then the efficiency ηBin(X) of X under a dichotomic
diffusion verifies∑

s∈X ηBin(s)us

UX
− rkmax

UX
≤ ηBin(X) ≤

∑
s∈X ηBin(s)us

UX
(25)

The interpretation is the following: up to a term rkmax

UX
,

which is small if UX is big enough, the individual dichotomic
efficiencies, which are close to the optimal individual efficien-
cies, can be aggregated without loss.

Proof: The condition UX ≤ NLR ensures that no
diffusion tree has more leaves than there are leechers in need of
the corresponding substream. This can be shown by induction:
• at level 0, the diffusion tree cannot have more than bUX

R c
leaves, which is smaller than NL.

• at level k, let Uk denote the bandwidth that remains after
the bandwidth consumed from lower level is substracted;
let Nk the maximal number of leechers that can be leaves
at that level (a given leecher is counted with multiplicity
equal to the number the level k substream it needs; let Mk

the number of leechers that get a level k substream (with
multiplicity). Note the relation Nk = 2(Nk−1 −Mk−1),
i.e. the maximal number at a given level is twice the slots
that have not been filled in the previous level. Assume
that Uk−1 ≤ Nk−1((1+a) r

2k−1 +b), that is at level k−1,
the residual bandwidth is not overprovisioned compared
to the number of possible leaves Then we have

Uk ≤ Uk−1 −Mk−1((1 + a)
r

2k−1
+ b)

≤ (Nk−1 −Mk−1)((1 + a)
r

2k−1
+ b)

≤ Nk((1 + a)
r

2k
+
b

2
) ≤ Nk((1 + a)

r

2k
+ b)

So at any given level, a diffusion tree can always find
a leecher to give its output to. Therefore the only waste
compared with individual efficiencies lies when the root input
of a tree comes from a parent substream. This is bounded by r
when considering all roots at a given level k > 0, leading to a
total waste bounded by rkmax. Normalizing by UX concludes
the proof.

3) Comparison of the two methods: The mono-rate ap-
proach is simple to describe, which makes it a good proof of
concept of using multiple seeders in a system with overhead.
However, the dichotomic approach, although more complex,
has many advantages over the mono-rate approach that make
it more suitable for a practical use.

Firstly, the substreams are pre-determined, while mono-rate
requires to determine the proper input rate e, which depends
on ūX . Among other things, this facilitate considerably the
interaction with the leechers’ diffusion process. Furthermore,
under the dichotomic approach, a seeder s can determine its
operating level by itself (it is just a function of us) while in
the mono-rate approach, knowing ūX implies some knowledge
of the whole set X . This is even worse when considering
dynamics in X: A change in e = f(ūX) requires a complete
upset of the diffusion trees in the mono-rate approach, while
changes are expected to be mostly local in the dichotomic
approach.

Also note that as streamrate are dividers of r, the quantifi-
cation effect b rec that may limit the mono-rate approach (cf
Theorem 5) has no equivalent in the dichotomic approach.

Finally, the mono-rate approach can force lot of seeders to
use an input rate that is far from the single seeder optimal. This
impact is bounded (cf Theorem 5), but can be non negligible,
especially if the seeders’ bandwidths are highly heterogeneous.
In contrast, the dichotomic approach adjusts afor each seeder
s a level ks such that the input rate is to far from the optimal.

VII. DISCUSSION

A. Leecher diffusion process

We did not consider in details the way to make the diffusion
processes of leechers and seeders work together. This is a
problem in itself, which deserves a separate study. The study
performed in [3] seems to be adaptable to the case with
seeders, at least for the limited fanout model, but a further
work is required to transpose the results to the overhead
model (including keeping in mind the existence of receiver-
side overhead).

However, we argue that knowing how to optimize the
diffusion process of seeders alone is not a bad starting point.

B. Make a minimal use of seeders

While all this paper is devoted to make the best possible use
of seeders, we should recall that in the design of a real system,
targeting the maximal seeder efficiency is not necessarily the
smartest thing to do.

In fact, seeders “waste” their input rate by design, which
makes them inherently less efficient that leechers. Therefore,
the secret of wise seeding is to use it when leechers are not
enough, and not in replacement of leechers:

• Try to achieve the most of the content diffusion by
using the servers and leechers alone. If possible, the
leechers should perform a lossless diffusion of a common
substream of rate r′ ≤ r among all of them instead of a
partial or lossy diffusion of rate r;

• if r′ < r, use seeders to finish the job, achieving a rate
what would not have been possible otherwise. This is
were the results of this paper apply, which describe the
best one can expect from seeders and how to get it.
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Fig. 6. Average bandwidth required for scalability

C. Application: dimensioning a scalable live streaming system

Many dimensioning rules can be derived by using the for-
mulas we proposed. For instance, determining if the system is
scalable would consist in checking if η(L)αL+η(S)βαS ≥ 1
[2]. If we assume here for simplicity homogeneous bandwidth
u, η(S) = ηOPT (u) (neglecting aggregation issues), and
optimal leechers’ efficiency ηL = ηmax

3, one can derive the
relationship that u and β must verify for the system to be
scalable:

βηOPT (u) ≥ r

u
− ηmax. (26)

If β, which indicates the ratio between idle (seeders) and
active (leechers) users, is a given parameter of the system,
Equation (26) can be used to derive the bandwidth u that is
required for the system to be scalable. This is illustrated by
Figure 6 (the performance of the perfect system, i.e. a = b =
0, is also plotted for comparison). Notice how even little values
of β (less than 1) can give significant decrease of the required
bandwidth, which is R for a seedless system with perfectly
efficient leechers.

D. About delays

We do not have taken delay issues into account. The
diffusion delay is obviously a major concern in the design
of a live streaming system. However, it should be noted that
the two heuristics we proposed are based on diffusion trees.
Therefore the induced delay is at most equal to the delay of
a single connection times a logarithm of NL. This is exactly
the same type of delay that is experienced for diffusion based
on leechers only, so we argue that using seeders should not
impact the delay performance of a P2P live streaming system.

3The efficiency of leechers should take into account the number of outgoing
connections like we did for the seeders. However, ηL is not the main matter
of this paper, so we assume without remorse perfect efficiency ηmax.

VIII. CONCLUSION

In this paper, we gave the keys to understand how seeders
could be used in P2P live streaming if servers and leechers
lack the necessary bandwidth. After a preliminary work on
perfect and limited-fanout systems, we conducted our study on
a model with linear overhead. The theoretical results presented
in this preliminary study may have a significant impact in
the design and dimensioning of live streaming systems using
seeders.

In a future work, we plan to pursue the matter of leech-
ers/seeders interaction in the general overhead model. We
also think that the concept of live seeders introduced here
could be extended to a more general concept of half-seeders,
i.e. seeders with not all resources expected from a traditional
seeder. Studying half-seeders could allow to extend our results
to all P2P content distribution systems, including file-sharing
and Video-on-Demand systems.
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