
HAL Id: hal-00667139
https://hal.science/hal-00667139

Submitted on 18 Jul 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Comparison of the thermal performances of two
nanofluids at low temperature in a plate heat exchanger
Thierry Maré, Halelfadl Salma, Sow Ousmane, Patrice Estellé, Steven Duret,

Bazantay Frederic

To cite this version:
Thierry Maré, Halelfadl Salma, Sow Ousmane, Patrice Estellé, Steven Duret, et al.. Comparison of the
thermal performances of two nanofluids at low temperature in a plate heat exchanger. Experimental
Thermal and Fluid Science, 2011, 35, pp.1535-1543. �10.1016/j.expthermflusci.2011.07.004�. �hal-
00667139�

https://hal.science/hal-00667139
https://hal.archives-ouvertes.fr


  Comparison of the thermal performances of two nanofluids at low temperature in a plate heat 
exchanger 

 

Thierry Maré *a Salma Halelfadl a Ousmane Sow b, Patrice Estellé c,  

Steven Duret d, Frederic Bazantay d 

 

 aUEB, LGCGM, Equipe Matériaux et Thermo-Rhéologie, INSA/Université Rennes 1, IUT de Saint-

Malo, Rue de la Croix Désilles, CS51713, 35417 Saint-Malo Cedex, France 

 bLaboratoire Matériaux Mécanique et Energétique (LMME), Ecole Polytechnique de Thiès (EPT), 

Thiès, Sénégal 
cUEB, LGCGM,  Equipe Matériaux et Thermo-Rhéologie, INSA/Université Rennes 1, IUT de Rennes, 3 

rue du Clos Courtel,  BP 90422,  35704 Rennes Cedex 7, France 

dPôle Cristal, Centre Technique Froid et Climatisation, 22100 Dinan, France 

 

 

 
 *
 Corresponding Author 

 

 

Acknowledgments 

Nanocycl Belgium is gratefully acknowledged for the preparation of CNT water based nanofluid. The 

Pôle Cristal of Dinan that has contributed to this study is also gratefully acknowledged.  



2 

 

 

Abstract 

The objective of this study is to compare experimentally the thermal performances of two 

types of commercial nanofluids. The first is composed of oxides of alumina ((γAl 2O3)) 

dispersed in water and the second one is aqueous suspensions of nanotubes of carbons 

(CNTs). The viscosity of the nanofluids is measured as a function of the temperature between 

2 and 10°C. An experimental device, containing three thermal buckles controlled in 

temperature and greatly instrumented permits to study the thermal convective transfers. The 

evolution of the convective coefficient permits to study the convective thermal transfers. The 

evolution of the convective coefficient is presented according to the Reynolds number, at low 

temperature from 0 to 10°C and for the two aforementioned nanofluids. An assessment of the 

pressure drops in the circuit as well as of the powers of the circulator and outputs is dealt 

with. 

Keywords: 

Nanofluid, nano particles, viscosity, transfers of convective heat, exchanger of heat plates, 

pressure drop, experimental. 

1. Introduction 

The efforts aiming at improving the thermal exchangers in many industrial sectors 

(automobile, building, electronic...) require the intensification of the heat transfers, Padet [1]. 

The "passive" improvements at the level of the exchange surfaces have already been 

extensively explored and have reached their objective limits. In the case of the coolant fluids, 

the thermal conductivity is one of the first parameters to take in account to value the potential 

of heat exchange. However the more used fluids such as water, the ethylene-glycol and oil 

possess a relatively weak thermal conductivity. New ways of optimization consist in using 

new fluids named "Nanofluids" capable of improving the thermal transfers. The nanofluids 

are colloïdal solutions composed of metallic particles of nanometric size in suspension in a 

base liquid. Choi [2] was probably the first to qualify these nanofluids. 

To explain the improvement of thermal conductivity that the presence of the nano particles 

brings in these fluids, Keblinski [3] and Eastman [4], lean on the study of the Brownian 

movement and the effects at the solid/liquid interfaces.  Xuan [5] explains this improvement 
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of conductivity by the collision of the particles. The experimental studies done so far, are 

essentially about the measure of the thermal conductivity [6] [7], and the measure of the 

viscosity [8] [9]. Some articles study numerically and experimentally the thermal transfers in 

tubular exchangers [10] [11].  

To limit the phenomena of agglomeration, the manufacturers add to these fluids a non- 

negligible part of surfactant. The viscosity is impacted by this surfactant, and the literature 

shows that it is difficult to control the spread of the particles and that the usual relations 

expressing the viscosity don't apply for elevated volumic concentrations. Khaled [12] studies 

the importance of the dispersion and its experimental results show an influence of the 

surfactant of more than 20% on the number of Nusselt obtained.  

When looking at the experimental results, we notice that the usual theoretical relations for 

the fluids with particles don't apply to the case of the nanofluids, and the experimental study 

on the thermo physical properties shows important disparities according to the methodology 

of measure and mixture, sometimes even for the nanofluids. [13] [14] [15]. 

With regard to the thermal transfers by convection, some studies show an improvement in 

presence of nanoparticules [15] [16], whereas other studies observe a reduction of these 

transfers [17]. Ding and al. [18] measured the convective heat transfer coefficient of aqueous 

suspensions of CNTs in a horizontal tube and reported that for the nanofluids containing 

0.5%wt CNTs, its enhancement rate to water was over 350%. Several reviews of nanofluids 

show that the associated thermal transfers are not very much understood [19]. Vijjha and al. 

[20] showed in a numerical work simulating the heat performance in a flat tubes of a radiator. 

For this exchanger heat transfer rate increase up to around 94% by adding 10% Al2O3 

nanofluid and increase up to around 89% by adding 6% CuO nanofluid. 

It can be noted that the few existing experimental and numerical studies on the thermal 

transfers by convection are mainly concerned with convective transfers in the tubes and that 

the case of the plate heat exchangers is little, or not, taken in account. We can also note that 

the range of temperature used in the experimental studies is comprised between 20°C and 

60°C. 

There are only few works which correlate a competition between thermal performance 

(heat transfer) and pressure drop to clarify the practical contribution of nanofluid [20]. In 

addition to this, the thermal behavior of these fluids in forced convection around a plate at low 
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temperatures (lower to 20°C) doesn't seem to have been studied. The objective of the present 

work is to study and compare the practical benefits, as a competition between heat transfer 

enhancement and pumping power losses, caused by the use of two nanofluids in a plate heat 

exchanger at low temperatures. The two types of commercial nanofluids used are composed 

of alumina (γAl2O3) dispersed in water and aqueous suspensions of nanotubes of carbons 

(CNTs). The determination of the viscosities is obtained experimentally for temperatures 

lower than 10°C.  An experimental device, containing three thermal buckles controlled in 

temperature and greatly instrumented, and two plate heat exchanger, permits to study the 

convective thermal transfers. The evolution of the convective coefficient is presented 

according to the number of Reynolds for a range of active temperature between 0°C and 10°C 

and for the three aforementioned nanofluids. An assessment of the pressure drops in the 

circuit as well as of the powers of the circulator and outputs is dealt with. 

2. Experimental set up 

2.1. Experimental system  

The experimental installation, presented on the figure 1 and schematized on figure 2, is 

constituted of three buckles (hot buckle, central buckle, cold buckle) and two identic plate 

heat exchangers (1), (2). The central buckle is equipped with an UPS circulator 60 Grundfos 

with three speeds (6) assuring a flow rate between 400 to 1000 l/h, of an ultrasonic flow meter 

(8) and of four PT100 probes permitting the measure of 4 temperatures (Tce, Tcs, Tfe, Tfs).  

Distilled water in the case of the validation of the installation as well as the different 

nanofluids will circulate in this buckle. The ultrasonic flow meter (extrusive) is calibrated on 

the distilled water and our knowledge on the thermo physical properties of nanofluids doesn't 

permit to adapt it to the flow of our fluids. On the other hand, this flow meter will serve for 

the validation of the installation on water. The flow of the nanofluids will be determined by 

calculation of the thermal balances and the equation (6). 

The production of heat is assured by a vulcatherm vulcanix of a calorific power of 2KW 

with a range of temperature comprised between 10 and 90°C, in the hot buckle (V indication). 

Two PT100 probes permit the measures of the entry and exit temperatures of the exchanger 

(Tve, Tvs). The coolant fluid is water and a system of regulation permits to control the entry 

temperature Tve intersection (hot side). The volumic flow rate (Qv1) is measured by an 

electromagnetic flow meter.  



5 

 

The thermal balances are made in the exchanger 1 between the central buckle and the hot 

buckle. In order to control the entry temperature of the exchanger (1) cold side (Tce), we have 

a cold buckle (subscript T) and a regulation system. The cold buckle of a circulator is 

constituted of a refrigerated group (Trane) of  25 KW power, a buffer tank, a regulator with 

brass valve (not visible on the diagram) and a floodgate three ways Siemens VXG 44 (9) 

equipped with an SQS65 Siemens servomotor and of a SYNCO 100 Siemens regulator. The 

three- way valve controls the glycol water output in this buckle according to the temperature 

of Tfs order (left exchanger 2 central buckle sides). The system being thermally isolated the 

Tfs temperature is close to the entry temperature of exchanger 1, Tce. The temperatures are 

measured by two PT100 (Tte, Tts) probes.  

So as not to disrupt the measures of temperatures by the side effects in the circuit, all 

PT100 probes are placed in exit elbow in accordance with the recommendations of the NF EN 

306 norm. The probes and the flow meter are joined to a power station of acquisition acted 

34970A permitting a temperature precision of 0.1°C, of 0.5% on the electromagnetic flow 

meter and 0.1% on the ultrasonic flow meter (calibrated on water) on the whole acquisition 

chain, acquisition frequency being measured every 5 seconds. 

The two plate heat exchangers used in this experimentation are identical and of SWEP E5T 

type [21]. They are composed of 20 plates 0.3 mm thick, 7.1 mm wide, the space between 

every-plate measures 1.94 mm and the total surface of exchange measures 0.216 m2 (figure 

3). The constituent material of the exchange is the AS130 and its conductivity is of 16.3 W/ 

mK. 

2.2. Validation of the installation 

To evaluate the thermal losses or gains generated by the thermal isolation of the 

experimental installation, a validation is done while making water flow in the central buckle. 

Several data acquisitions are done while maintaining the hot temperature Tve at 15°C and the 

cold temperature Tfs at 3°C. The acquisition is made at a pace of 5 seconds during 2300 

seconds. The stability is obtained after 1000 seconds. Figure 4 presents the evolution of the 

temperatures of the installation according to the time for a water flow in the central buckle of 

0.28 l/s and in the hot buckle of 0.205 l/s. The flow in the cold buckle (T) varies according to 

the opening of the automatic three-way valve in order to get a constant temperature Tfs. 
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We notice a stability of 0.1°C on set point input of the exchanger at the hot side Tve. A 

precision of 0.5 °C is obtained on the exit temperature of the exchanger 2 at the central buckle 

side. One can note for the evolution of temperatures in the central buckle a gap by pairs of 

temperatures Tfe, Tcs and Tce, Tfs of 0.1 °C equal to the measure we reach with precision. It 

shows that the pipelines of the installation are well thermally isolated and it validates the fact 

that the regulation on the Tfs temperature is acceptable. 

At the level of the heat insulation of the exchanger (1), a validation is done while making 

water circulates in the central buckle and in the hot buckle. The assessment of the thermal 

gains, noted Φ+, brought by the external environment in our exchanger is determined by the 

equation of balance of the heat power. 

( ) ( )cscepcmvevspvmcv TTCQTTCQ
cv

−−−=−=+ φφφ                                 (1) 

Several tests have been done for several flows (400, 600, 800 and 1000 l/h) in the central 

buckle and a flow in the hot buckle (0.205 l/s), the temperatures  are imposed to 3°C for Tfs 

and 15°C Tve. The results, figure 5, are presented in a dimensionless shape while drawing the 

evolution of the relation between the gain of heat flux brought by the external environment 

and the flux of initial heat at the hot side vφφ /+ , according to the logarithmic gap in exchanger 

(1). The logarithmic gap of the temperatures ∆TLM  is given by the following relation: 
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We notice that in the low temperatures scales considered in our experimentations, the gain 

in power presents 3.5% (average value) of the power exchanged in the hot side. This value 

will be taken in account in the energizing balances in presence of nanofluids and it confirms 

that our installation is relatively well heat insulated.                  

               

3. Calculation and procedure for measuring 

3.1. Nanofluids properties 

The nanofluids studied in this present work are constituted of demineralized water, of 

nanoparticules of alumina (γAl 2O3) or nanotubes of carbon and of a third component named 
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surfactant. In this work we suppose that the surfactant has a little influence on the density and 

the heat capacity of the nanofluids and that the viscosity is impacted by this surfactant.  

The nanofluids N1 and N2 used, have as basic fluids water PH5 and the characteristics of 

their nano particles are presented in table1. 

In this present work, the thermal conductivity is not involved in our calculations, so we do 

not need to measure or determine it. 

•  The density 

We consider the density of the particles as constant in the range of temperature used, and 

we take in account the variation of the density of the water in accordance with the 

temperature. We neglect the presence of surfactant and the relation used is the following: 

( ) pvbfvnf ρϕρϕρ +−= 1                                                                        (3) 

•  The heat capacity 

The specific heat of the nanofluids was obtained from the equation given by Xuan and al. 

[22] which assumes thermal equilibrium between the base fluid and the nanoparticules. The 

equation is: 

( ) ( )( ) ( )
ppvbfpvnfp CCC ϕϕ +−= 1                                   (4) 

•  Dynamic viscosity 

It seems that the differences of the experimental data on the measure of viscosity of the 

nanofluids observed in the literature are not adequate with the usual two-phase relations [23]. 

Therefore, the viscosity will be measured experimentally. 

The rheological study was made for two reasons: to measure the dynamic viscosity and to 

control the stability of suspensions. All Rheological measurements were performed using a 

Malvern Kinexus Pro Rheometer equipped with parallel plate geometry under controlled 

temperature. The diameter of the plates is 40 mm and the gap is 0.5mm. The temperature was 

controlled using a peltier temperature control device located below the lower plate with an 

accuracy of 0.01°C. Stress-controlled measurements were performed imposing a logarithmic 



8 

 

stress ramp increase followed by a reverse stress decrease. The stress was increased, before 

the reverse stress decrease, from 10-3 to 15 Pa and 30 Pa, respectively for N1 and N2. 

Preliminary studies have validated the applicability of the maximum shear stress (15 and 30 

Pa) depending on the nanofluid used, in order to avoid sample ejection and maintain a 

constant normal force during experiments. To assess the effect of the surfactant and the 

stability of the nanofluids, several measurements were carried out on several samples of each 

nanofluid under the same shear stress range.  

•  Dispersion of nanoparticules  

To control the dispersion of nanoparticles in our commercial nanofluids, a study based 

on measuring the size of the nanoparticles by dynamic light scattering was performed. This 

method can detect the presence of agglomerates [24]. Dynamic Light Scattering (DLS) 

measurement was here performed on the nanofluid by using a Zetasizer Nano S (Malvern 

Instruments). Figure 6 shows the evolution of the nanoparticles size with the intensity 

distribution. The measured average particle size in the nanofluids is much larger than that of 

the primary nanoparticles, as described in table 1. The average cluster size for the Al2O3 water 

based nanofluid is 400 nm. The average agglomerate sizes for the CNT water based nanofluid 

is centered around 400 nm. The first peak could be attributed to particles in random position. 

These results show that our commercial nanofluids and nanoparticles are not well dispersed. 

 

3.2. Calculation of convective heat transfer 

The tests consisted in measuring the different temperatures at the level of every buckle, as 

well as the flow rate in the hot circuit. These measures have been done for the same external 

conditions as for the preceding Water-water validation test (same temperatures of order hot 

side and cold side), and for several flow rates in the central buckle. 

The nanofluid mass flow rate 
cmQ  at the central buckle is deduced of the received thermal 

power cφ . The calorific power received by the nanofluid at the level of the exchanger 1 is 

equal to the power lost by water at the hot buckle to which we add the external power 

received +φ  according to the temperatures logarithmic gap (figure 5). 

( ) ++−= φφ vevspvmc TTCQ
v            (5)
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The mass flow rate of the nanofluid is obtained in the following manner: 

( )fefspc

c
m TTC

Q
c −

=
φ

                                (6)
 

•  . Calculation of the convective heat coefficient 

To determine the h convection coefficient in the cold buckle, we use the following method: 


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The hw water coefficient in the hot buckle is determined by: 

h

w
w D

Nuk
h =                                                                                                                               (8) 

With  

p

S
Dh

4=                                                                                                         (9) 

S and p are respectively the section of passage between the two plates and the wet 

perimeter. 

3

1

PrRerBNu =                                                                                                                      (10) 

While taking a corrugation angle of 60° at the level of the plates and respectively for B and 

r, the values 0.455 and 0.66, these values are issued from the standardization on the water of 

the exchanger by the constructor. 

The numbers of Reynolds and Prandlt are respectively: 

w

hwVD

µ
ρ

=Re  ;
w

pww

k

Cµ
=Pr                                                                                                   (11) 

The velocity in the hot circuit (of water) is obtained by: 

Sn

Q
V

w

mv

ρ
=           n=10                                                                                                      (12) 
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The velocity of the nanofluid is calculated in the following manner: 

Sn

Q
V

nf

mc

ρ
=        n=9  

            
(13) 

With n is the number of channels (9 or 10, according to hot or cold fluid, in our case, water 

is from the hot side of the exchanger). 

•  Experimental uncertainly measure of h 

The absolute uncertainties on the PT 100 probes and relative on the electromagnetic flow 

meter are respectively of ∆T = 0.1 °C: %5.0
1

1 ±=∆

V

V

Q

Q

 
and this on the whole acquisition 

chain. While neglecting the water thermo physical uncertainties coefficients the relative 

uncertainty the convective transfer coefficient in the hot side is estimated to 1% by the 

constructor of the exchanger. While considering the relation (8) and the mistakes in 

temperature stabilities given by the figure 4, we get a relative uncertainty on the convective 

transfer coefficient hnf in the nanofluid of 10%. 

3.3. Calculation of pressure drops 

To characterize the pressure drops of the plate heat exchanger we use the relation (14) that 

expresses the total loss of load in meter of fluid column comprising the losses of linear and 

singular pressure drops: 

g

V
K

g

V

D

L
H

h 22

22

+=∆ λ                                                (14) 

In order to facilitate the calculations, we introduce the equivalent length to define the 

coefficient of singular load loss, equation (15). 

λ
h

eq

D
KL =              (15) 

The total load loss in our exchanger is therefore: 

( )
g

V

D
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H

h
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2

2+
=∆ λ                                   (16) 
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The merely theoretical assessment of the losses of singular loads is difficult because of the 

complexity of the studied system (pipes, corrugations). We define an A constant regrouping 

the complex geometric features of the exchanger (figure 3) and taking into account the 

singular pressure drops.  

( )
h

eq

gD

LL
A

2

+
=                          (17) 

The equation (15) becomes 

2VAH λ=∆              (18) 

To determine λ  we apply the Poiseuille relation for a laminar flow 

Re

64=λ               (19) 

To determine A, we determine the total pressure drops H∆  with the help of the constructor's 

software for three validated fluids and having viscosities of the same order of size as our 

nanofluids (water / ethylene glycol 40%, milk, water/ sugar 30%). When doing the report 

between H∆  and 2Vλ , we get in every case a value of the coefficient A of 2169.5 S2/m with 

a precision of 5%.  

These pressure drops generate a power of the circulator determined by the following relation: 

cmu HQgP ∆=              (20) 

To study the practical benefits of using the nanofluids quantitatively, we introduced the 

parameter ξ which evaluates the gain, in comparison with water, in term of a competition 

between heat transfer enhancement and pumping power loss. 

( ) ( )
( )wuc

nfucwuc

P

PP

−

−−−
=

φ
φφ

ξ
           (21) 
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4. Results and discussion 

4.1. Viscosity of nanofluids 

The measurements were performed at four temperatures, 2°C, 5°C, 7°C and 10°C, and 

varying also the time of shear stress ramp: 120s (2 minute), 180s (3 minute), 240s (4 minute) 

and 300s (6 minute). This is made for both investigating the influence of low temperature and 

shearing time on the rheological properties of the nanofluids. The measurements were also 

duplicated to verify the repeatability of the tests.  

Figure 7 presents two evolutions of the shearing velocity according to the constraint of 

shearing for the N2 nanofluid (nanotube of carbon) at 5°C and for a logarithmic ramp of 

decreasing constraints. We notice that the values obtained for different samples are very close, 

which validates our trial protocol and shows that the nanofluid is stable. Besides, the results 

shown in figure 8 show that CNT nanofluid is Newtonian for high shear rate. Similar tests 

were performed on the alumina nanofluid N1 and show that for several samples we obtain the 

same viscosity values. This leads to the conclusion of the nanofluid is stable. Besides, the 

behavior of these nanofluids is thinning at low shear rate and Newtonian at high shear rates. 

High shear stress is observed in the plat heat exchanger used in this work due to its geometry. 

We can therefore deduce dynamic viscosity by the following relation: 

γµτ &=                         (21) 

Figure 9 shows the relative viscosities obtained for our two nanofluids compared to 

dynamic viscosity of water and for 4 different temperatures (2, 5, 7 and 10°C).  

It can be noticed that the dynamic viscosity decreases when the temperature increases. The 

viscosity is 3 times superior to the water for N1 and 7 times superior for N2. For our 

nanofluids, figure 9 shows that the Einstein Model (Eq. 22) fails completely. 

( ) bfvnf µϕµ 5.21+=
   

                            (22) 

4.2. Convective heat transfer coefficient of the nanofluids 

The tests have been achieved for four cQ  flow rates of nanofluids. The flow rate in the hot 

side VQ  and its order temperature Tce, are respectively: 750l/h and 15°C. The order 

temperature in the cold side Tfs is fixed at 3°C, the flow rate is adjusted by the regulation on 
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the three - way valve. The data are checked every 5 seconds on a measuring period of 200 

seconds. The average results cover this period and figure 10 shows the evolution of the 

relative convective transfer coefficient hnf/hw according to the Reynolds number. 

The measures of heat transfer are done in laminar mode (lower Reynolds number). The 

fluids being very viscous, the Reynolds number obtained are low. When we compare the 

evolution of the convective coefficients with those of water at the same conditions, we notice 

an enhancement rate of 42% and 50% for N1 and N2 respectively (table 2). 

 The viscosity of the nanofluids is quiet higher than the viscosity of water (figure 9), so 

before the use of these fluids in the thermal exchangers, it is necessary to study the impact of 

the viscosity on the losses of loads generated. It is therefore important, in the setting of an 

industrial application, to find the compromise between the gain in thermal transfer and the 

energetic losses by the setting in motion of the fluid carrier by means of a pump. 

4.3. Pressure drop  _  Thermal hydraulic performance 

Figure 11 shows the evolution of the pressure drop of the circulator, according to the 

Reynolds number for N1 and N2 in the central buckle. We notice that for the same Reynolds 

number the pressure drop can be 7 times superior to that of water for the nanofluid N2 due to 

its high viscosity and 3 times superior to that of water for the nanofluid N1. 

Figure 12 shows the evolution of the practical benefits ξ of N1 and N2 according to the 

Reynolds number. It can be observed from this figure that the gain can reach 22% for N1 and 

150% for N2. This result is very important, it reports that alumina and Carbone nanotubes 

show a better thermal-hydraulic performance in terms of a competition between heat transfer 

enhancement and pumping power loss in comparison with pure water.   

5. Conclusion 

Two nanofluids alumina (γAl2O3) and carbon nanotubes (CNTs) dispersed in water are 

tested in the experimental process presented previously under a laminar out-flow mode. The 

experimental installation has been finalized and validated on water in order to value the 

thermal performances of the nanofluids at low temperature. 

The results show an improvement in laminar mode of the convective heat transfer 

coefficient of about 42% and 50% for N1 and N2 respectively compared to that of pure water 

for the same Reynolds number. The results show that the impact of the viscosity and the 
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pressure drop at low temperatures is important and has to take into account before to use 

nanofluids in heat exchanger. Finally, we observed that the gain can reach 22% for N1 and 

150% for N2. This result reports that alumina and Carbone nanotubes show a better thermal-

hydraulic performance in terms of a competition between heat transfer enhancement and 

pumping power loss in comparison with pure water.   

Complementary experimental studies on the thermal conductivity would permit to study 

the evolution of the number of Nusselt according to the number of Reynolds and finally the 

impact of the surfactant on the thermal characteristics of the nanofluids must be better 

dominated to analyze in a more precise way the thermal transfers. It’s possible that in this low 

temperature, the surfactant loss these properties.  

Nomenclature     

Cp: thermal capacity of fluid, J/kg.K.    Dh:    hydraulic Diameter, m        

Q: volumic flow rate, m3/s  k : Thermal conductivity of fluid, W/mK  

S: flow area, m²       T : Temperature, °C, K 

L : lenght, m  Re: Reynolds number, Re=ρUD/µ 

Nu: Nusselt number, hD/k  Pr: Prandlt number, Pr=Cpµ/k 

V: fluid velocity, m.s-1                                           K: head losses coefficient 

Pu: pumping power loss, W  h : convective coefficient of exchanger,  

   W/m²K 

Sx:  exchange area, m²      g: gravity acceleration, m²/s 

e: plate thickness, m  Leq: equivalent length, m 

:φ  Thermal power, W  :ν  kinematic viscosity of fluid, m²/s 

ρ: fluid density, kg/m3  :µ  fluid dynamic viscosity, Pa.s  

ϕ: concentration, %  τ: shear stress, Pa 

γ& : shear rate, s-1          λ: Linear pressure drop coefficient 
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∆H: Pressure drop, m  ξ: Practical benefits parameter, %  

 

Subscripts / Superscripts   

c: Central            T: Trane  v : volumic        + : gain 

e : entry                 s : exit  m : mass      LM : logarithmic 

V : Vulcatherm w : water  p : particule     bf : base fluid 

nf : Nanofluid         
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Figure 1 
 

[1] : Heat exchanger, hot side  [6] : UPS circulator with three speeds 
[2] : Heat exchanger, cold side  [7] : Electromagnetic flow meter 
[3] : Central buckle   [8] : Ultrasonic flow meter 
[4] : Vulcatherm buckle  [9] : Three-way valves 
[5] : Trane buckle 
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   Manufacturer 
name  

Nanofluid diameter 
(nm)  

φv Surfactant 

N1  nanoteK A1121W Aqueous 
alumina 
(γAl 2O3) 

37 1 1% wt* 

Unknown 

N2  Aquacyl MSDS Aqueous 
Carbon 

Nanotube CNT 

9-10 

 2µm length 

0.55 2% wt* 

SDBS 

(*) : mass concentration 

 

Table 1 : 

 

 

 

Nanofluid  Flow regime  (hw-hnf)/hw 

N1  Laminar  Re=85 à 195  42%  

N2  Laminar  Re=35 à 75  50%  

 

Table 2 : 


