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Abstract: This research presents the development of an analytical model to predict the elastic
stiffness performance of orthogonal interlock bound 3D woven composites as a consequence of
altering the weaving parameters and constituent material types.

The present approach formulates expressions at the micro level with the aim of calculating more
representative volume fractions of a group of elements to the layer. The rationale in representing
the volume fractions within the unit cell more accurately was to improve the elastic stiffness
predictions compared to existing analytical modelling approaches.

The models developed in this work show good agreement between experimental data and
improvement on existing predicted values by models published in literature.



1. Introduction

Three-dimensionally (3D) woven composites have been identified as a class of material that
have potential performance and manufacturing benefits compared to traditional two-dimensional (2D)
laminate composites for structural applications[1-6]. The 3D weaving process controls the placement of
reinforcing tows in the X, Y, and Z axis directions. A designer can potentially tailor the performance of
the weave architecture to the specific requirements of the application by altering the weaving
parameters. There are numerous combinations of weaving parameters that could be selected each of
which imparts a different mechanical performance. A lack of understanding currently exists as to the
effect on the mechanical performance as a consequence of altering the weaving parameters. To help
realise the potential benefits of 3D woven composites, the designer must be facilitated with modelling
tools that allows them to quickly evaluate the effect of weaving parameters on the geometric
characteristics and mechanical performance.

In literature there are two approaches to facilitate this aim i.e.Finite Element (FE) and analytical
models. The FE approaches have the potential to encapsulate more complexities of the 3D woven
composite than analytical methods but are generally too computationally and time intensive[7]. This
would make such methods unsuitable when trying to assess quickly numerous permutations of 3D
weave architecture and the consequences of altering the constituent materials and weaving parameters
on the mechanical performance of the composite. Therefore, a clear need for accurate analytically
based approaches is still necessary. There are numerous analytically based models developed to model
the mechanical performance of 3D woven composites[8-14]. These analytical approaches use similar
principles to formulate relationships based-on the spatial orientation of unidirectional tows in the unit
cell or a small representative volume of the composite[15,16]. The accuracy of the predicted mechanical
properties is only as accurate as the inputted geometric definition/description of the unit cell.

Calculation of the macroscopic properties of the unit cell are dictated by first calculating the
properties of the constituent elements and averaging accurately the contribution they make to a
macroscopic layer and-subsequently the whole unit cell. Various authors analytical approaches accepted
highly idealised representation of tow cross-sectional shape. For example Tan et. al.[10] presented the
XYZ, ZXY and ZYX models to predict the stiffness of 3D woven composites. The representative unit cell
was segmented into a number of micro-blocks where the authors proposed a mixed iso-strain and iso-
stress scheme to calculate the elastic properties of the 3D woven composite. These microblocks could
be resin impregnated stuffer, filler or binder tow blocks where the cross-sectional shape of the tow was
taken to be rectangular.

Utilising non-representative tow cross-sectional characteristics could lead to inaccurate
calculation of volume fraction at the tow element level. This is compounded further when calculating
the volume fraction of the respective elements that make up a layer in the unit cell. The highly idealised
representation of the geometric characteristics of the constituent parts (stuffers, fillers, binders and
matrix) that make up a layer must be improved in order to yield better predictions. Existing analytical
models[8-11,13,17] present predictions that are generally significantly higher, by 10% compared to the
small amount experimental data available in literature.



This paper presents an analytical modelling tool to predict the elastic stiffness properties of 3D
woven orthogonal interlock composites. The model assesses the change in performance as a
consequence of altering the weaving parameters that dictates the 3D weave architecture. The 3D woven
composite modelled in this paper consists of alternate layers of stuffers travelling in the 0° (warp)
direction and fillers travelling in the 90° (weft) direction bound through-the-thickness in the warp
direction by a binding tow (Figure 1).

Previous work by Buchanan et. al.[18] describe the development of a geometric model that is
capable of calculating the necessary inputs for the present elastic stiffness model. The geometric model
and the present elastic stiffness model are driven by weaving parameters and the constituent material
properties from the manufacturer’s datasheet. The modelling methodology from the geometric model
predicts useful information for the engineer such as areal density, overall thickness and fibre volume
fraction in addition to the variables that appear in equations 8 to 16 of this' paper. The geometric model
also defines the composite unit cell to be modelled by the elastic stiffness model, accepting more
representative tow cross-sectional characteristics. The geometric model allowed three representative
tow cross-sectional shapes to be used including lenticular, elliptical and racetrack. A racetrack cross
section is essentially a rectangle with semi-circles on its ends: Assumption of any of these tow cross
sectional shapes is still an idealisation. For instance Summerscales and Russell[19] found evidence that
assuming the lenticular shape to be symmetrical is incorrect. However, one or more of these ideal tow
cross sections is often adopted in models[18,20-22] and have shown good agreement between
calculated and measured values.

The macroscopic unit cell modelled by the present elastic stiffness model is representative of
one repeat of the weave architecture (Figure 1). The model follows the unit cell discretisation method
into layers and elements. Elements within a layer can be pure matrix material, or a combination of
reinforcing tows in the X or Y, and Z axis directions. The present approach formulates expressions at the
micro level with the aim of calculating more representative volume fractions of a group of elements to
the layer. The rationale.in representing the volume fractions of elements within a layer and
subsequently the layers within the unit cell more accurately was to improve the elastic stiffness
predictions compared with existing analytical modelling approaches for example Cox and Dadkhaha[8]
and Wu et. al;[13].

2. ~Description of present modelling approach

The modelling approach taken in this paper follows from Naik et. al.[11,17] and develops the
modelling approach by Wu et. al.[13]. The unit cell in this work is representative of one repeat of the
weave architecture. The new model treats the 3D woven composite as an assembly consisting of layers
containing unidirectional elements (which are fibrous tows encased in resin). The new modelling
approach formulates expressions that discretise the unit cell into layers and then elements.

Figure 2 illustrates the operation of the elastic stiffness model. Upon execution of elastic
stiffness model the geometric properties originating from the results provided by the geometric
modelling methodology[18] selects the unit cell to be discretised. The whole unit cell is representative of
the macroscale i.e. does not distinguish individual layers nor the elements that make up a layer. To



calculate the macroscopic stiffness of the whole unit cell it must be broken down or discretised to the
microscale. The microscale looks at the individual elements that make a layer and then the layers that
make up the macroscopic unit cell. Therefore, the unit cell undergoes the first level discretisation into
layers then the 2™ level discretisation into the individual elements that make up the layer. An element
can be an individual stuffer, filler, binder or matrix region within a layer. At this stage the micro stiffness
of the each individual element contained within a layer is calculated. Having determined the stiffness of
each and every element then the stiffness of whole layers can be calculated following the procedure
discussed in section 3.2. A layer within the unit cell can be an outermost layer (figure 3), a warp layer
oriented in the X direction (figure 5) or weft layer oriented in the Y direction (figure 4). Once the
stiffness of all layers is known then the model calculates the stiffness of the whole unit cell and finally
outputs the elastic constants following the procedure discussed in section 3.1. The predictions of the
elastic constants are compared with the experimental data and two existing analytical models, the
Orientation Averaging (OA) and Modified Orientation Averaging (MOA) and an FE model (binary model)
that are reported in literature by Cox and Dadkhaha[8] and Xu et. al.[23] respectively. In addition, the
present approach is compared with the analytical model presented by Wu et. al.[13] for 3D woven
orthogonal interlock composites.

3. Formulation of elastic stiffness model

The prediction of the unit cell or macroscopic stiffness begins with the calculation at the
microscale i.e. the constituent elements within a layer. At this level the constituent elements (tows
encased in matrix) are considered to be unidirectional composites. The micromechanical equations
described by Chamis[24] have been used elsewhere[13] to calculate the effective the elastic properties
of the element on the material coordinate systemi.e. 1, 2, 3. Direction 1 coincides with the longitudinal
direction of the tow, transverse direction with 2 and out-of-plane with 3 (figure 6).

The volume fraction (V,) of a tow element is calculated from the characteristic dimensions of
the tow and the unit cell that were predicted previously by the geometric model[18]. The V, of the tow
is equal to the area fraction of the tow and is determined via equation 1. V, is the total cross sectional
area of the individual filaments in a tow divided by the area of a rectangular prism of resin (i=s, fand b
stuffer, filler and binder). The cross sectional area of a tow was determined from the respective linear
density (TEX) and.density of the fibre with an assumed packing factor(see Buchanan et. al [18]).

=1 Eql
’ hil;

Where:
A; = Cross sectional area of the tow (calculated by geometric model[18])
h; = height of the tow (calculated by geometric model[18])

I; = width of the tow (calculated by geometric model[18])



With the proportions of the constituent composite parts and the elastic modulus supplied from
the manufacturer’s data, the stiffness of the unidirectional tow/element is calculated by the model using
equations 2 to 7. The reinforcing tows are assumed to be transversely isotropic and the matrix is
isotropic.

Elastic moduli [24]:
E =E,V,+E_(1-V,) Eq2

E,=E, = o Eq3

Shear moduli [24]:

G
G, =G, = mG Eq4
1-yV [1-"m
%)
Gy =G, = Cn Eq 5
G
1- ]-"m
Poisson ratio[24]:
Up =0y :Uf12V0+Um(l_Vo) Eq 6
U, = E, -1 Eq7
2G,,

Described next are the expressions that describe the discretisation of the 3D woven orthogonal
interlock unitcell into layers and the calculation of the contribution that each element makes to the
respective layer. Calculation of element contribution is required so that the stiffness of the whole layer
can be calculated and ultimately the overall unit cell stiffness. The input data for the specific 3D woven
orthogonal interlock type modelled in this paper is found in Cox et. al.[8] and Wu et. al.[13]. This enables
the present modelling approach to be compared to existing models in literature in addition to
experimental data.

The outer most layers contain horizontal and vertical binder tow elements and resin material
only. The horizontal binder elements illustrated in Figure 1 are where the binder tow emerges to the
surface looping over a number of filler tows (the float length F dictated by the weave design) before
passing down through the thickness of the unit cell. The derivation and calculation of the variables in
equations 8 to 16 are found elsewhere in Buchanan et. al.[18]



Contribution of horizontal binder elements in the outer layer Vo e :

C
nb”{szAb +F.ARh A

Vihouter = LLh Eq8
X —y''b

e Thein-plane contribution of the binder elements in the outer layer V| qyrer:

uc Cf
n, [2}%

Vivourer = [ 1 Eq 9
b

Xy

e Contribution of matrix elements Vo 1er -

Viourer =17 (Vbh +va) Eq 10

2. Intermediate/inner layers
Intermediate layers are either weft layers or warp layers that alternate weft/warp from top to bottom.

= Weftlayers:
Contain straight filler elements, vertical elements of binder tows and matrix material elements. An
example of this isiillustrated in Figure 4.

The contribution of each element in the weft layer is as follows:

e Contribution of vertical binder elements in a weft layerV,yge :

2nbUCA)
Vowerr = T Eq 11
Xy

e Contribution of filler tow elements in a weft layerV ;. :
n . uc Af

Viwerr = T Eq 12
x O f



e Contribution of matrix elements in a weft layer Vg1

Voweer =1- (Vbh +Vi ) Eq13

=  Warp layers :
Contain stuffers, vertical binders and matrix material an example is illustrated in Figure 5.

The contribution of each element in the warp layer is as follows:

e Contribution of vertical binder elements in a warp layerV, yazp

_20"A Fate

bvWARP
LL,

e Contribution of stuffer tow elements in a warp layer Vgyagp:

uc
A

VSWARP = Eq 15
L,h,

e Contribution of matrix elements V, e

Vi =17 g, +V5) Eq 16

a. Determination of the elastic properties of the unit cell

On the macro-scale or unit cell level the composite is homogenous and orthotropic and is
characterised via the following constitutive relationship:

o=C.cs¢ Eq 17[25]

e=S.o Eq 18[25]

Where:
G: macrostress vector
€: macrostrain vector
C: macroscale orthotropic elastic stiffness matrix
S: macroscale orthotropic elastic compliance matrix

This is a linear stress-strain relationship that is given by a six-by-six stiffness and compliance
matrices C and S respectively (generalised Hooke’s law). The assumption of material orthotropy
considers the composite material to possess three mutually orthogonal planes of symmetry.



The objective is to determine the macroscale elastic stiffness matrix C, which is the overall
stiffness of the unit cell. This is formulated by considering microscale response of the individual
elements in the layers that make up the unit cell i.e. the discretisation of the unit cell. The elements are
treated as spatially orientated unidirectional composites. Where, considering the global material axis (X,
Y, Z) - the stuffer and horizontal binder elements flow in the X-axis, filler elements in the Y-axis and
vertical binder elements in the Z-axis. The elastic stiffness of the respective elements C° and compliance
S¢ as a consequence of their spatial orientation is specified by the matrix transformation of an
orthotropic matrix:

ce=TCTT [26]

S*=T".S°T [2¢]
Where:

C*® and S° = the transformed stiffness and compliance matrix respectively
T = the transformation matrix superscript Tindicates the transpose of T

By calculating the stiffness C and compliance S of every layer by applying isostrain or isostress
conditions and considering the volume fraction of the layer then the overall macroscopic stiffness C can
be determined based on the generalised Hooke’s law (assuming the unit cell is orthotropic). The
isostrain (stiffness) condition is applied when determining the elastic stiffness predictions in the fibre
direction and the isostress (compliance) condition is applied for predictions transverse to the fibre
direction. This is because it has been found that for unidirectional composites the isostrain conditions
provide better predictions in the fibre direction and isostress is better for calculation transverse
properties[27].

Considering equation 17 in matrix form and a considering a stress applied in the longitudinal X
direction results:

o C, C, Cyll&
0:=|C, C, C,| &, Eq 19
0 C, Cy Cyujle

Equation 19 illustrated the macroscale response which is to be determined by summation of the

X

z

stress distributions within a layer / :

o'x Clv Clu Clalléx
oyt=IC'y, C'n Clyuldéy Eq 20

| | | | |
o Cis C»n Cxnlle:



Assuming:

go=¢x. g =6y Eq 21[13]

Equations 5-22 mean that the macroscopic strain experienced by the unit cell is equal to the
strain experienced by each individual layer /.

g, = Z%s'z Eq.22[13]

Where, a layer I (1, 2, 3, n) and the thickness of a layer is denoted as h,; and H is the overall
thickness of the unit cell.

Equation 22 indicates that the strain Through-The-Thickness (T-T-T) of the unit cell is equal to the
summation of all individual T-T-T strains experienced by the layers in the unit cell.

For the assumption that the unit cell is in equilibrium requires the following expressions:

O,=) —O0x Eq 23[13]
0=>Lhoy Eq 24[13]
Plane stress condition applies to the layer, as such:

o', =0 Eq 25[13]
Applying these assumptions and isostrain and isostress conditions results in expressions
(Table 1) describing the elastic constants of the unit cell in terms of the elastic stiffness of the layers. The
procedure to find the elastic constants for the overall unit cell is the same as detailed by Wu et. al. [13]
and repeating the procedure whilst considering deformation or strain to the unit cell in the transverse Y
direction yields the expressions in Table 1.

The simplified-variables in Table 1 are representative of the following expressions:

h AT h C'y’ h C's.C's
Zﬁ'(c'“‘clﬁ =G 2| O TG 2y G S

h C'is h C'u
B _¢, Y2 _¢
Z H C's ! Z H C's :

b. Determination of the elastic stiffness of the layers and elements

By applying isostrain/isostress conditions to the layer the same procedure that has just been
described to determine the overall stiffness and compliance matrices C and S and layer stiffness and
compliance matrices C'and S, can also be expressed for € and S’ and C° and $°. The determination of
element volume fractions is different than the volume fraction of a layer such that h/H must be



replaced in the expressions by V./V for warp, weft and outer layers. Then by replacing the assumptions
described in Equations 22-25 with 32-35 the stiffness properties of individual layers in the unit cell can
be determined. A layer consists of a number of elements e, where subscript n dictates the number of
the element in the layer (Figure 6). The calculation of the stiffness of the individual layers must be
carried out first so that the stiffness of the whole unit cell can be determined.

The deformation of the layer in the longitudinal direction X results in:
O'Ix Clll C|12 C|l3 5IX
0 t=|C'n C'n C'u|ig'y Eq 26
0 C's C'u C'nllée,

The elastic response of the whole layer is to be determined by summation of the stress
distributions of the elements e within a layer I

O'ex Cell Celz Cel3 8ex

o’y ;=|C% C°n C°xn &’y Eq 27
O_eZ Cel3 Ce23 Ce33 geZ

Assuming:
ev=¢%, & r=€% Eq 28[13]

Equations 28 mean that the strain experienced by the layer / is equal to the strain experienced
by each element e.

Vv
gy=>2e% Eq 29
~V
Where:

V. can be the volume of a stuffer, filler or binder element depending on the layer and V is
the volume of the layer. V, for each respective element was detailed earlier for each respective
layer (Equations 8 to 16). This differs from the approach reported by Wu et. al. [13] who
calculated volume fraction of an element based on element width.

Equation 29 indicates the transverse strain in the whole layer is equal to the summation of all
individual element strains in the layer.

For the assumption that the unit cell is in equilibrium requires the following expressions:



Vo, =YV, 0% Eq 30

V., .

0=S"2e 5o, Eq 31
=~V
V

Ozzveaez Eq 32

Following a similar procedure as before to calculate the elastic stiffness constants of the unit
cell, the elastic stiffness constants of the layer can be determined (Table 2).

The simplified variables in Table 2 are representative of the following expressions:

V Ccn’ V Ces° Vv C°h.Ct ’
S Cy—-———|=C,_, —£1 C%;3 — =C,, ) HCs—————| =C,,,
Zv( tc J . Zv( ? C%ZJ & v( Y co J :

e e e

ﬁcllz _ ﬁclzs
~\/ C'» e’ ~\/ C'»

:CSe

4. Results and Discussion

Table 3 indicates the predictions from present model compared to the experimental data and
two analytical models reported by Cox and Dadkhaha[8], a numerical model by Xu et. al.[23] and the
predictions of another analytical model that are stated by Wu et. al. [13].

The results show that the new modelling approach has a clear improvement in all predictions
compared to both the Orientation Averaging (OA) and Modified Orientation Averaging (MOA) models.
The predictions made by the present model are more accurate than those made by the binary model
with the exception of the T-T-T modulus E,. The same is also true when comparing the analytical model
by Wu et. al.[13], where more accurate predictions for longitudinal and transverse modulus and
Poisson’s ratio are achieved by the present model. The binary model and Wu et. al.’s model appear to
produce a slightly better prediction for T-T-T modulus E, than the present model. However, the
experimental value for E, was implied from a compression test T-T-T of the laminate and may not be
accurate with a deviation of +1GPa. In all predictions the percentage difference between the present
modelling predictions and experimental data for E,, E,, E, and vy, are 12.87%, 4.91%, 36.82% and 32.5%
respectively. The overestimation of E, in the present model is most likely the assumption that
orthogonal binder tow path passes perpendicularly T-T-T. In practice the binder folds on itself as a
consequence of consolidation in the moulding process that alters its trajectory T-T-T.

The MOA is more accurate than its predecessor the OA model because waviness measurements
were taken for the nominally straight stuffer and fillers tows and found to be 0.86 and 0.98
respectively[8]. This implies stuffer tows possessed more undulation than filler tows that could be



considered to be nominally straight (1 is indicative of a completely straight tow). The predictions made
in the present model do not require any such measurements and still yield better predictions. Although,
the E, is overestimated by present model by a larger percentage than E,, this can be explained by the
fact that the filler tows that contribute most to E, are nominally straight but the stuffers that contribute
most to E, are more undulated. Undulation in the nominally straight tows was reported by the Cox and
Dadkhaha[8] to result in a knock-down in elastic stiffness. The results found in this research support the
role of undulation and its importance that it is incorporated into further modelling efforts especially for
3D weaves that possess a lot of undulation in the nominally straight tows. However, the present
modelling approach identifies this as only part of the solution. Because the present model more
accurately accounts for the volume fractions of the elements at the micro level and selects a unit cell
representative as one repeat of the weave architecture, more accurate predictions are achieved.
Therefore, accurate calculation of fibre volume fractions is crucial for calculating the'in-plane properties
that have been reported by Tan et. al.[28] to be ‘highly sensitive’ to fibre volume fraction. Also, it may
be implied from the predictions made by the present model that if the undulation factor is not less than
0.9 (less meaning greater undulation) then the in-plane modulus can be predicted to within 10% of the
experimental value.

5. Conclusions

e A new analytical tool has been presented to model the elastic stiffness characteristics of 3D
woven orthogonal composites with the ability to assess change in performance as a
consequence of altering weaving parameters.

e The elastic stiffness model discretises the unit cell into layers and subsequently elements. New
expressions have been presented and incorporated into the model to calculate more accurately
the volume fractions of constituent elements in a layer. This approach has been validated
against experimental data produced independently of this work for orthogonal interlock weaves
and compared to existing modelling approaches.

e The present model performs better in all predictions compared to the existing modelling efforts
except for the prediction of E,.

e The representation of the trajectory of the binding tow in orthogonal interlock weaves is too
idealised in the present model. It is assumed to pass perpendicular through the whole thickness
of the laminate resulting in overestimated predictions for E,.

e Undulation in the nominally straight stuffer and filler tows negatively affects the accuracy of the
predicted results.

e For tow undulation factors 20.9 the present model will predict longitudinal or transverse
modulus to within 10%.

Abbrevations

2D Two-Dimensional



3D

FE

MOA

OA

T-T-T

Three-Dimensional

Finite Element

Modified Orientation Averaging
Orientation Averaging

Through-The-Thickness

Symbols

Area (m?)

Aspect Ratio of the tow cross-section

Circumference of filler tow (m)

Orthotropic stiffness matrix

Modulus of elasticity (GPa)

Float (orthogonal interlock only) number of fillers binder travels over
Shear modulus (GPa)

Thickness of a tow (m)

Thickness of unit cell (M)

Length a tow (m)

Length of unit cell (m)

Number of stuffers along the weft direction (Y) in the unit cell
Number of fillers along the warp direction (X) in the unit cell
Number of binders along the weft direction (Y) in the unit cell
Orthotropic compliance matrix

Transformation matrix

Volume (m®)

Volume fraction of a matrix



bv

bh

Volume fraction of a tow

Greek letters
Strain
Poisson’s ration

Stress (GPa)

Subscript

Longitudinal fibre direction (material co-ordinate system)
Transverse fibre direction (material co-ordinate system)
Transverse fibre direction (material co-ordinate system)
Vertical binder element

Horizontal binder element

Binder tow

Element

Filler tow

Layer

OUTER Outer layer in the unit cell

WARP

WEFT

Stuffer tow
Warp layer in the unit cell
Weft layer in the unit cell

in the longitudinal x axis



y in the transverse y axis

z in the out-of-plane z axis

Superscript

-1 Inverse of matrix

e element

/ Layer

T Transpose of matrix
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Figure 1: Schematic representation of 3D woven orthogonal interlock type
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Table 1: Elastic constants for the unit cell

Elastic constant Expression
C., C,+C,’Cy,
C, C,+C,C,C,,
C, GG,
Cy C,+C,’Cy,
C,, C.C,
c. CC,-Ci

- C,C,’4C,C.5-2C,C,C,

Table 2: Elastic constants for the layers

Elastic constant Expression
I C. +C 2.
c:ll le + 4e 22
[ [
Cp, Ce o
[ I
Cl3 C3e + C4e.C5e'C22
I [
C23 CSe'C22

CleCZe B CSeZ

B CleCSe2 + CZeC4e2 - 2C3eC4eC5e

C, C,+G.'Cy




Table 3: Elastic stiffness predictions for 3D woven orthogonal interlock compared to experimental data

EX Ey EZ
Models Uyy Uy, Uyx;
(GPa) (GPa) (GPa)
OA
51.90 63.90 13.70 0.034 0.183 0.184
(Cox et al[8])
MOA
45.40 62.60 13.70 0.032 0.180 0.173
(Cox et al[8])
Binary Model
48.90 63.70 9.40 0.027 0.428 -
(Xu et al[23])
Analytical Model
45.30 55.90 8.90 0.031 0.205 0.207
(Wu et al[12])
Present model 34.43 47.85 11.08 0.040 0.211 0.201
Experimental 30.00+2.0 =~ 45.50+1.5 7.0+1.0 0.053 - -
Error between
present model 12.87% 4.91% 36.82% 32.50% - -

and experiment




