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Abstract

We introduce a “Coulombian renormalized energy” W which is a logarithmic type
of interaction between points in the plane, computed by a “renormalization.” We prove
various of its properties, such as the existence of minimizers, and show in particular, using
results from number theory, that among lattice configurations the triangular lattice is the
unique minimizer. Its minimization in general remains open.

Our motivation is the study of minimizers of the two-dimensional Ginzburg-Landau
energy with applied magnetic field, between the first and second critical fields H., and
H.,. In that regime, minimizing configurations exhibit densely packed triangular vortex
lattices, called Abrikosov lattices. We derive, in some asymptotic regime, W as a I'-limit
of the Ginzburg-Landau energy. More precisely we show that the vortices of minimizers
of Ginzburg-Landau, blown-up at a suitable scale, converge to minimizers of W, thus
providing a first rigorous hint at the Abrikosov lattice. This is a next order effect compared
to the mean-field type results we previously established.

The derivation of W uses energy methods: the framework of I'-convergence, and an
abstract scheme for obtaining lower bounds for “2-scale energies” via the ergodic theorem
that we introduce.

keywords: Ginzburg-Landau, vortices, Abrikosov lattice, triangular lattice, renormalized
energy, Gamma-convergence.
MSC classification: 35B25, 82D55, 35Q99, 35J20, 52C17.

1 Introduction

In this paper, we are interested in deriving a “Coulombian renormalized energy” from the
Ginzburg-Landau model of superconductivity. We will start by defining and presenting the
renormalized energy in Section 1.1, then state some results about it in Section 1.2. In Section
1.3, we then present an abstract method for lower bounds for two-scale energies using ergodic
theory. In Sections 1.5-1.10 we turn to the Ginzburg-Landau model, and give our main results
about it as well as ingredients for the proof.

1.1 The Coulombian renormalized energy W

The interaction energy W that we wish to define just below is a natural energy for the
Coulombian interaction of charged particles in the plane screened by a uniform background:
it could be called a “screened Coulombian renormalized energy”. It can be seen in our context
as the analogue for an infinite number of points in R? of the renormalized energy W introduced
in Bethuel-Brezis-Hélein [BBH] for a finite number of points in a bounded domain, or of the



Kirchhof-Onsager function. We believe that this energy is quite ubiquitous in all problems
that have an underlying Coulomb interaction: it already arises in the study of weighted
Fekete sets and of the statistical mechanics of Coulomb gases and random matrices [SS6],
as well as a limit in some parameter regime for the Ohta-Kawasaki model [GMS2]. In [SS7]
we introduce a one-dimensional analogue (a renormalized logarithmic interaction for points
on the line) which we also connect to one-dimensional Fekete sets as well as “log gases” and
random matrices.

We will discuss more at the end of this subsection and in the next, but let us first give
the precise definition.

In all the paper, Br denotes the ball centered at 0 and of radius R, and | - | denotes the
area of a set.

Definition 1.1. Let m be a positive number. Let j be a vector field in R?. We say j belongs
to the admissible class Ay, if

(1.1) curlj = v —m, div j =0,
where v has the form

v=27 Z 0p  for some discrete set A C R?,
pEA

and

v(Br)
| Br|

(1.2) is bounded by a constant independent of R > 1.

For any family of sets {Ug} r>o in R? we use the notation yuy » for positive cutoff functions
satisfying, for some constant C independent of R,

(1.3) IVxugl <C, Supp(xug) C Ug, xug(z)=1ifd(z,Ug°) > 1.

We will always implicitly assume that {Upg}r~¢ is an increasing family of bounded open sets,
and we will use the following set of additional assumptions:

A
(1.4) {Ug} is a Vitali family and ~ lim A+ Ur) & Ug| =

0.
R—+o00 ‘UR|

for any A € R2. Here, a Vitali family (see [Ri]) means that the intersection of the
closures is {0}, that R — |Ug]| is left continuous, and that |[Ur — Ug| < C|Ug| for
some constant C' > 0 independent of R.

e There exists 6 < 2 such that for any R > 0

(15)  Ur+B(0,1) CUgrse, Ugry CUgr+B(0,C), [Ugy \Ug|=O(R’).
Definition 1.2. The Coulombian renormalized energy W is defined, for j € Ay, by

(1.6) W(j) :limsupw



where for any function x we denote

(1.7)

1

x|i* +7mlogn Y x(»)
n—0 | 2 /RZ\UpeAB(Pﬂ?) Z

peEA

We similarly define the renormalized energy relative to the family {Ugr}r>o by

(1.8)

Let us make several remarks about the definition.

1.

We will see in Theorem 1 that the value of W does not depend on {xp,}r as long
as it satisfies (1.3). The corresponding statement holds for Wy under the assumptions
(1.4)—(1.5).

. Since in the neighborhood of p € A we have curl j = 279, — 1, div j = 0, we have near p

the decomposition j(z) = V1 log |z — p| + f(x) where f is smooth, and it easily follows
that the limit (1.7) exists. It also follows that j belongs to L} _ for any p < 2.

From (1.1) we have j = —V+H for some H, and then

—-AH = 2772(2, —m.
peEA

Then the energy in (1.7) can be seen as the (renormalized) interaction energy between
the “charged particles” at p € A and between them and a constant background —m.
We prefer to take j = —V+H as the unknown, though, because it is related to the
superconducting current je.

We will see in Theorem 1 that the minimizers and the value of the minimum of Wy
are independent of U, provided (1.4) and (1.5) hold. However there are examples
of admissible j’s (nonminimizers) for which Wi (j) depends on the family of shapes
{Ugr}Rr>0 which is used.

. Because the number of points is infinite, the interaction over large balls needs to be

normalized by the volume and thus W does not feel compact perturbations of the
configuration of points. Even though the interactions are long-range, this is not difficult
to justify rigorously.

The cut-off function xr cannot simply be replaced by the characteristic function of Br
because for every p € A

It is easy to check that if j belongs to A,, then j' = ﬁ](/\/fn) belongs to A; and

(1.9) W(j) =m (W(j’) ~ g m) |

so we may reduce to the study of W over A;.



When the set of points A is periodic with respect to some lattice Zu# + Z# then it can be
viewed as a set of n points ay, - - -, a, over the torus T(g 7 = R*/(Zi + Z7). There also exists
a unique periodic (with same period) J{a;} With mean zero and satisfying (1.1) for some m
which from (1.1) and the periodicity of ji,,; must be equal to 27n divided by the surface
of the periodicity cell. Moreover j,,)} minimizes W among (1, v)-periodic solutions of (1.1)
(see Proposition 3.1). The computation of W in this setting where both A and j are periodic
is quite simpler (the need for the limit R — oo and the cutoff function disappear). By the
scaling formula (1.9), we may reduce to working in 4,, in a situation where the volume of the
torus is 2. Then we will see in Section 3.1 the following

Lemma 1.3. With the above notation, we have

(1.10) W (jas) Z G(a; — a;) + neg g
#J

where c(g ) s a constant depending only on (u,V) and G is the Green function of the torus
with respect to its volume form, i.e. the solution to

—AG(J}) = 27T(50 -1 T(ﬂ,ﬁ)'
Moreover, jiq,) is the minimizer of W (j) among all T g 5 -periodic j’s satisfying (1.1).

Remark 1.4. The Green function of the torus admits an explicit Fourier series expansion,
through this we can obtain a more explicit formula for the right-hand side of (1.10):
(1.11)

622'7rp-(a¢ —aj) 2imp-x

n (&
W (i) = Z ) An2[p]2 + 5 lim 2. 4n2[p]2 +log [2]

z;é] pe(Zu+7Z7)*\{0} p€e(Zu+7Z0)*\{0}
where * refers to the dual of a lattice.

The function }_, ,; G(a; — a;) is the sum of pairwise Coulombian interactions between
particles on a torus. It arises for example in number theory (Arakelov theory), see [La2] p
150, where a result attributed to Elkies is stated: ,,; G(a; —a;) > —’ logn+O(n) (on any
Riemann surface of genus > 1). Note that we can retrieve this estimate in the case of the
torus by using the fact that min 4, W is finite and formula (1.12) with m = n.

So conversely, another way of looking at our energy W is that it provides a way of com-
puting an analogue of }_, ., G(a; — a;) in an infinite-size domain.

1.2 Results and conjecture on the renormalized energy

The following theorem summarizes the basic results about the minimization of W. Note that
by the scaling relation (1.9) we may reduce to the case of A;, and we have

1
(1.12) minW:m(minW— logm> .
A1 4

m

Theorem 1. Let W be as in Definition 1.2.

1. Let {UR}Rr>0 be a family of sets satisfying (1.4)—(1.5), then for any j € A;, the value of
Wy (j) is independent of the choice of xuy in its definition as long as it satisfies (1.3).



2. W 1s Borel measurable on LfOC(RZ,RQ), p < 2.

3. min g, Wy is achieved and finite, and it is independent of the choice of U, as long as
{UR} satisfies (1.4)—~(1.5).

4. There exists a minimizing sequence {jn}nen for ming, W consisting of vector-fields
which are periodic (with respect to a square lattice of sidelength /27n ).

The question of identifying the minimum and minimizers of W seems very difficult. In
fact it is natural to expect that the triangular lattice (of appropriate volume) minimizes W
over any A,,, we will come back to this below. We show here a weaker but nontrivial result:
the triangular lattice is the unique minimizer among lattice configurations.

When the set of points A itself is a lattice, i.e. of the form Zu & Zv, denoting by ja the j
which is as in Lemma 1.3, that lemma shows that W (ja) is equal to c(z 5 and only depends
on the lattice A. We will denote it in this case by W(A). For the sake of generality, we state
the result for any volume normalization:

Theorem 2. Let £ = {A | A is a lattice and jp € Ay }. Then the minimum of A — W (A)
over L is achieved uniquely, modulo rotation, by the triangular lattice

47 1 V3
A = 1,0)Z - — | Z].
o[ 0o (1 9)2)
The normalizing factor ensures that the periodicity cell has area 2w/m, or equivalently
that A, € A,,.

Remark 1.5. The value of W for the triangular lattice with m = 1 estimated numerically
from formula (3.6) or (3.10) is ~ —0.2011. For the square lattice it is ~ —0.1958.

Theorem 2 is proven by expressing jp using Fourier series. Then minimizing W over L is
a limit case of minimizing the Epstein ( function

1
AHZW

peA\{0}

over L when x — 0. This question was answered by Cassels, Rankin, Ennola, Diananda,
[Cas, Ran, Enl, En2, Di]. In a later self-contained paper [Mont], Montgomery shows that the
(-function is actually the Mellin transform of another classical function from number theory:
the Theta function

(1.13) Or(a) = Z e ol

peEA

He then deduces the minimality of the ¢ function at the triangular lattice from the corre-
sponding result for the 6 function (we will give more details in Section 3).

The main open question is naturally to show that the triangular lattice is a minimizer
among all configurations:

Conjecture 1. The lattice Ay, being defined as in Theorem 2, we have W (Ay,) = ming,, W.



Note that a minimizer of W cannot be unique since compact perturbations do not affect
the value of W, as seen in the fifth remark in Section 1.1. However, it could be that the
triangular lattice is the only minimizer which is also a local minimizer in the following sense:
if A’ is any set of points differing from A by a finite number of points, and jA: a corresponding
perturbation of j, then

Jim W(jin, xpg) = W(ja, xBr) = 0.

(Note that here we do not normalize by |Bg|.)

A first motivation for this conjecture comes from the physics: in the experiments on super-
conductors, triangular lattices of vortices, called Abrikosov lattices, are observed, as predicted
by the physicist Abrikosov from Ginzburg-Landau theory. But we shall prove here, cf. Theo-
rem 4, that vortices of minimizers of the Ginzburg-Landau energy functional (or rather, their
associated “currents”) converge in some asymptotic limit to minimizers of W, so if one believes
experiments show ground states, then it can be expected that the triangular lattice corre-
sponds to a minimizer of W. Another motivation for this conjecture is that, returning to the
expression (1.6)—(1.7), W can be seen as a renormalized way of computing |27 >, 6, — 1| -1,
thus minimizing W over A; is heuristically like trying to minimize [[27 3 d, — 1f|g-1 over
points in the plane, or trying to allocate points in the plane in the most uniform manner. By
analogy with packing problems and other crystallisation problems, it seems natural, although
far out of reach, that this could be accomplished by the triangular lattice. Positive answers
are found in [Rad] for packing problems, [Th] for some very short-range pairwise interaction
potential, and one also finds the same conjecture and some supporting arguments in [CK]
Section 9, for a certain (but different) class of interaction potentials. But we note however
again that here the interaction between the points is logarithmic hence long range, in contrast
with these known results. Finally, in dimension 1, the situation is much easier, since we can
prove in [SS7] that the minimum of the one-dimensional analogue of W is indeed achieved by
the perfect lattice Z (suitably rescaled).

We have seen in Theorem 1 that W has a minimizer which is a limit of periodic con-
figurations with large period. This will be used crucially for the energy upper bound on
Ginzburg-Landau in Section 7. It also connects the question of minimizing W in all gener-
ality to the simpler one of minimizing it in the periodic setting. By the formula (1.10) the
problem in the periodic setting reduces to minimizing » _, ,; G(a; —a;) or (1.11) over the torus.
The points that achieve such minima (on all types of surfaces) are called Fekete points (or
weighted Fekete sets) and are important in potential theory, random matrices, approximation,
see [ST]. Their average distribution is well-known (see [ST]), in our setting it is uniform, but
their precise location is more delicate to study (in [SS6] we make progress in that direction
and connect them to W). As already mentioned in the last remark of the previous subsection,
estimates on the minimum value of W in this setting are also used in number theory.

The energy W also bears some ressemblance with a nonlocal interaction energy related
to diblock copolymers, sometimes called “Ohta-Kawasaki model” and studied in particular
in a recent paper of Alberti, Choksi and Otto [ACO], see also [Mu, GMS1] (and previous
references therein): there, one also has a logarithmic interaction, but the Dirac masses are
replaced by nonsingular charges, and so no renormalization is needed. More precisely the
interaction energy is ||u — m|| -1 where m is a fixed constant in [—1, 1] and u takes values in
{—1,1}, whose BV norm is also penalized. There, triangular lattice configurations are also
observed, it can even be shown [GMS2] that the energy W can be derived as a limit in the



regime where m — 1 (in this regime, the problem becomes singular again). Also, the analogue
result to our Theorem 2 is proven for that model in [CO] using also modular functions. In
[ACO] it is proven that for all m € [—1, 1] the energy for minimizers is uniformly distributed.
Our study of W in Section 4 is similar in spirit. Note that results of equidistribution of energy
analogous to [ACO] could also most likely be proven with our method.

1.3 Lower bounds for two-scale energies via the ergodic theorem

In this subsection we present an abstract framework for proving lower bounds on energies
which contain two scales (one much smaller than the other). This framework will then be
crucially used in this paper, both for proving the results of W in Theorem 1 and for obtaining
the lower bounds for Ginzburg-Landau in Theorem 4 and 5. We believe it is of independent
interest as well.

The question is to deduce from a I'-convergence (in the sense of De Giorgi) result at a
certain scale a statement at a larger scale. The framework can thus be seen as a type of I'-
convergence result for 2-scale energies. The lower bound is expressed in terms of a probability
measure, which can be seen as a Young measure on profiles (i.e. limits of the configuration
functions viewed in the small scale). Following the suggestion of Varadhan, this is achieved
by using Wiener’s multiparameter ergodic theorem, as stated in Becker [Be]. Alberti and
Miiller introduced in [AM] a different framework for a somewhat similar goal, with a similar
notion of Young measure, that they called “Young measures on micropatterns”. In contrast
with Young measures, these measures (just like ours) are not a probability measure on values
taken by the functions, but rather probability measures on the whole limiting profile. The
spirit of both frameworks is the same, however Alberti and Miiller’s method did not use the
ergodic theorem. It was also a bit more general since it dealt with problems that are not
homogeneous at the larger scale but admit slowly varying parameters (however we generalize
to such dependence in forthcoming work), and it adressed the I'-limsup aspect as well. Our
method is more rudimentary, but maybe also more flexible. In forthcoming work, we refine it
and include a version with dependence on the “slow (larger scale) variable” in [SS6], as well
as an application to random homogenization in [BSS].

Let X denote a Polish metric space (for reference see [Du]). When we speak of measurable
functions on X we will always mean Borel-measurable. We assume that there exists an n-
parameter group of transformations 8y acting continuously on X. More precisely we require
that

- For all u € X and A\, u € R", 0\(0,u) = Ory,u, Oou = u.
- The map (A, u) — Oyu is measurable on R™ x X.

- The map (A, u) — 6yu is continuous with respect to each variable (hence measurable
with respect to both).

Typically we think of X as a space of functions defined on R™ and 6 as the action of transla-
tions, i.e. Ohu(x) = u(z + A).

We also consider a family {w.}. of domains of R™ such that for any R > 0 and letting
we g = {2 € we | dist (z,0w:) > R}, we have

(1.14) lwe| ~ |we,r| as e — 0.



In particular the diameter of w. tends to +00 as € — 0.
Finally we let {f:}. and f be measurable nonnegative functions on X, and assume that
for any family {u.}. such that

(1.15) VR >0, limsup fe(Orue) dX\ < 400

e—0 Bpr
the following holds:
1. (Coercivity) {us}. admits a convergent subsequence.

2. (T-liminf) If {u.}. is a convergent subsequence (not relabeled) and w is its limit, then

(1.16) lim inf f.(uc) = f(u).

The abstract result is

Theorem 3. Let {0)}y, {we}e and {f-}e, [ be as above. Let {Ugr}r>0o be a family satisfying
(1.4). Let

(1.17) F.(u) = ][ F-(05u) d.

£

Assume that {Fc(ue)}e is bounded. Let P. be the image of the normalized Lebesque measure
on we under the map X\ — O u.. Then P. converges along a subsequence to a Borel probability
measure P on X invariant under the action 6 and such that

(1.18) li{:n_)iglf Fo(ug) > /f(u) dP(u).

Moreover, for any family {URg}rso satisfying (1.4), we have

(1.19) / f(u) dP(u) = / £*(u) dP(u),

with f* given by

(1.20) ff(u) = REIEOO v, f(O\u) dA.

In particular, the right-hand side of (1.19) is independent of the choice of {UR}r>0.

Remark 1.6. The result (1.19) is simply the ergodic theorem in multiparameter form. Part
of the result is that the limit in (1.19) exists for P-almost every u.

The probability measure P is the “Young measure” on limiting profiles we were referring
to before, indeed it encodes the limit of all translates of u.. Note that P. — P implies that
P almost every wu is of the form lim._,9 60y u.. The limit defining f* can be viewed as a
“cell problem”, using the terminology of homogenization, providing the limiting small scale
functional.

To illustrate this result, we shall give two examples, in order of increasing generality, both
models for what we will use here.



Example 1. Consider X = M(R™) the set of positive bounded measures on R™, and 0 the
action of translations of R™. Let x be a given nonnegative smooth function with support in the
unit ball of R", and define fo(p) = f(1) = [gn X dit. Then one can check that F, as defined

n (1.17), is

1

Fs(:u) =7

X * 1, dp.
|we| Jrn

The result of the theorem (choosing balls for example) is the the assertion that

it 7:u2) > [ ) aPG) =B (Jim [ e o dn)
e—0 R—+o00
The probability P gives a measure over all limiting profiles of u. (depending on the centering
point), and the result says that the quantity we are computing, here the average of u. over the
large sets w,, can be bounded below by an average, this time over P, of a similar quantity for
the limiting profiles. This implies in particular that there is a g in the support of P, hence
of the form lime_,q pie(Ae + -) such that

h?ﬁélf o] Jen X * 1, dus > RETOO X * 1, dpo.
In other words we can find a good centering sequence A. such that the average of u. over
the large sets we can be bounded from below by the average over large balls of the limit after
centering, uo. The averages over w. or Br, and the average with respect to P are not of the
same nature (in standard ergodic settings, the first ones are usually time averages, while the
latter is a space average).

Example 2. Let us assume we want to bound from below an energy which is the average over
large (as € — 0) domains we. of some nonnegative energy density e-(u), defined on a space of
functions X (functions over R™), wa ec(u(x)) dx, and we know the T'-liminf behavior of ec(u)
on small (i.e. here, bounded) scales, say we know how to prove that liminf._, fBR ee(u)dr >

fB e(u) dx. We cannot always directly apply such a knowledge to obtain a lower bound on the
average over large domains, this may be due to a loss of boundary information, or due to the
difficulty to reverse limits R — oo and € — 0. (These are two obstructions that we encounter
specifically both for Ginzburg-Landau and W, as illustrated by the 6th remark in Section 1.1)
What we can do is let x be a smooth cutoff function as above, and define the functions f. by

f-(u) = / - (u(2)) x(z) de,

that is f- can be seen as the small scale local functional. Since we know the I'-liminf behav-
ior of the energy density e. on small scales, let us assume we can prove that (1.16) holds
for some function(al) f, a function on u (we may expect that f will also be of the form

Je(u(@)) x(z) dz.)

Defining F; as in (1.17) and using Fubini’s theorem, we see that

][ / ec(u(z +y))x(z )da:dy—|w|/ /e‘E x)dz dz.
We n € ZEwe—T J T

Since x is supported in By, [ x =1, and w, satisfies (1.14), we check that
Fufu) oo f eclulw)
We

9



hence F is asymptotically equal to the average we wanted to bound from below. We may thus
apply the theorem and it yields a lower bound for the desired quantity:

lim nf F(u:) > / P (u) dP(u)
with

(1.21) f*(u) = lim flu(z ++)) dx

R—o0 Bg
The “cell-function” f* is simply an average over large balls of the local I'-liminf f. If typically
[ is of the form [ e(u(x)) x(z)dx then we can compute by Fubini that

1.4 The Ginzburg-Landau model

Our original motivation in this article is to analyze the behaviour of minimizers of the
Ginzburg-Landau energy, given by

(1— o)

1 2 2
(1.22) G:(u, A) = 2/Q|VAU| + |curl A — hex|” + 92

This is a celebrated model in physics, introduced by Ginzburg and Landau in the 1950’s as
a model for superconductivity. Here €2 is a two dimensional bounded and simply connected
domain, w is a complex-valued function, “order parameter” in physics, describing the local
state of the superconductor, A :  — R? is the vector potential of the magnetic field h =
curl A =V x A, and V 4 denotes the operator V —iA. Finally the parameter hey denotes the
intensity of the applied magnetic field and ¢ is a constant corresponding to a characteristic
lengthscale (of the material). It is the inverse of k, the Ginzburg-Landau parameter in physics.
We are interested in the & — 0 asymptotics. The quantity |u|?> measures the local density
of superconducting electron pairs (Ju| < 1). The material is in the superconducting phase
wherever |u| ~ 1 and in the normal phase where |u| ~ 0. We focus our attention on the
zeroes of u with nonzero topological degree (recall that u is complex-valued), also known as
the vortices of u. Here the typical lengthscale of the set where |u| is small, hence of the vortex
“cores”, is €.

The Euler-Lagrange equations associated to this energy with natural boundary conditions
are the Ginzburg-Landau equations

—(Va)u=%(1—uf) in Q

(1.23) ~V+h = (iu, V gu) in Q
h = hex on 0f2
v-Vau=0 on 0f).

where V+ denotes the operator (—0s, 01 ), v the outer unit normal to 9§ and (-, -) the canonical
scalar product in C obtained by identifying C with R2.

10



This model is also famous as the simplest “Abelian gauge theory”. Indeed it admits the
U(1) gauge-invariance : the energy (1.22), the equation (1.23), and all the physical quantities
are invariant under the transformation

U—>Ueiq>
A— A+VO.

For a more detailed mathematical presentation of the functional, one may refer to [SS4]
and the references therein.

1.5 Physical behaviour: critical fields and vortex lattices

Here and in all the paper a < b means lima/b = 0.
For & small, the minimizers of (1.22) depend on the intensity hex of the applied field as
follows.

- If hex is below a critical value called the first critical field and denoted by H.,, the
superconductor is in the so-called Meissner state characterized by the expulsion of the
magnetic field and the fact that |u| ~ 1 everywhere. Vortices are absent in this phase.

- If hex is above H.,, which is equivalent to Ag|log ¢| as € — 0, then energy minimizers
have one vortex, then two,... The number of vortices increases with hex, SO as to become
equal to leading order to hex/2m for fields much larger than [log ¢| (see [SS4]). In this
case, according to the picture we owe to A. Abrikosov and dating back to the late 1950’s,
vortices repell each other and organize themselves in triangular lattices named Abrikosov
lattices. The theoretical predictions of Abrikosov have received ample experimental
confirmation and there are numerous and striking observations of the lattices.

- If hey increases beyond a second critical value H., = 1/e2, another phase transition
occurs where superconductivity disappears from the material, except for a boundary
layer. Even this boundary layer completely disappears when hey is above a third critical
field H,.

Since the works of Ginzburg, Landau and Abrikosov, this model has been largely studied
in the physics literature. We refer to the classic monographs and textbooks by De Gennes
[DeG], Saint-James Sarma - Thomas [SST], Tinkham [Ti].

The above picture describes the phenomenology of the model for small values of £ (or high
values of k) in a casual way, but by now many rigorous mathematical results support this
picture. Except for the third critical field however, whose existence was proven in a strong
sense by Fournais and Helffer [FH1, FH2|, mathematical results really prove the existence
of intervals where the transition between the different types of behaviour occur, rather than
critical values, with estimates on these intervals as € — 0.

Our goal is the study and description of the vortices in the whole range H., < hex < He,,
where minimizers of the Ginzburg-Landau energy have a large number of vortices, expected
to form Abrikosov lattices.

11



1.6 Connection to earlier mathematical works

There is an abundant mathematical literature related to the study of (1.22) and to the
justification of the physics picture above. A relatively extensive bibliography is given in
[SS4], Chap. 14.

The techniques most relevant to us for the description of vortices originate in the pioneer-
ing book of Bethuel-Brezis-Hélein [BBH] and have been further expanded by several authors
including in particular Jerrard, Soner [Je, JS], ourselves, etc... For a more detailed description
of these techniques we refer to [SS4]. In that book we describe how these techniques allow
to derive the asymptotic values of the critical field H., as ¢ — 0 as well as the mean-field
description of minimizers and their vortices in the regimes hex < He,.

In order to describe the vortices of minimizers, one introduces the wvorticity associated to
a configuration (u, A), defined by

(1.24) p(u, A) = curl j(u, A) + curl A, where j(u, A) := (iu, V au)

is the superconducting current. Here (a, b) denotes the Euclidean scalar product in C identified
with R?, so j(u, A) may also be written as £ (uV  u — a4V qu), or as p?(Ve — A) if u = pe'?,
at least where p # 0.

This vorticity is the appropriate quantity to consider in this context, rather than the
quantity curl (iu, V4u) which could come to mind first. It may be seen as a gauge-invariant
version of curl (4u, Vu) which is also (twice) the Jacobian determinant of u. Indeed if A =0,
then p(u, A) = 20,u x Oyu. One can prove (this is the so-called Jacobian estimate, see [JS,
SS4]) that assuming a suitable bound on G (u, A), the vorticity u(u, A) is well approximated,
in some weak sense, as € — 0 by a measure of the form 27, d;d,,. As points of concentration
of the vorticity, the points {a;}; are naturally called vortices of w and d;, which is an integer,
is called the degree of a;. The vorticity p(u, A) may either describe individual vortices or,
after normalization by the number of vortices, their density.

In previous work (summarized in [SS4], Chap. 7) we showed that

(1.25) H., ~ \qgllog €|,

for a constant A\q > 1 depending only on Q (and such that Ao — 3 as @ — R?). More
precisely, letting hex = Allog |, we established by a I'-convergence approach that minimizers
(ue, Ac) of G, satisfy

curl A, p(ue, Az)

(1.26) converges to hy, converges to uy, as € — 0,
hex hex
where uy = —Ahy + hy, and h) is the solution of the following minimization problem
1 1
(1.27) min / y—Ah+hy+/ |Vh|? +|h — 1%
h—1€H}(Q) 22X Jo 2 Jq

This problem is in turn equivalent to an obstacle problem, and as a consequence there exists
a subdomain w) such that

1

2)\

and where 14 denotes the characteristic function of A. In other words the optimal limiting
vortex density p) is uniform and equal to m) over a subregion of €2, completely determined

(1.28) px = myl,,, wheremy =1-—
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by A i.e. by the applied field hex. The constant Aq introduced in (1.25) is characterized by
the fact that wy = @ if and only if A < Aq. Since Aq > 1, if w) # @ we have

1
1.29 1> >1——>0.
(129 >z 1 g
Since the number of vortices is proportional to hex = A|log |, it tends to +o00 as e — 0. It is
also established in [SS4] that as ¢ — 0, the minimal energy has the following expansion,

1 hex”
(1.30) minG, = ihexlog / e + 2/ IVhal? + |hy — 1240 <hexlog
Q Q

1 1
eV hex eVhex ) '
When the applied field is much larger than [log €|, but much less than 1/¢2, (1.26) and (1.30)
still hold, replacing A by 4+oo. In this case hy = 1 and wy = €.

There are other cases where the distribution of vortices for minimizers of the Ginzburg-
Landau functional is understood. First in a periodic setting: Minimizing the Ginzburg-
Landau energy among configurations (u, A) which are periodic (modulo gauge equivalence)
with respect to a certain lattice independent of e, one obtains (see [Ay, AyS]) as above a
limiting vortex density py = —Ahy + h) where h) minimizes the energy in (1.27) among
periodic functions. The minimizer in this case is clearly a constant, which is easily found to
be max (1 — %,0).

Second, in the regime of applied fields hey where the number of vortices tends to +oo, but
is negligible compared to |log ¢|, (this corresponds to applied fields such that log [log | <
hex — Aqllog €] < |log €| as e — 0), it is shown in [SS4] that for simply connected domains
satisfying a certain generic property (see (1.31) below) — including convex domains — vortices
concentrate around a single point (a finite number of points for general simply connected
domains). Then, blowing up at the suitable scale and normalizing the vorticity, one obtains
in the limit a probability measure p which describes the distribution of vortices around the
point, and y is the unique minimizer among probability measures in R? of

1) == [ [ Yog o~ gl du(e) duty) + 7 [ Q) duo).

Note that here @ is a positive definite quadratic form which depends on the domain 2. It
is the Hessian of a certain function at the point of concentration of the vortices. Note that
the precise regime of applied field modifies the number of vortices, i.e. the normalizing factor
of the vorticity, and the scaling, but does not influence the limit distribution p, which is a
characteristic of Q.

In our previous work, the treatment for the “intermediate” regime log [log €| < hex —
Aallog €| < [log ¢| and for the regime hex = A|log €|, A > Aq were different, the former one
being more delicate. Here we provide (and this is part of the technical difficulties) a unified
approach for both, and treat all regimes hex < H., where the number of vortices is blowing

up.
1.7 Main result on Ginzburg-Landau

The mean field description above tells us that the vortices tend to be distributed uniformly
in wy but is insensitive to the pattern formed by vortices. This pattern is in fact, as we
shall see, selected by the minimization of the next term in the asymptotic expansion of the
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energy as ¢ — 0. The proof of this is achieved in this paper by a splitting of the energy
that separates the leading order term found in (1.30) from a remainder term, and then by
studying the remainder term after blow up at the scale of the expected intervortex distance,
which from the above considerations is of the order of 1/v/hex; this remainder term is then
shown to I'-converge to W (as introduced in Section 1.1), hence allows to distinguish among
vortex configurations.

As before, we use the current j(u, A) = (iu,Vau) (cf. (1.24)) to describe the vortex
locations, we study through the abstract framework of Section 1.3 the probability measure
carried by all possible limiting profiles of blow ups of j at the scale 1/v/hex centered at all
possible blow-up points in wy, and show that this probability is concentrated on minimizers
of W.

Before stating the simplest form of our main result, let us explain the main assumptions
we need to make. First, we make the simplifying assumption that the domain {2 is convex.
This is only used at one point in the proof (the upper bound construction) and avoids the
possibility that wy may have cusps. We believe our results still hold without this restriction.
Then letting hg be the solution to —Ahgy + hg = 0 with Ag = 1 on 9€2 — which is consistent
with the definition of hy in (1.27) — it is known (see Caffarelli-Friedman [CF], the result
in dimensions greater than two can be found in [KL]) that in the case where Q is convex,
ho is strictly convex hence achieves its minimum at a unique point xg € §2. Moreover this
minimum is nondegenerate:

1.31 min hg is achieved at a unique point zg and := D%hy(z0) is positive definite.
5 que p p

For a family (uc, Ac), we denote

Jeal) = \/;%ﬂ“@ Ae) (m ! W)

their blown-up current, where in the right-hand side j(u., A;) is implicitly extended by 0
outside the domain €.
We have

(1.32)

Theorem 4. Assume that  is conver, so that (1.31) is satisfied, and that
hex = Allog €| with A > Aq .

Let (uge, Az) be a minimizer of Ge, and let Jen be as in (1.32) for x € wy. Then, given
1 < p < 2, there exists a probability measure P on L¥ (R? R?) such that the following hold:

loc

1. Up to extraction, for any bounded continuous function ® on LfOC(RQ,RQ), we have

(1.33) lim — [ () de = /@(j)dP(j).

e—0 |w/\| wa

2. P-almost every j minimizes W over A,,, and
(1.34) Ge(ue, Ac) = GNo ¢ hey|wa|(min W + est) + o(hex) ase — 0,

where GNo € R is explicited in (1.39) below.
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We may informally describe G20 : It is the minimum value for an obstacle problem similar
to (1.27). But whereas (1.27) is derived assuming the vortex energy is m|log €|, to obtain G0
we must use instead the more precise value 7|loge’|, where

g = e/ hex.

As e — 0 we have |log €| =~ |log |, but using |loge’| induces a correction which is not o(hex),
hence is important to us.

As we have seen in Section 1.2, W allows to distinguish between configurations of points
since it distinguishes between lattices, and it is expected to favor the triangular lattice. The
result of Theorem 4 can be informally understood as follows: if one chooses a point at random
in wy and blows up at the scale 1/y/hex, then in the limit ¢ — 0, almost surely (with respect
to the blow up center), one sees a minimizer of W. This derivation of this limiting energy
W is, to our knowledge, the first rigorous justification of the Abrikosov triangular lattice in
this regime: at least the triangular lattice is the best among lattice configurations, and it is
conjectured to be a global minimizer (see Section 1.2).

In Theorem 5 below, we will give a more precise and a full I'-convergence version of
Theorem 4, valid for the other regimes of applied field where vortex lattices are expected to
arise. The latter result encompasses the regimes of Theorems 1.3, 1.4 and 1.5 in [SS4] and
allows to reprove these results.

Returning to the reference to the Theta function (1.13) in Section 1.2, it is striking to
observe that the problem of minimizing the Theta function also arises in the context of
Ginzburg-Landau, but in a very different regime: when hex ~ H., or more precisely when
hex = E% with b " 1. Asseen in [SS2, AS] this is a regime which is essentially linear (contrarily
to the one we study here) and the energy minimization can be reduced to the minimization
of a function on a finite dimensional space (the “lowest Landau level”- this is essentially the
result of Abrikosov’s original calculation). This function can be viewed as the linear analogue
of W and reduces, in the case where the points are on a lattice, to the 6 function 6, (and
so again the optimal lattice is the triangular one). In that sense the limiting lattice energies
for Ginzburg-Landau in the regime H., < hex < H., and in the regime hex ~ H., can be
viewed as Mellin transforms of each other.

We now go into more detail on the method of the proof of Theorem 4. It follows from a
result of I'-convergence, i.e. by showing a general lower bound for the energy and a matching
upper bound via an explicit construction. Thus the minimality of (u., A;) and the Euler-
Lagrange equation it solves is not used per se. The proof of the lower bound involves three
ingredients: an energy splitting, a blow-up, and the abstract method of Theorem 3.

1.8 The energy splitting

The first ingredient of the proof, detailed in Section 5, is a new algebraic splitting of the
energy, which allows to isolate the constant leading order part from the next-order.

First we define a mean field hg . similar to hexhy, except that when computing it we take
more precisely into account the cost of a vortex which is 7| log &’|, where we recall & = ev/hex.
Accordingly, assuming hey < 1/, we let hg . be the minimizer of

1 1
(1.35) min ]10g€’|/ ] —Ah—i—h!—F/ VA 4 |h — hex|*
h—hex€HE(Q) 2 Q 2 Jq
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Thus ho.e/hex solves (1.27), with A replaced by A = ﬁ.

This is equivalent (see [Br, BS]) to saying that hg/hex minimizes the H! norm subject
to the constraints hg/hex = 1 on 92 and

|log &’
1.36 = > =1-
( ) - mOﬁ 2hex

I n Q.

In other words hg. is the solution to an obstacle problem with constant obstacle. Letting
then p9. = —Ahge + ho e, we have

(1.37) po,e = mochexluy ., where woe = {z|hoe(r) = hexMoc} -
We define
(1.38) No = — /

: 0= 2T Q Hoe-

The splitting function could be taken to be hg. in most regimes of applied field. Then one
should define G0 in Theorem 4 as

1
N,
(1.39) Gao = WNO‘10g5’| —|—§||h075—hex||§{1(9),
1
where || - || ;1 denotes the Sobolev space norm (|| - |7 + ||V - [|7,) 2.
However, when hex — Aqllog | < |log €] — i.e. when the number of vortices is small

compared to hex though divergent as e — 0 — then (1.35), which is a refinement of (1.27),

must itself be refined to take into account the constraint that the vorticity is quantized. For

the other regimes, the error made by ignoring this constraint is negligible in our analysis.
More precisely, given N such that 0 < N < %heX\Q], we consider h. y the minimizer of

1
(1.40) min / VR 4 |h — hex|?,
h—hex€HL(Q) 2 Jq
Jo |AR+h|=27N

and we define
1
(1.41) GY .= 7N|loge'| + §||hg,N - hex”%{l(ﬂ).

Since hex Wwill be a given function of €, we denote the dependence of h. n as of ¢ instead of
Pex- Gév is minimal at N = Ny and we will see that h. n, = ho.

The refinement with respect to (1.35) consists in taking N to be an integer, when Ny
is not necessarily one. More precisely, N will be taken to be either Nj, the largest integer
< Ny, or NJ , the smallest integer > Ny. With that choice, we will sometimes call h. x the
“splitting function”.

The leading order term in the energy is not exactly G20 but rather minNe{N&NJ} GN.
We may immediately check however that for N € {IN;, Ngr }, ase — 0,

h 2
ex /K‘Z‘Vh)\IQ_'_h/\_l‘?

1
GZ:V NG?[O ~ 2hexlog€’]/gu)\+ 5
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when hex ~ Allog €] in the notation of Section 1.6, hence it recovers the leading order term
of the minimal energy (1.30). The difference between min (Ng N GY and GNo is o(hey)
hence it is negliglible for the precision of o(/N) we want to achieve as soon as A > \q, but not
always when A = \q.

he n is the solution to an obstacle problem and we have he y > m. nvhex and —Ah. n +
hen = hexme N1y, Where weny = {hen = me nhex} is called the coincidence set, for
some constant m. ny such that m.ny — my as ¢ — 0. Note that w. y will depend on the
choice of N = N, or NSF but sometimes we will forget it and simply write w.. We let
pe N = —Ahe N+ he N = hexme N1y, - It is a perturbation of py and w x a perturbation
of wy, defined in Section 1.6. We have the relation

(1.42) lwe, N|Me Nhex = / fe,N = 27 N.
Q

Then we (temporarily) introduce Ag. = V-1h. n. Letting (u, A) be a configuration of
finite energy, we will write

Al,s =A- AO,E =A- th’E,Na

where A, = VLha ~ is understood as the leading order term, and A; . as a remainder term.
The energy-splitting is the observation of the following identity (valid even if N is not an
integer):

(1.43)

1
Ge(u, A) =GN + / (he,n = hex)(u, Ave) + 3 / IV Ay cul?+ [eurl Ay ¢ — pe v |* +
Q Q
1
_ CE,N/ ,LLE’N — 5 / (1 — |u‘2)‘Vh5,N|27
Q Q

where we recall (1.24), and ¢, y is a constant explicited in (5.3). The last term in (1.43) can
be shown to be negligible if G.(u, A) is not too large. Thus the study of the energy near its
minimum reduces to that of the remainder

(1 —Jul?)?
22

1
(1.44) Fo(u,Aie) = 2/ \VALEu|2 + |curl Ay . — uE,N\Q +
Q

(1= Ju?)?
2e2

+ /Q(he,N - hex)ﬂ(ua Al,e) - Ca,NANs,N-

It turns out that when we make the right specific choice N = N, or N = NO+ (depending on
(ue, Ag)), this expression simplifies and one has

(L= Jul®

2
o= [ Gt i) +o)

1
(1.45) Fg(u7A1,5) > 2/ |VA1’EU‘2+|cur1A175_ME7N|2_’_
Q

where (. is a positive function, equal to its maximum %| loge’| on we ny = Supp(pe,n). It is

this remainder F. (with this choice of N') whose I'-convergence we study. We will see through
the upper bound construction that

min FE S Ch/cx|w€,N‘
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(this is equivalent to min F. < CN or < C'Ny from (1.42)), and we will work in that class
F.(u,A1:) < CNp, thus reducing to a relatively narrow class of “almost minimizers” i.e.
configurations whose leading order energy is the minimal one G2o. Note that once we know
that this remainder F; is of lower order, this shows that the leading order component in
A= vlhE’N—‘_ALE is VLhE,N (in other words A; . < Ag ) so also at leading order p(us, Ac) ~
e, N ~ prx and this allows to recover in essence the results of [SS4] Theorems 1.3, 1.4, 1.5 for
all configurations in this almost minimizing class.

The next step is to make the change of scales ' = \/hex in order to study (1.44). Under
this rescaling, the inter-vortex distance becomes of order 1 (recall that the average vortex
density is precisely mg nhexle, with me y — my and (1.28)). After this change of scales the
right-hand side of (1.45) becomes, in terms of u/(z) = u(z) and A'(z') = A(x)/v/hex, and
(! = (o),

(1.46)
1

Fel(ula A/) = 5 /(;, ]VA/u’\2 + hex|curlA' — mslwg|2 +

(1 —Ju')?

26/2 - o Ca(w ):u(u ’A ) + O(1>

where w! is the rescaled domain Vhexwe, v and we recall e = evhex.
Combining all these elements, the conclusion of the splitting procedure, found in Section 5
is

Proposition 1.7. For any (u, A), there exists N € {N;, Ny} such that
Ge(u, A) > GY + FL(u/, A) + o(1)

where F! is as in (1.46), v/ (') = w(2'/Vhex), A (') = A(x'/Vhex) and (' is a positive
function, equal to its mazimum %|loge’| on wl.

1.9 Full version of the main result

We may now give the more complete version of Theorem 4 and the stronger statement of
I’-convergence of %(Gg(u, A) — GY). In all the paper, the weak convergence of probabilities
will mean convergence against bounded continuous test-functions, see [Bi]. We will say that
a probability measure is concentrated on a set if that set has probability 1.

We consider configurations (ue, Ac) and assume that |u:| < 1 everywhere together with
the second Ginzburg-Landau equation, i.e. we assume

(1.47) lul <1in Q, —Vteurl A = (iu, Vau) in Q

is satisfied. This is obviously true for minimizers and critical points of (1.22). Moreover
given (u, A), replacing u by u/|u| wherever |u| > 1 and replacing A by the minimizer of
A — G(u, A), with u remaining fixed, decreases the energy without displacing the vortices,
and the modified (u, A) verify (1.47). Since the change can only decrease the energy, our
results allow to bound from below G¢(u., A;) for the original arbitrary (u, A). Thus, assuming
(1.47) is no loss of generality. Note that the only consequence of (1.47) that we will really
use is that div j(u, A) = 0.

Note that when hex — Ag|log €| = O(log |log €|) we already know from [SS4], Chap. 12,
that the number of vortices remains bounded as ¢ — 0 and we already characterized their
limiting location. For heyx > E% the study of vortices involves an analysis quite different from
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that used in the present paper, see [SS2, AS, FH2]. So we focus on the remaining regimes,
namely

(1.48) log |log €] < hex — Aqllog €] and  hex < 1/52,

and we have

Theorem 5. Assume ) is convex, hence satisfies (1.31). Assume (1.48) and |1£Lge"€‘ — A€
A, +o0] as e — 0. Let any 1 < p < 2 be chosen.

1. Let (ug, Ac) satisfy (1.47), and

Ge(ue, Ag) < min Gév + CNy
Ne{N; Ny}
for some C' independent of €. Then there is a choice of N € {Ng,NJ} such that,
letting P- be the probability measure on LfOC(RQ,]W) defined as the push-forward of the
normalized uniform measure on we N by the map x — J.p (cf. (1.32)), as € — 0 the
measures {P:}. converge up to extraction to a probability measure P on L} (R? R?)
which is invariant under the action of translations, concentrated on Ay,, (my as in

(1.28)) and
2
(1.49) Ge(us,A.)> min  GN 4N (W/WU(j) dP(j) +~v + 0(1)> ,
Ne{N;y N} my
where v is defined in (1.52), and Wy is computed according to (1.8) relatively to any
family of sets satisfying (1.4)—(1.5).
In the case hex < aiﬂ for some B > 0 small enough, then

(1.50) (e, Ac) = pe N llw-100) < CpV'N.

2. For any probability P on L{'OC(RQ, R?) which is invariant under the action of translations
and concentrated on A, and for every N € {N; , Ni}, there exists (uc, Ac) such that,
letting P be the push-forward of the normalized Lebesgue measure on w. n by the map

T \/ﬁj(ua,fla) (m—}- ﬁ)’ we have as € — 0, P. — P and

(151) Culue A2) < GY 4 N (jj: [ Wiy apG)+ 4+ o<1>) ,

where Wi is the renormalized energy relative to the family of squares {Kgr}r, where

Kr=[-R/2,R/2]?, as defined in (1.8).

3. If we assume that (ue, Ac) minimizes G then it satisfies all the assumptions of item 1),
P-almost every j minimizes W over A, , and there is equality in (1.49).

Remark 1.8. - The constant v in (1.49) and (1.51) was introduced in [BBH] and may
be defined by
1 1 — |ugl?)?
(1.52) v = lim / IVuo|® + (= uol)” —nlogR |,
R—oo0 \ 2 Bg 2

where ug(r, 0) = f(r)e? is the unique (up to translation and rotation) radially symmetric
degree-one vortezx (see [BBH, Mij).
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- There exists {(ue,Ac)}e satisfying (1.51) for any N such that 1 < N < see

Theorem 7 in Section 7.

- As we already mentioned in Section 1.8, this theorem allows to retrieve the results of
[SS4], but it gives a stronger result: in [SS4] we establish the leading order behaviour of
the vorticity for minimizers: pu(ue, Az) ~ hexpix ~ pe, N, while here (1.50) gives (at least
for small enough applied fields) for the whole class of “almost minimizers” the order of
the fluctuations of the vorticity around the constant density p. n: it is of order VN,
hence in particular the number of vortices is N with an error of order v/N.

- For energy minimizers it is possible to deduce from this result that N, now being defined
as the total degree of the vortices, satisfies GY = minyeny GY + o(N). On the other
hand minyey GY is achieved at Ny or NJ. From examining carefully the variations of
N — GY one should be able to deduce that N = Ny or Ni© with a smaller error than
previously (at least for hex < H., +O(y/|log €|) we expect this error to be 0), see Remark
6.7 for more details. So we expect, for small enough fields, to be able to estimate exactly
the total degree of the vortices of a minimizer, and for larger fields, to estimate it with
an error which is at least better than V' N.

1.10 Use of the ergodic theorem for Ginzburg-Landau

As announced, the method consists in applying the framework of Section 1.3 to the Ginzburg-
Landau energy.

We sketch the method in the case hex = Allog €|, Ag < A < +00. The case of higher fields
hex > |log | will reduce to this one by scaling.

Let (ue, A.) — or (ul, AL) in rescaled coordinates — denote a minimizer of G, and let
pt = p(ul, AL). The splitting result of Section 1.8 combined with the blow up procedure
reduces us (cf. Proposition 1.7) to bounding from below F/(u., AL).

Thus we are in the setting of Example 2 in Section 1.3, i.e. the case where we want to
bound from below the average over large domains w. of some energy density e.. Here the
energy density is of the form

1
ec(u, A) = §|VAu\2 + hex|curl A — mlwé| \u\ /C dp(u, A).

From the Jacobian estimate p. is well approximated by v. = 27 )", d;d,, (where a; denotes
the vortex center and d; its degree) and we should have a; € w.. Using in addition that
¢ = %| loge’| there, we may thus formally replace the energy-density above by

1
es(u, A) = §|V14u|2 + hex|curl A — mlwé|2 +— (1- ]u\ TFZ llog €] Z d;i0q, .

To apply the framework of Section 1.3 we need to check the coercivity and I'-liminf
properties of f-(u, A) = [ ec(u, A) x for a cut-off function x as in the example of Section 1.3.
But the framework also requires that f. be nonnegative (or bounded below by a constant will
do) but this is obviously not the case, and one of the major difficulties of our analysis consists
in getting around this problem. This part of the analysis was carried out in our companion
paper [SS3], where we introduced a method that consists in displacing the negative part of e,
so as to absorb it into the positive part and to obtain a density bounded below, called g.. We
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show there that e. can be replaced by g. > —C with making only a small error (in average at
the small scale). Note that since we are dealing with cancelling leading order terms, we need
very precise estimates of the free-energy f-, in fact we need to make errors which are at most
o(1) per vortex (the total acceptable error is o(NN)). Hence in [SS3] we need refined estimates
in the “ball construction methods” which are devised to obtain general lower bounds for the
energy of the vortices even when their number is unbounded. We also show in [SS3] the
crucial fact that g. controls the number of vortices.

Returning to the question of proving the coercivity of f., we may now heuristically replace
e by ge, and the coercivity requires proving 1.15 which in our case becomes

VYR >0, limsup/gg(x *1p,) < 00 = (ue, A:) compact.
e—0

This is satisfied thanks to the fact that g. controls the number of vortices, in other words we

have roughly

VR >0, hmsup/ga(x*lBR)<oo:> Z |d;| < Ch.

e—0 aZGBR

To prove the I'-liminf relation on f., we may reduce to that setting, i.e. that where the number
of vortices is bounded independently of € on the compact support of x. In that setting, it
is now standard to retrieve very precise estimates for the Ginzburg-Landau energy, using an
analysis of the type of [BBH]. This way, we obtain the precise I-liminf for f. and can show
it can be expressed as a function of j (limit of j(u., AL) and is equal (up to a constant) to
f(4) = W(j,x). But then, using the definition (1.20), the “cell-energy” is

f*(j)zRng g WG+ ), x) dA.

One may immediately check, using Fubini, that this is equal to limp_ 1 ﬁW( gy x * 1ug),
which is in turn clearly equal to Wiy (5) (cf. (1.8) and the first item in Theorem 1). Combining
all these elements, the result of Theorem 3 yields

1
1igélf][/ 2|VAéu/€|2+hex\curlA/€—mlwé|+( |u€| /C dp(ul, AL) /W )dP(j

which is essentially the desired lower bound.
The rigorous proof of this is detailed in Section 6.

1.11 Plan of the paper

The paper contains two parts. The first part is completely independent of the Ginzburg-
Landau energy and can thus be read independently. It starts in Section 2 with the proof
of Theorem 3. In Section 3, we prove Theorem 2 i.e. that W is minimized among lattice
configurations by the triangular lattice. In Section 4, we study W more generally, and prove
Theorem 1.

The second part is about the application of the tools of the first part to the Ginzburg-
Landau energy and the derivation of W as its I'-limit. In Section 5, we prove the new
energy-splitting formula, in the same section we recall or prove some results on the splitting
function that will be needed in the sequel and we also derive simple a priori bounds for energy-
minimizers. In Section 6, we show how to apply the abstract framework of Section 1.3 in the
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specific case of the Ginzburg-Landau energy, and this way we obtain the main energy lower
bound, and prove Theorems 4 and 5 assuming the upper bound, which is proven in Section 7.
This requires the improved lower bounds for the energy of vortices borrowed from [SS3]. In
Section 7, we prove the matching upper bound for the energy via an explicit construction,
using the periodic minimizing sequence found in Theorem 1.

In the Appendix, we prove some additional qualitative results on the solutions to the
obstacle problem which can be of independent interest, in particular estimates when the size
of the coincidence set is small, which are needed in the regime hexy — He, < |log €.
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Part 1
The renormalized energy

2 Proof of Theorem 3

Before giving the proof of the theorem, we state a preliminary lemma.

Lemma 2.1. (E. Lesigne) Assume P, are Borel probability measures on a Polish metric
space X and that for any 6 > 0 there exists {Ky}n such that P,(K,) > 1—4¢ for every n and
such that if {xy}n satisfies for every n that x, € K,, then any subsequence of {xy}, admits
a convergent subsequence (note that we do not assume K, to be compact).

Then {P,}, admits a subsequence which converges tightly, i.e. converges weakly to a
probability measure P.

Proof. From Prohorov’s Theorem, it suffices to show that the sequence of measures is tight.
As a finite Borel measure on a Polish space, the measure P, is regular [Co|, thus there is a
compact subset K|, C K, such that P,(K]) > 1—2§. Then, letting

K =UKy,
n

we have P,(K) > 1 — 26 for every n and the assumption made on {K,},, implies that K is
compact. Indeed, a sequence in K is either included in a finite union of the compact sets K,
(then is compact) or has a subsequence which can be relabelled (x,,) and satisfied z], € K,
along a subsequence n’, hence compact by assumption. Therefore {P, }, is tight. ]

We now start proving the theorem. First we choose a sequence {e,}, tending to 0 such
that
lim F;, (ue,) = liminf F,(u.).

n—-—4o0o e—0
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In this proof, € will always be assumed to belong to this sequence, and lim._,g will mean the
limit along this sequence.

Recall that P is the image of the normalized Lebesgue measure restricted to w. under
the map A — 0 u.. In particular for any positive measurable function ® on X

(2.1) / B(u) dP () :][ B(Oru,) dA.

Step 1: {P:-}. is tight. Letting w. p = {x € w. | dist (z,0w:) > R} we have
Y AR Y TR B OV PR AR oY
we,R Y BR R2xR2

(2.2) - /R L L) fo(Oyue) dX

S ’BR’ fg(ﬁ)\ug) d\ S C’BRHUJE"

We
Let us denote Y; r the image of w. g by A — O u., and

X%K:{UGX\ fe(é?Au)d)\>K}.
Br

The left-hand side in (2.2) is larger than K|Bpr||w.|P: (XIE%,K N Y&R) In addition P:(XFg ;) >
P. (Xg A R) ~ P.(YSp) = P. (Xf%’ A R) — le\wenl g6 e deduce from (2.2) that

|we |

C  |we\wer
P.(X& < — 1I7e  7etl
8( R,K)— K+ |ws|

From (1.14) and for any § > 0, there exists a subsequence {ey, }, such that

|we,, \Wan,R|

< 627"
|w5n‘

and then
P, (Ui Xy ) < €6

Now we have that the hypotheses of Lemma 2.1 are satisfied. Indeed, letting K, be the

complement of UZ:lXZan/(S’ we have P. (K,) > 1— C6. Moreover, if u, € K, for every n
then VR > 0, Vn > R we have u,, ¢ X;"QR/é, ie.
2R
Br

Then, from the coercivity assumption, a subsequence of {u,} converges.
Applying Lemma 2.1 we can conclude that {P:, } is tight and then that a subsequence
converges weakly to a probability measure P. O
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Step 2: P is 0-invariant. Let ® be bounded continuous on X. Then from the definition of
P,

e—0 e—0 we

/<I>(u) dP(u) = lim [ ®(u)dP:(u) =lim 4+ ®(Oru.)dA.

Moreover,

/ (I)(H)\UE)CD\—/ ‘13((9,\+,\0u5)d/\=/ @(Gkug)d)\—/ @(GAuE)d/\.

We +)\0

Thus,
lwe A (we + o)

|we

< [RAVES

][ <I>(6,\u5)d/\—][ D(Oy s rgue) dX

We

where A denotes the symmetric difference between sets, and follows from (1.14) that |w. A
(we + Ao)| = o|we]) as e — 0. We deduce that

/@(u) dP(u) = lim + @(Orgr ue) dX = /CI)(Q)\O’U,) dP(u),

E— wWe
hence P is invariant under the action 6. O

We state the proof of (1.18) as a lemma.

Lemma 2.2. Assume that X is a Polish metric space, that {P:}.~0, P are Borel probability
measures on X such that P. — P as ¢ — 0, and that {f:}c>0 and f are positive measurable
functions on X such that liminf. o f-(x:) > f(x) whenever z. — x.

Then,

(2.3) limi(r)lf/fa dP. Z/fdP.
E—
This is (1.18) since [ f-dP: = f,, f-(0\u)dA.

Proof of the Lemma. It suffices to show that for any A, 0 > 0, we have
(2.4) liminf Pe({fe > A =6}) = P({f > A}).
E—

Indeed, using the standard expression for the integral of a positive function f

[ @ duto) = /0 RGeS

we find by applying it to f. and P., and then to f and P, in view of (2.4) that

e—0

lirgll_}(r)lf/fa(u) dP:(u) = liminf /000 P.({f- > A\})dA

> /O liminf P.({fz > A}) dA
> /OOP({f>>\+5})d)\

0
>

/OOP({f S A dA -5
0
~ [ swairw -4
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where we have used Fatou’s lemma, and the fact that P is a probability measure. Since this
is true for any 0 > 0, we have (2.3).

We prove (2.4). For any § > 0 and v € X we claim that there exists an open neighborhood
V., of uw and i > 0 such that,

(2.5) Ve <n, Yo €V, fe(v) > F(u) — 4.

Indeed, assume this were wrong, then there would exist § > 0 and u € X together with
a sequence {e} tending to 0 and a corresponding sequence {u.}. tending to u such that
fe(ue) < f(u) — 9, thus contradicting the I'-liminf assumption. Hence (2.5) holds.

We denote by V, the set of u’s such that f.(v) > F(u) — § holds on V,, for every e < 7.
Clearly, {V, }, is decreasing and from the above U,~0V;, = X. Thus, if we let for some A > 0

E={ueX|f(u)>A}, E,=ENYV,

then {E,}, is decreasing and E = U, E,. Moreover, from the definition of V,, we have f, >
A — 4 on the open set O, = Uyep, Vi for every e <.
It follows that for any € < n,

(2.6) P{f. > A—6}) = P.(O)).

Then, since P. — P and since O, is open and contains F,, we have
lim inf P:(Oy) 2 P(Oy) = P(Ep).

It then follows from (2.6) that
lim inf P.({f- > A= 48}) > P(E,).

Since E, /' E as 1\, 0 we deduce by monotone convergence that (2.4) holds. ]

Step 4: Proof of (1.19). Since P is invariant w.r.t. the action 0, we may apply the ergodic
theorem as stated in [Be| to obtain that

E”(f(u)) = B(f*(w),

where f* is f-invariant and P-a.e. equal to

(2.7) lim 4  f(Oxu)dA.

R—oo Bg

It is also true (see [Be]) that this limit exists for P-a.e. u, and that balls may be replaced by
any Vitali family satisfying (1.4). This proves (1.19).
O

Remark 2.3.

1. The lower bound of Theorem & implies in particular that liminf. o Fr(ue) > min f*
where f* is given by (2.7). If we assume in addition that for some family there is
equality i.e. that limsup,_,o Fz(u:) < min f*, then comparing with the lower bound
obtained in Theorem 3 we deduce that we have

ff(u) =min f*  for P — a.e.u.
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2. We may apply the same reasoning as Theorem 3 in B(x., R) instead of we, with R large,
to the functional ZFB(:cE R) fe(O\u) dX, and we will obtain

lim inf][ fe(Orue) dX\ > min f* + og(1)
B(z:,R)

e—0

where og(1) — 0 as R — oo (the or(1) is due to near boundary errors). If in addition
we know that for some x.,

(2.8) lim sup][ fe(@ru) dX\ < min f* + ogr(1)
e—0 JB(z¢,R)

we deduce

(2.9) lim lim fe(Orus) d\ = min f*.

R*)OO e—0 B({L‘E,R)

But if we assume limsup,_,g F:(us) < min f*, by a Fubini argument (2.8) holds for
most xe € we, so the local estimate (2.9) too. This says that when the upper and lower
bounds match, the energy density is essentially uniformly distributed, at any scale > 1.

3 Minimization of W in the periodic case : optimality of the
triangular lattice

3.1 Calculation of W in the periodic case

In this section we study the minimization of the renormalized energy W (j) among lattices in
the following sense: We assume that A = Zu + Z¥, where the vectors (@, ¥) form a basis of
R?, that j is invariant w.r.t. translations by the vectors i, ' and

cwlj =2rY 6,1,  divj=0.
peEA

It is not difficult to check that there exists such a current j if and only if det(@, ¥') = 2w. We
will denote Ty the torus Ty = R2/A. We have

Proposition 3.1. Assume A = Zu + ZV and j are as above. Then, letting {URr} be any
family satisfying (1.4), (1.5), defining Wy (j) as in (1.8) we have

1 (1
3.1 W@jzhm/ jI2+mlogn | .
(3.1) (7) = lim o (2 ol
Moreover, letting Hy be the unique solution (with mean zero) on Ty to
(3.2) —AH)\ =27y — 1,

and denoting
(3.3) ja = -V Hy
we have that j — jp is a constant and

Wy () = Wu(ja)
with equality if and only if j = ja.
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We will denote Wiy (ja) simply W(A): it is the minimum of Wy (j) among A-periodic
configurations, and using (3.1) it is given by

1 (1
W(A) = lim — | = VHAP? + 7l .
(A) ”%277(2/11’/\\3(0,77)‘ Al ﬂogn>

Proof. Since curl (j — ja) = div (j — ja) = 0 and j, jp are periodic, we have that j — jj is
constant. We now prove (3.1). Let us denote by K the set of cells K of the form {tu + sv,t €
(l—3,014+3%),s€ (m—3%,m+3)}, where [,m € Z. For K € K, let cx be the center of the
cell. The cells of K tile R?, hence for every R > 0, writing xg for xup,

Wi xr) = lim 3 5 / 51X + mxR(cK) logn.
KeIC KAB(ex )

There are only finitely many K’s on which yg is not identically zero, thus we may write

W(j,xr) = Y_ wk(j,xr)
KeKk

where

. 1 .
wi (j,xg) = lim = 11*XRr + TxR(cK) logn.
1=0 2 JK\B(ex )

Then, if xg =1 on K, we have (by periodicity of j)

(3.4) wk (J, xr) = lim 5% + 7 logn.
10 JTA\B(0,n)

On the other hand, there exists C' > 0 such that,

Indeed, j = cst — V+Hy with Hy(z) = —log |x| + U(z) where U is a C? function, so for any
r > 0, we have

1 1
E(r) ::/ 7> < C + mlog ~.
2 Jr\\B(0,r) r

From this we deduce first, by letting r» = n, that

1

3 [ lPxR(0)+ mxe)loga| < C.
Ta\B(0,n)

and second, that, since |Vxg| < C, for any 0 < n < ro,

T0
<c iPlel =—C [ Eedr
n

/ 720cr — x(0))
B(0,r0)\B(0,n) B(0,r0)\B(0,n)

_ ¢ <E(r0)rg — E(pn + /n " B(r) dr) <c.
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Adding the two proves (3.5). To conclude, we note that by definition of xr and (1.5)

#{KeK|lxr=1on K} ~g_.0o %
#{K € K|xg Z0 and xg Z1 on K} = o(|Ug|) as R — +oc.
Together with (3.4)—(3.5) this yields
, _|Ug| . 2
W(j,xr) = —_— lim JI* + mlogn + o(|URg).
21 =0 Jra\B(0.m)

Combining with (1.8), we deduce (3.1). It remains to show that Wy (j) > Wy (ja) with
equality iff j = jp. Since j = ja + ¢, using (3.1), we have

4nWy (j) = lim lial? + lef” + 2¢ - ja + mwlogn = 4nWir (ja) + [Tale?
77—>0 TA\B(077])
since fTA c-jy=—c- fTA VL Hy = 0. The result follows. O

We next express W(A) as a series using the Fourier decomposition of Hy.

Lemma 3.2. For all A € L we have

1 627j7rp~x
. A) =1 —— +1
(3.6) W) =g lim [ 37 e Hloslal |
peA*\{0}

where A* denotes the lattice dual to A.

Proof. Integrating by parts and using (3.2) we find

1 1 H
(3.7) / |VHA|? 4+ wlogn = = / HAa A—/ Hy | + mlogn.
2 JTp\B(0,1) 2 \Joom) — 9 JraBom

But fTA Hp = 0 and Hy(x) + log|z| is a C! function in a neighbourhood of 0, thus passing
to the limit n — 0 above we find

1
2

Using the following normalisation of the Fourier transform

(3.8) W(A) =  lim (Ha (x) + log z]).

fly)= [ fla)e ™ da,
RQ

since —AH) =27 ZpEA 0p —1in R2 and Hp has zero mean we have

A 1
HA(?J):W Z op(y),
peA*\{0}

where A* is the dual lattice of A, i.e. the set of vectors ¢ such that p-q € Z for every p € A.
By Fourier inversion formula, we obtain the expression of Hy in Fourier series:

6227rp~m

(3.9) H(z) = Z FECTNPE
4m?|p|
peA*\{0}

and the result follows from (3.8). O
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We may now prove Lemma 1.3. For the more general periodic situation of Lemma 1.3
where A is assumed to be merely (i, %) periodic instead of being itself a lattice, and j is
also (i, v) periodic with curlj = 273"\ 0, — n, we observe that Proposition 3.1 can be
adapted with identical proofs. In this case, denotlng by T(z7 the quotient R?/(Zu + Zv),
the configuration A may be seen as a finite family of points (a1, ...,a,) in T(zz), and the
statements of Proposition 3.1 remain true, replacing Tx by T gz, replacing Tx \ B(0,7)
by Tgs \ UiB(a;,n) and replacing —AHy = 2wy — 1 by —AH{,y = 27) 1 64, — n, in
partlcular Wu (Jfasy) = %W(j{ai}, 1T(7m)). Moreover, writing jg,,} as —VLH{%} and using
the translation invariance of the equation, we have

Hygy(z ZG x — a;)

where G is the solution to —AG(z) = 2769 — 1 on the torus T(zz. We may also define
R(z) = G(z)+log |x|, which is known to be a continuous function. Next, integrating by parts
exactly as in (3.7)—(3.8), we easily find that

W (j{a:}) ZG i —a;)+ Y _R(0) ],
=1

i#j

i.e. we deduce the result of Lemma 1.3.
Note that we may also compute W in Fourier series just as above and we find (1.11) i.e.

e2i7rp~(ai —aj) 2imp-x

L e
W(Jay) Z ) A2 [p|? + 5 lim ) A2 [p|? +loglal |

z;éj pe(Za+77)*\{0} pE(Za+77)*\{0}
which is formula (1.11).
This may also be rewritten in the form
]{al} Z Hyziz6(a; — aj) + nW (Zi + Z7)

#J

where Hyz177 1s as in (3.2) or (3.9) and W (Zu+Z7) as in (3.8). This way W is expressed as a
sum of the form ), £ f(a; — aj). Note that the series defining Hzgz,75 is an Eisenstein series
and can thus be expressed in terms of the Dedekind eta function via the “second Kronecker
limit formula” as in the proof of Lemma 3.3 below, see also [BoS] for more computations.

3.2 Proof of Theorem 2

First, from (1.12) we may consider only the case m = 1. Thus the lattice A is in £ iff
its fundamental cell has area 2w. We return to the expression (3.6) for W(A), and, using
standard functions and formulas from number theory, give a closed form for it in terms of the
Dedekind eta function. One can also view the series expression of W(A) as a regularization,
or renormalization, of the divergent series

1
Z 87r2|p|2'

peA*\{0}
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We also show that modulo a constant independent of A, this particular regularization is equal
to the regularization which uses the Zeta functions

1
Cax () = Z W7

peA\{0}

for which the minimizers w.r.t. A are known. Both results are the object of the following
lemmas:

Lemma 3.3. We have
1
(3.10) W(A) = = log(v2mbln(r)[*)

with 1 the Dedekind eta function, where the dual lattice A* to A has, up to rotation, a funda-

mental cell given by the vectors —2=(1,0) and —2=(a,b), and 7 denotes a + ib.

V2mb V2mb
Proof. We may parametrize A* as {ﬁ(mr +n),(m,n) € Z%}. Then for x = (1, 2) we
have

6227rp~m 1

s
peA\{0} (m.n)eZ?\{0}

Z e \/2% (m(az1+bz2)+nz1) b
|mT 4+ n|?

One can recognize that this is an Fisenstein series i.e. of the form

b

|mT + nl?

E, v(T) — Z 62i7r(mu+mi)
(m,n)€Z2\{0}
with 7 = a + b, u = ﬁ(aml + bzo) and v = ﬁxl. But the “second Kronecker limit

formula” (see [Lal]) states that

Eu(r) = =21 log |f(u — vr,7)g" /?|

where
fz,m) =" —p ) [ = ¢"p)(1 — ¢"/p)
n>1
with ¢ = e?™7, p = €™ Here z = u — vT = %(xg —iz1). As ¢ — 0, we have p — 1, and

then the expression above can be expressed in terms of the Dedekind eta function

n(r) =g JJ—q").

n>1

Inserting all the above in (3.11) we obtain that as |z| — 0,

62i77p~m 9
a9 ™ —log(v2mbln(7)|"|=|)
4m?|p|
pEA*\{0}
and combining with (3.6) we find the result (3.10). O
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Lemma 3.4. There exists C' € R such that for any A € L we have

s
W(A)=C+1i «(x) — ———dy | .
(A) + am <CA (z) /R2 1+ dn2jy[>+e y>
Two proofs can be given for this : one, which we give in the following subsection below,
uses standard analysis methods. The other uses the closed form (3.10) and the fact that the
Dedekind eta function is in turn related to the Epstein zeta function

b? 1 1
Z — =
(T’ S) Z |m7- +n‘25 (271-)5 Z ’p‘QS

(m,n)€Z2\0 pe Tlﬂb (Z+TZ)\0

via the “first Kronecker limit formula”
Z(1,s) = % + 27(y0 — log2 — log(Vb|n(T)[})) + O(s — 1) as s — 1,

where g is this time the Euler constant. Putting these pieces together correctly yields a proof
of Lemma 3.4.

Then, in order to minimize W (A) over L, i.e. over lattices under the constraint |Tx| = 27,
one is reduced to the question of minimizing (a+(x). It is proven in [Mont] that

212872 (1 + 2/2) 2 1 o da
. _ = _ . o —xz/2 1+xz/2\ <%
i @) = L= [ @) -t
where
(3.12) Or(a) = emalr
pEA

is the Jacobi Theta function and I' is the Gamma function. Moreover, from [Cas, Ran, Enl,
Di, Mont| and modulo rotation, the minimum of 6 over £* is uniquely achieved by (Ag)*,
where Ag = a (Z(1,0) + Z (1/2,+/3/2)) and the factor « is chosen such that |Tx,| = 27. But,
from the above formula,

23871 (1 4 x/2)

da
(2m) 1+ /2 '

(313) (Gae(2) = @) = [ (0ac @) = Ongla) @2 +-a/2)

In view of (3.12) the integrand in (3.13) is dominated by an integrable function independently
of . Hence, letting x tend to 0, Lebesgue’s dominated convergence theorem yields

ST (1) lim G- () — o) = [ (B (0) — g1+ ) o

Hence, using Lemma 3.4, we have

87D(1)(W(A) — W(Ao)) = / " (0a-(a) — Oas (@) (1 +a) 2.

a

We deduce that W(A) > W (Ag) for any A, with equality if and only if 0+ (a) = Oxx(a) for
almost every a, i.e. if, modulo rotations, A = Ag. This proves Theorem 2.
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Analytic proof of Lemma 3.4
Denoting by Gg the unique solution of —AGy + Gy = 278y in R?, we may write
Hy(x) +log || = Up + (Go(x) + log |z|) ,
where Uy = Hy — Gy and Go(x) + log |z| are C! near the origin. Taking limits, we obtain
from (3.8)
1
W(A) =~ + §UA(O),
where 79 = 3 lim,_.0 (Go(z) + log |z]). Denote by ¢(z) = (2m) e~ 1#1/2 the Gaussian dis-
tribution in R? and for any n € N let ¢,(x) = n?p(nz), so that {¢,}, is an approximate

identity. We have ¢, (y) = e~lvl?/2n?, Then, since Uy is continuous at 0 and bounded in R?,
we have

Up(0) = lim w(n,A), where w(n,A) = /R2 on(z)Up(z)dx :/ on(y)Un(y) dy.

n——+oo R2
Also, it is standard that Go = 27 /(1 4 472|y[2). Then, since Uy = Hy — Gy, we get
—p|*/2n? —ly|*/2n?
e e
winA) = 22—27T/ Trae W

Note that |Ta«| = 1/|Tx|~! = 1/27, which accounts for the factor 2 in front of the integral.
The second step is to show that

(3.14)
li A) = li A), wh A) = 1 27 d
i w(n, A) = lim oz, A), where vz, A) = GA*Z\{O} TP o T a2 @
p

First we truncate w(n,A) and v(z, A), letting for each N € N

N( A) Z e~ Ipl?/2n? 2/ e lul?/2n? . ~N( A (m ) N( A)
w” (n,A) = 27 ——dy, w"(n,A)=wn,A)—w"(n,A),
peAT {0} 42 |p|? B(o,N) 1 +4m2|y[?
Ip|<N

and defining similarly vV (z, A), o (2, A). It is clear that for any N

1 1 1
(3.15) lim w"(n,A) = lim o™ (z,A) = — — — 277/ ———dy.
n—-+00 z—0 472 pel;{O} |p‘2 B(0,N) 1+ 47['2|y‘2
lp|<N
Then we claim that
(3.16) lim  lim @Y (n,A)= lim lim " (z,A) =0,
N—+4o00 n—+00 N—+o00 xz—0

which together with (3.15) clearly implies (3.14). To prove (3.16), for any p € A* we let K,
be the Voronoi cell centered at p, i.e. the set of points in R? which are closer to p than to
any other point of A*. Then

P/ —fyl?/20?
1 il A = € — N A
e eAZ*\{O}]{@ P T amp W)
p

[pI>N
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where

s dy=an (Y [ gy [ e
» 1, = 4T dy — dy
e BO.N) Y EpNBO.N) 1+ 4m2|y[? peBON) Y Ep\BO.N) 1+ 4n2|y|?

We can bound |§| by the integral of (1 4 472|y|?)~! over those cells which intersect both
B(0,N) and its complement, the union of which is included in B(0, N + Cy) \ B(0, N — Cj).
Thus we have for every A

(3.18) lim lim 6(N,n,A)=0.

N—+oon—+00

Then we consider the sum in (3.17). If |p| > n? it is straightforward to bound the contribution
of K}, which we denote My, by CpeP1/2/|p|?, and from there to deduce

(3.19) Nl_lg_loonll)rfoo > M =0
pEA\{0}
[p|>n?

If [p| < n?, we use the fact that the gradient of y — e~1vI*/2n* is hounded by C//n on R? and
1

that e—lpI*/2n? < 1 to write
1 C dy
|M,| < ][ — dy +][ —_—
"= e a2l 1 ar P Y Tl Tran P

The sum w.r.t p € A* of the first term on the right-hand side is convergent, therefore the sum
w.rt p € A*, n?2 > |p| > N tends to 0 as N — o0, uniformly in n. For the second term, the
corresponding sum may be compared with the integral

C dy
—2m — 5
no JN<y<nz 1+ 472y

which is O(logn/n) as n — +o00. Therefore

lim lim ) [M,|=0.
N—+oo n——+o0
pEA*\{0}
n?>[p|>N

Together with (3.19) and (3.18), this proves that limy_ o lim, oo @™ (n,A) = 0. The
proof that limy_, 4o limg_o 9% (2, A) = 0 is similar, we omit it. Then (3.16) holds, which
proves (3.14) and the lemma.

4 The renormalized energy in the general case: proof of The-

orem 1

In this section we prove Theorem 1. We recall that we can reduce by scaling to studying the
case of A, = A; i.e. where (see Definition 1.1)

(4.1) curlj=v—1 div j =0,
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where v =273\ 0, is such that {'/‘%3;") }r is bounded. For convenience, once the class .4;
has been chosen, if p < 2 we may extend the definition of Wy to all j € L] (R% R?) by letting

Wy (j) = +oo if j ¢ As.

We now assume W has been likewise extended for a certain 1 < p < 2. In what follows we
will show that the minimizers and the minimum of Wy do not depend on U. However Wy
itself does. When a statement is independent of U, we will sometimes write W instead of
Wy.

One of the difficulties about W is that it is not lower semi-continuous. Here is a hint
as to why: consider a set of points A,, which is equal to the square lattice (of density 1) in
the ball B,, and to the triangular lattice (of density 1) outside B,,. Let j, be corresponding
vector fields. Then, since W is insensitive to compact perturbations, we have for every n, in
informal notation, W(j,) = W (triangular). On the other hand, as n — 00, j, — Jsquare DY
construction. So if W was lower semi-continuous, we should have W (square) < W (triangular),
which is false by Theorem 2.

However, we will show that W is lower semi-continuous “up to translations”.

We split the results into several propositions:

Proposition 4.1. Let U refer to any family {Upg} satisfying (1.4), (1.5). Let 1 < p < 2. We
have:

- The value of Wy (j) is independent of the choice of cutoff functions {xu,}r satisfying
(1.3).
- Wy LP

loc

(R2,R?) — RU {+o0} is a Borel function.

- The sublevel sets {j, Wy (j) < a} are “compact in L¥ (R? R?) up to translation”, more

precisely: for every j, such that limsup,,_,. W (jn) < +0o0, after extraction of a subse-
quence, there erists a sequence N, € R? and j € LT (R% R?) such that j,(\, +-) — j

loc
in LI (R%* R?) and
(4.2) Wy (j) < liminf Wi (jn).

n—oo
In particular infL{r ®r2,R2) Wu = infa, Wy is achieved and is finite.
- The minimizers and the value of the minimum of Wy are independent of U.

We will also prove a result of uniform approximation by construction, which implies in
particular that the minimum of W may be approximated by suitable periodic configurations.
This construction will be crucial in particular in constructing test functions. In what follows
K g denotes the square [~ R, R]?, and Wi denotes the renormalized energy relative to {Kg}g.
In the following results, squares could easily be replaced by arbitrary parallelograms.

Proposition 4.2. Let G C Ay be such that there exist C' > 0 such that for any j € G, we
have

v(KR)

43 VR > 1,
(4.3) | KR

<C
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for the associated v’s and such that, uniformly with respect to j € G,

(4.4) lim VU XkR)

=Wg(j) <C.
R—+00 |KR| K(j) -

Then for any € > 0, there exists Ry > 0 such that if R > Rg and |Kg| € 27N, for any j € G
there exists jr such that

(4.5) { curl jp=2m3" cr 0p—1 in Kp,

jR -7=0 on 8KR,
where Ag is a discrete subset of the interior of Kr, and

- ifx € Kp_ops/a then jr(x) = j(z),

Remark 4.3. An inspection of the proof allows to see that the construction can alternatively
be made in any rectangle which is a small perturbation of the square Kg, i.e whose sidelengths
are in [2R,2R(1 + n)], where n depends on ¢.

Note that this result is close to establishing that A; is “uniformly W-approximable” in
the sense of [AM], Definition 4.14.
The following corollaries are proved at the end of this section.

Corollary 4.4. Given any j such that Wk (j) < oo, there exists a sequence {jr}r2eca-n 0
Ay such that each jgr is Kgr periodic (i.e. jr(x + 2Rkei + 2Rleg) = jr(x) for k,l € Z where
(e1,e2) is the canonical basis of R?) and

Wir, 1
(4.6) lim sup Wik (jr) = lim sup M < Wk (j)-

R—o0 R—o0 |KR|

In particular there exists a minimizing sequence for minga, W consisting of periodic vector-
fields.

Corollary 4.5. Letp < 2 and let P be a probability measure on Lzoc(R27 R?) which is invariant
under the action of translations and concentrated in Ay. Then there exists a sequence R —
+00 and a sequence {jr}r of vector fields defined over Kr such that

- There exists a finite subset Ar of the interior of Kr such that

(47) curljR:27rzpeAR5p—1 in Kg
Jr-7=0 on OKpg.

- Letting Pgr be the probability measure on Lfoc(Rz, R?) which is defined as the image of the
normalized Lebesque measure on Kg by x — jr(x +-) where jr is extended periodically
to the whole R?, we have Pgr — P weakly as R — oo.

1
- limsup ————%~ W(in 1kr) /WK )dP(j
R—oo ’KR’
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4.1 A mass displacement result

In this subsection, we show that even though the integrand in the definition of W is not
bounded below, we can somehow reduce to that case by a “mass displacement” method,
which is an adaptation of that of [SS3]. The situation is much simpler here due to the fact
that all degrees are +1. It follows the same steps however, consisting in ball construction
combined with mass displacement.

We begin with a ball construction argument a la Sandier and Jerrard [Sa, Je]. For the
sake of generality, we prove the result for an average density m which may depend on z.

Proposition 4.6. Assume curlj = v — m in the sense of distributions in some open set U,
wherem € L*(U) and v =21 )\ 6p for some finite subset A of U, and that j € L% (U\A).
Let n = #A and ng > 0 be the minimal distance between points of A. Then there exists for
any r € (0,1] a family of disjoint closed balls B, of total radius r covering A such that:

- If A= {p} then B, = {B(p,r)}.
- Ifr/n <o, then B, = {B(p, =) }pen-

- The set Ugeg, B is increasing as a function of r. Moreover, for any n < r/n, and every
B € B, such that B C U we have, letting dg = #(A N B),

1 . T r2
5/ 37 2wy (tog - = iy ).
B\UpeAB(PJI) nn

- If B € B, and x is a positive function with support in U, then

. r r?
i =2 (1o =~ fllay ) 3 x0) 2 ~2r0(B) Ve

peEBNA

/B\UpeAB(pm)

Proof of the first three items. We let M = ||m||oc. The first items are obtained by a standard
ball construction argument & la Jerrard/Sandier. Since curl j = v — m we have for any circle
C = 0B of radius r(B) not intersecting A, and letting dp = #(A N B),

/ j-T>v(B)— Mnrg? = 2rdg — Mrrg?.
C

Using the Cauchy-Schwarz inequality and the fact that dp is a nonnegative integer, we deduce
that

1
(4.8) /’ ’2>7 dB) —2rMdgrg > 2ndp <T—M?”B>.
B

Define F(z,r) = fB(x " 7]?. The above yields
8i > 2mdp (1 — M?“B> .
or B

In order to define B, we first fix a reference family of balls produced via a ball-growth.
Set m = min{ny/3,1/(n + 1)} and let By = {B(p,n1)}per. According to the definition of
1o, we have that By is a finite, disjoint collection of closed balls of total radius nm < 1. We
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then apply Theorem 4.2 of [SS4] to By to produce a family of collections {B(s)}c(0 105 -1 |-
TR M

such that the total radius of the balls in B(s) is 7 = nme®. Then, given nm < r < 1 we may
choose s = log an and write B, for B(s). We then extend this reference family “backward”
to radii smaller than nn by letting B, = {B(p,r/n)}pea for any 0 < r < nn;.

Since the balls in these collections never become tangent when r < nny, for any n > 0 we
may trivially view {B(s)}s, where B(s) = B,, with r = nne® as having been generated by a
ball-growth from B(0) = {B(p,n)}yen, i-e. satisfying all the results of Theorem 4.2 in [SS4].
Then each B, has total radius r and covers A and from Proposition 4.1 in [SS4] for every
B € B, = B(s), with r = nne®,

/ Fi& 2/ > 2ndp(1— Mrp?)dt.
B\UPEAB(PW)

O Bren)
B'cB

Since the sum of the dp/’s is #(B N A) and since the sum of the rp/’s is less than nne’, we

find

2

5 2,2
/ % > 27TdB/ (1 — M(nne')?) dt = 2ndp (log I Mrnn> .
B\UpeaB(p,n) 0 nn 2

Since this is true for any 0 < 1 < r/n, the first three items are satisfied. O

Proof of the last item. Let B,y = B\ UpeaB(p,n). Then by the “layer-cake” theorem

—+o00
(4.9) / il? = / ( / |j|2> dt.
By 0 Byn{x>t}

Now if @ € AN B, then for any s € (0, 7] there exists a closed ball B, ;s € B, containing a.
For t > 0 we call
s(a,t) = sup{s € (0,1], Bo,s C {x > t}}

if this set is nonempty, and let s(a,t) = 0 otherwise, i.e. if x(a) < ¢t. Then we let B = By s(at)-
Note that a is not necessarily the center of B!, note also that s(a,t) bounds from above the
radius of BY, but is not necessarily equal to it.

As noted above s(a, t) = 0 iff x(a) < t while if s(a,t) € (0,7) then B! ¢ {x > t}, otherwise
there would exist s’ > s(a,t) such that B, ¢ C {x > t}, contradicting the definition of s(a,t).
Thus, choosing y in BL \ {x > t}, we have

(4.10) x(a) =t < x(a) = x(y) < 25(a,t)[[Vx]loo-

Also, for any t > 0 the collection {B!},, where a € A and the a’s for which s(a,t) = 0 have
been excluded, is disjoint. Indeed if a,b € A and s(a,t) > s(b,t) then, since By, is disjoint,
the balls By g4, and By 44, are either equal or disjoint. If they are disjoint we note that
s(a,t) > s(b,t) implies that By, y4.4) C By s(ayr) and therefore By = By, 1) and Bl = By g(4.)
are disjoint. If they are equal, then By 44 C £y N B and therefore s(b,t) > s(a,t), which
implies s(b,t) = s(a,t) and then B} = B.

Now assume that B’ € {B.}, and let s be the common value of s(a,t) for a’s in B’ N A
and n = #A. Then the previous item of the proposition yields for any n < min(ng,r/n) (but
the inequality is trivially true if n > r/n),

S 82
/ IjI> > v(B) <log — — M) :
B'\Upea B(p,n) ni 2/

37



We may rewrite the above as

2
/ ]2 > 27 Z < _ M“Q’(‘“t)>
B'\UpeaB(p,n) 2 /4

a€B'NA

and summing over B’ € {B!}, we deduce, noting that the a’s for which s(a,t) = 0 do not
contribute to the sum,

s(a,t)?
)% > 2n <log -M > :
/Bnﬂ{x>t} Z 2 +

a€EBNA

Integrating the above in view of (4.9) yields, using (4.10) and the fact that s(a,t) <r

/BX|]|2>27T Z/ <log )—MS(“;)2> dt >

a€BNA +
x(a) r x(a) —t 2
2w / <10g — + log < A 1) — M> dt.
2 0 nn 2r(|Vx|loo 2

The right-hand side is greater than

o ( <logn—M2)—27"HV><HOO),

a€BNA

which proves the result. O

We deduce a control of j by W, which we point out is substantially improved in [ST] into
a control in a critical Lorentz space.

Lemma 4.7. Let x be a positive function compactly supported in an open set U and assume
that curlj = v —m in R
U:={z|dxzU) <1}

where v = 27 ZpEA Op for some finite subset A of U. Then, there exists C' > 0 universal and
for any p € [1,2), Cp, > 0 depending only on p, such that

/UXP/QIJ'IP < C(|U| + Cp)' P (W (4, x) + n(log n + [mll o) lIxlloe + n| Vxlloc)’?

where n = v(U) /27 = #A.

Proof. We use an argument of M. Struwe [St]. Let M = ||m/[oc. We construct as above balls
B, in U and define for k& > 1 the set Uy = By \ By-(r+1) and Uy = U \ By 5. Then since x is
supported in U, we have by Hoélder’s inequality,

00 o0 p/2
(4.11) / WP = /Axp/%v’:z / NETTES I AISTE ( / lel2> .
v v k=0 " Uk k=0 Uk
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For any given k € N and if 7 is small enough we have Uy, C U, \ (By-(x+1) )y, Where we have
written A, = A\ UpeaB(p,n). For any ball B € By 1), if B intersects the support of x
then B C U and thus the previous proposition yields

9 9—(k+1)
[ itz 2w (g = =M ) 3 x(0) = Cu(B)| Vi

n pEBNA

Summing over balls in B, (+1) and subtracting from fUn x|7]? we find

. . 27(k+1)
/U X|J|2§/U xlil* — 27 (log —CM> > x() + Cr(U)| VX co-
k n

n
" peUNA

Taking the limit n — 0 and plugging into (4.11) we find, recalling that n = #A,

/pr/2|j|p <SP (W (G, x) + Cn (M + E +logn) [[x]leo + Cnl Vxlloo)P/?.
k=0

We have |Up| < |U| while for & > 1 we have |Uy| < C27%. It follows easily that for some
Cp, C >0,

/Uxmﬂp < C(|U] +Gp)' "2 (2W (j, x) + n(log n + M)||x]loo + nl|Vxloc)”?

O]

Lemma 4.8. Assume that m € L®(Bg) and {(jn,vn)}n is a sequence in LI (R? R?) x M
such that vy, restricted to Bg is of the form 21", 0,4, for every n, with div j, = 0 and
curl j, = v, — m, and which converges in the distributional sense to (j,v) on BR.

Then div j = 0 and curlj = v — m on Bg, where v is a locally finite sum of the form
21 Y pen dpdp, where A is a discrete subset of Br and dj, € N*. Moreover, if x € C2°(Bg) 1s
positive and sup,, W (jn, x) < 400, then d, =1 for every p such that x(p) # 0. In addition,
for any smooth function & compactly supported in {x > 0} we have

lim inf W (j,, &) = W(j, &).
n—-+00
Proof. This is essentially a consequence of the type of analysis of [BBH].

First, since v, is positive for each n, the distributional convergence of {v,}, is in fact a
weak convergence of the measures, and {v,}, is locally bounded on Bpg, and we deduce that
v is of the form 27 ZpGA d,o, with d, € N*. That div j = 0 and curl j = v —m on Bpg follows
by passing to the limit in the corresponding equations satisfied by j,, vy.

Now assume sup,, W (jn, x) < +00, let U be an open set compactly included in Br and
containing the support of x, and choose > 0. Let U,y = U\ Uper B(p,n). If n is large enough
depending on 7 we have A, N U, = @ hence div (j — j,) = curl (j — jn) = 0 in U,. Elliptic
regularity then implies that j, — j in Ck(Ugn) for any k € N and thus we have convergence
in CF (Br\ A). In particular we have for any p > 0

loc
o1 ) 1 .
lim ~ [ x|jnl® = / xlil*.

n—oo 2 U, 2 U,
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We choose p small enough so that the balls B(p, p) for p € ANU are disjoint. Then for
each p € ANU and n large enough, there are exactly d, > 1 points ph... ,pfllp in A, N B(p, p),
and these points converge to p. We apply Proposition 4.6 to (j,,v,) in B(p, p), with r = p?.
We deduce the existence of a family of balls B,, of total radius p? containing the points p*

and such that for 7 > 0 small enough

2 dp
/ Xlin|? — 27 (log dL — CM) D x(0h) = —Cdpp® VX oo-
Bn\Ui. B(pk 1) Pl k=1

Moreover, since the p;’s converge to p as n — 400, if n is chosen large enough then they
are at distance less than p? from p hence B,, C B(p,2p?). Using (4.8) to bound from below
faB(m) jn|? for 2p < t < p, we find

1/ .12 1( . )/ .12 ( . ) 2 P
- X|inl|® > = [ min x Jnl* = 7w min x | dy,*log =— — Cd,p.
2 JB(p,o)\B. =3 At B<p,p)\3n’ ° Bp) ) " 20

Also, since on B(p, p) we have ming, ;) X = X — 2p[|VX|loo, We may write
(3nin ) % = )+ x(0) (67 - ) = oty T
’ k

Putting together the above lower bounds, replacing x(p¥) by x(p) — Cp||Vx|lc0, and summing
with respect to k£ and p, we deduce

1 / 2o 1 2 P P
: Ml 2 5 [ xlia 4 wlog 2 3 x() + wlog 25 3 x()
2 Ju\Upen, Bpam) 2 Ju, pezA:n 2p? pezA:n
1
+7log 2% (dp = dp)x(p) = C Y _dp(logd, + 1)C(x) = Cplog 5= dyC(x),
P peEA peEA P peEA

where C(x) denotes a constant depending only on the function x and possibly on M. Adding
mlogn ), x(p) on both sides and passing to the limit 7 — 0 we find

W (i, X) > ;/ Xlinl? + Wlogg > x(p) +wlog % > (dy* — dy)x(p) - R,
Up pEA, P pEA

where the error term R is bounded independently of p € (0, 1], n. This inequality is true for
n large enough, but the left-hand side was assumed to be bounded above independently of n,
hence the right-hand side is bounded above independently of p, n, which can only be true if
(dy* — d, — 1)x(p) < 0 for every p € A, i.e. (since d, is a nonzero integer) if d, = 1 for every
p € A such that x(p) # 0.

We now prove that liminf, . W(jn,§) = W(j,€) if Supp(§) C {x > 0}. For this we
note that since j, — j in CF _(Bg \ A), then for any p > 0 we have

| . e
I(jn, p) = 2/U Eljal> +7 Y &(p)log p == 1(j, p).
p PEAR
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Then, the convergence of W (j,, &) to W(j,£) will follow if we may reverse the limits n — oo
and p — 0, which is the case provided for instance that I(j,,p) tends to W (j,&) as p — 0
uniformly with respect to n.

We prove this fact. Denote by {pi,...,pr} the set A N Supp(§). We know already that
the points are distinct hence there exist a neighborhood V of Supp(§) and k sequences {p' },
1 <i < ksuch that A,,NV = {p!'}; and such that p}' — p; as n — +oo. There exists Ny such
that if n > Ny then |p! — p;| < po when i # j, where py = %min#ﬂpi — pjl-

Now choose p1 < p2 < po and n > Ny. We have j,, = —V+H,,, where —AH,, = 27r5p? -m
in B(p,2po) with |m|lec < M. Then H, = log|- —p}'| + H;,, where H;, is bounded
by a constant independent of n in C'(B(p?,p)). It follows straightforwardly by writing

ljn|? = |V log +V H; ,|?, expanding and estimating each term, that

1

2 /B<py,p2>\s<p?,m>

Eljnl? — wE(p}) log % < Cpa|| V€l oo + C/pall€ oo

where C' is independent of n < Ny. The left-hand side is nothing but |I(jn, p2) — I(jn, p1)|
thus we have proved the uniform convergence w.r.t. n of I(j,, p) as p — 0, and then it follows
that W (jn,&) — W(j, ). O

The energy density defining W, |j|?4logn >, 0p has no sign, which makes it impossible to
apply directly Theorem 3 to it. We now show that it can be modified into a density bounded
below by a constant, using again the mass displacement method introduced in [SS3] (but in
a simpler setting), that is by absorbing the negative part into the positive part while making
a controlled error.

The next proposition summarizes the properties of the modified density g.

Proposition 4.9. Assume U C R? is open and (j,v) are such that v = 2w EpeA dp for some

finite subset A 0f(7 andcurlj =v—m, div j =0 in [7, where m € LOO(U). Then there exists
a measure g supported on U and such that

-g>-C(|m|% +1) on U, where C is a universal constant.

- For any function x compactly supported in U we have
(4.12) WG - [ xds| < Cattogn + )V

where n = #{p € A | B(p,C) N Supp(Vx) # @} and C is universal.

- Forany E C U,
(4.13) #(ANE) < (1+ |mll%| Bl + 9(B)).

where C' is universal.

Proof. The proof follows the method of [SS3]. Throughout M = ||m| . We cover R? by the
balls of radius 1/4 whose centers are in % X %. We call this cover {U,}, and {4}, the centers.

In each U, N U and for any r € (0,1/4) we construct disjoint balls B¢ using Proposition 4.6.
Then choosing a small enough p € (0,1/4) to be specified below, we may extract from U, B5
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a disjoint family which still covers A as follows: Denoting by C a connected component of
UaBy, we claim that there exists ag such that C C Uy,. Indeed if x € C and letting ¢ be
a Lebesgue number of the covering {U,}, (in our case ¢ < 1/4), there exists g such that
B(z,0) C Uy,. If C intersected the complement of U,,, there would exist a chain of balls
connecting = to (Uy, )¢, each of which would intersect U,,. Each of the balls in the chain
would belong to some Bg with 3 such that dist (Ug,Uqs,) < 2p < 1/2. Thus, calling k the
maximum number of 3’s such that dist (Ug, Uy,) < 1/2, the length of the chain is at most
2kp and thus ¢ < 2kp. If we choose p < £/2k, this is impossible and the claim is proven. Let
us then choose p = £/4k. By the above, each C is included in some U,,.

Then, to obtain a disjoint cover of A from UaBy, we let C run over all the connected
components of UyBy and for a given C such that C C U,,, we remove from C the balls
which do not belong to By°. We will still denote By the family with deleted balls, and let
B, = UaBy. Then B, covers A and is disjoint.

We then proceed to the mass displacement. Note that by construction every ball in B is
included in U,,.

From the last item of Proposition 4.6 applied to a ball B € B, if n is small enough then,
letting B,, = B \ UpeaB(p,n), for any function x vanishing outside B N U we have

[ ik —2n (log - o) 3 ) 2 CuBITNmim)

m pEBNA

where ny, = v(U,) and M = ||m||s. Then applying Lemma 3.1 of [SS3] to

1 12 P
I =5 |l an—<lognn—CM> 2r > 4y

« pEBNA

we deduce the existence of a positive measure gp, such that || fp, — 9Byl < Cv(B), where
the norm is that of the dual of the space Lip of Lipschitz functions in B which vanish outside
BNU. Now we let n — 0. Since gp, > 0, it subsequentially converges to a positive measure
gp and for any y € Lip,

419) | [ xdop = Woli.)| < CHBITAmia, where Walion) = i [ Xl

Next we note that, letting W’ (4, x) = W(j, x) — ZBGBP Wg(J, x), we have

<log LA C’M) Op,

Qp

. 1.
W'(4,x) = /xdf’, where  f' = §IJI21U\Bp Ty
pEA

(e}

where, denoting A, the set of p € A belonging to a ball of By,

such that p belongs to A,.

We define a set C, as follows: recall that p was assumed equal to ¢/4k, where ¢ < 1/4
and k£ bounds the number of §’s such that dist (U, U,) < 1/2 for any given a. Therefore the
total radius of the balls in B, which are at distance less than % from U, is at most kp < 1/16.
In particular, letting T, denote the set of ¢ € (%,1) such that the circle of center z, (where
we recall x4 is the center of U,) and radius ¢ does not intersect By, we have [T,,| > 3/16. We
let Co ={z ||z — 24| € To} and Dy = U, UC,. If U, NU # @ then d(xq,U) < 1/4 hence

we define «, as the index «
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B(zq, 2) cU. In particular, we have C, C D, C U. Then there exists universal constants
¢ > 0 and C such that

(4.15) / 112 > eng? — CM>.
Ca

To see this, apply the lower bound (4.8) on the circle S; = {|x —x,| = t}, i.e. with rp =t and
dp = #(ANB(zq,t)). Usingdp > ny and t € (3, 3) we deduce that fSt 152 > m(na)? —7Mng
and integrating with respect to t € T, yields (4.15).

The overlap number of the sets {Cy }q, defined as the maximum number of sets to which a
given z belongs is bounded by the overltap number of { B(x,3/4)}a, call it k. Then, letting

Jo = zk/\y\z Cotm Y (log—CM> 3p,

Oé

pEAa
we have
(4.16) f= Zfa > []* 15, — Qk,\J\ Co = 2\]\ 1inp, 20
and, from (4.15),
(4.17) fa(Da) = % /Ca 13[2 + 74 (log:a - CM> > cng? — C(M2 +1),

where the constants may have changed. We then apply [SS3] Lemma 3.2 over D, to f, +

C(‘]\éiTl), where C'is the constant in the right-hand side of (4.17). We deduce for any a such

C(M?+1)
[Dao|

that Uy, NU # & the existence of a measure g, supported in D, such that g, > —
and such that, for every Lipschitz function

(4.18) /Xd(fa = 9a) < CIIVXLoo(Do) (fa) - (Da) < Cna(logna + C(M + 1))[|Vx|| Lo (Dy)-
In particular, taking x = 1,
(4.19) 9a(Da) = fa(Dy) > cng® — C(M?* 4 1).

Now we let
1= Tt ¥t (r-Ta).
BeB, o s.t. «
UaNU#2
The term gp is positive for every B, f' — " fo is bounded below by (4.16), and >_, gq is

bounded below by —k'C(M? + 1) since go > —C(M? +1). Thus g is bounded below by
%|j|21U\Bp —C(M?+1) > —C(M? 4+ 1), and we have proved the first item. In addition, if

has support in U then
Z/dea - > [

a s.t.
U NU#2
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hence

/xdg—/xd ZQB+ Z —f) I =
Z/xng+ > /xd — fo) + W' (5, X)

UaﬂU;é@
a s.t.

UaNU#Z

hence in view of the definition of W', (4.14) and (4.18),

(4.20)
/xdg—W(j,x)zz</xng—WBJX> > /xd
BeB, a s.t.
UaNU#D

<C Z v(B)|IVx|lLee(B) + Zna(logna + C(M + 1)[[VXllL (Do)
BeB, e

Then if we denote by A the set of a’s such that ||[Vx/| 1~ (p,) # 0, and k is the overlap number
of the U,’s,

2 Z N < kv (UaealUa),
acA

and x € U, with a € A implies that Vx(y) # 0 for some y € D,, hence B(x,5/4)NSuppVx #
@. It follows that ) 4 ne < kn, where n is defined after (4.12). Similarly, the sum of v(B)
for B’s in B, such that |[Vx|[re(p) # 0 is less then 27n. Thus (4.20) may be rewritten as
(4.12).

Finally, summing (4.19) for o’s such that U, N E # @ and recalling that g — Y go > 0,
we easily deduce (4.13). O

Remark 4.10. We have in fact proved the following stronger property on g: There exists
p >0 and a family B, of disjoint closed balls covering A, such that the sum of the radii of the
balls in B, mtersected with any ball of radius 1 is bounded by Cp < 2, and such that on U

1.
92 ~Cllmll + 1)+ 5P,

4.2 Application: proof of Proposition 4.1
We start with

Lemma 4.11. Assume j € Ay. Then, for any family {Ugr}gr satisfying (1.5) and R > C,
forany p > 1,

max {|v(Ug) = [Ugll, »(U) = v(Un)} < C (B + B""9)) (jllowser +1)

where 6 < 2 is the exponent in (1.5), and C' only depends on the constants in (1.5).
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Proof. Let dr denote the signed distance to OUg, i.e. dr(z) = —d(z,Ug®) if z € Ug and
dr(z) = d(z, UR) otherwise. Let Ug! = {x | dr(x) < t.}.
Integrating (4.1) over Ug' and using Hélder’s inequality we find
gl-1 .
< |OUR[" ? |5l augt)-

(4.21) |V(URt) — \URtH = ’/ jeT
OURt

Then, using the coarea formula,

1
[ 1001a =100 Oxl [ 15y 8= 1000

and from (1.5) there exists C' > 0 such that Up! € Ug,¢. Using a mean-value argument
and (1.5) again there exists ¢ € (0, 1) such that

OUR!| < CRY, <202,

(FICAp— o < 23,

and therefore
(4:22) v(UR) = UR'| < CR 2l 1o,
A similar mean value argument yields the existence of s € (—1,0) such that
v(UR") = [UR'l| < CR" 9l e
Since t — v(Ug') is increasing we deduce, since Ugr_¢ C Ug?,
v(Ug") — |UR’| < v(Ug) = [Ug| + |Ur \ Ur—c| < v(Ug) = |UR'| + |[Up+c \ Ur—cl|,

which in view of (4.21)-(4.22) and (1.5) proves the bound for |v(Ug) — |URg||. The bound for
(UR) — v(Upg) follows easily since Ug C UR C Upic. O

Corollary 4.12. Assume that j € A1, that {Ugr}r, {Vr}r satisfy (1.5) and that ¢ > 0 is
such that Ue.r C Vg for any R > 1 (it is easy to show from (1.5) that such a c exists). We
assume that either Wy (j) < 400, or Wy (j) < +o0.

Then, denoting gu,, the result of applying Proposition 4.9 to (j,v) in Ug, we have

1

(4.23) REIEOO 72 (/UR XU, dgvy, — W (J, XUCR)> =0.

In particular if {Vr}r = {Ugr}r, we may take c =1 to obtain

1

As a consequence, Wy does not depend on the particular choice of xvu, satisfying (1.3).

Remark 4.13. Let G C A; satisfy the hypothesis of Proposition 4.2 and let {Ugr}r = {KRr}r-
Then the convergence in (4.24) is uniform with respect to j € G.
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Proof. Since Wiy (j) < +oo and j € Ay, both W (j, xu,) and v(Ug) are O(R?) as R — 0.
Applying Lemma 4.7 in Ug ¢ we find, choosing some p € (1, 2), that fUR l7|P = O(R%log R).
Then, using Lemma 4.11, we have |1/(ﬁE) — v(Ug)| = O(R%) for some exponent 6, € (0,2),
and thus the same holds for |v(Ug) — v(Ug_¢)|. Inserting into (4.12) yields

W (3,
’UCR’ UcR

hence (4.23), and (4.24) easily follows.
In view of (4.24), proving that the definition of Wy is independent of the choice of {xv, } r
satisfying (1.3) now reduces to proving the same statement for

R—+o00
—0,

limsup][ XUy dguy-
R—400 JUpr

But, since gy, > —C and since Ugp_¢ C {xu, = 1},
9ur(Up-—c) = C|Ur\ Up—¢| < / XUy dguy, < gur(Ug) + C|UR \ Ug_¢|.
Ugr
Dividing by |Upg| and in view of (1.5) we obtain that

U
lim sup][ XUy dgu, = limsup M,
R—+o00 JUR R—+o00 ‘UR|

which is clearly independent of xy, and finite thanks to (4.24).

The proof of Remark 4.13 follows from the fact that under the hypothesis of Proposition 4.2
we clearly have bounds v(Kg) < CR? and W (j, Xk,) < CR? which are uniform with respect
to j € G and thus that the convergence in (4.25) is uniform with respect to j € G as well,
when {UR}R = {KR}R. ]

We may now give the proof of Proposition 4.1, in several steps.

Wi is measurable. First we show that A; (recall Definition 1.1) is a Borel subset of X :=
LP (R?,R?). For R,e > 0 welet Ap. be theset of j € LF (R? R?) such that first curl j = v—1

loc loc

and div j = 0, where the restriction of v to Bag is of the form 27 ), d,, with a; € Br and
la; — a;| > € (in particular the sum is finite), and second ||j||zr(B,,) < 1/e. We also let

Apec =1{j € Ape | v(Br) < CR*}.
Clearly both Ag ., and Ag. ¢ are closed. Noting that

A = (UC>1 NR>1 U€>0AR,5,C) >

we find that A; is a Borel subset of X.
For j € A; we have W (j) = limsupg W (4, xuy)/|Ug|, hence proving that W is Borel
reduces to proving that

— "y
WX:jH{ (4,x) ifje A

400 otherwise

is Borel for any smooth, positive y with compact support.
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This follows from Lemma 4.8. Choosing R > 0 such that Supp(x) C Bpr the lemma
implies that W, restricted to the closed set Ag is continuous, therefore {j € Ar. | W, <t}
is closed for any ¢, and

{7 € A | Wy (j) <t} = AN (Ne>oUes0{J € Are | Wy < t})
is Borel. ]

inf 4, Wy is finite. The results of Section 3 for example show that inf Wiy < +o0. The fact
that inf Wy > —oo is a direct consequence of Corollary 4.12 and the fact that for any R > 0
we have gy, > —C, where gy, is the result of applying Proposition 4.9 on Ug. O

Sub-level sets are compact up to translation, min Wy is achieved. Consider a family {Vr}r
satisfying (1.4)—(1.5) and consider a sequence {7,}, such that Wy (7,) < a. In particular
Jn € A1. Let 7, be curl7, + 1. Then since ,(Bg) = O(R?) and from the definition of Wy
as a limsup, for any fixed arbitrary C' > 0 and any 6 > 1 there exists a sequence R,, — 400
such that

lim inf <Wv(j_n) — >0, v, (VRn—i—C \ VRn—C) < Rne.

n—-+o0o
Indeed, given n, the second relation is satisfied by arbitrarily large R’s, using a mean value
argument.
Now, letting V,, = Vg, , we apply Proposition 4.9 to (J,,7,) with U = V,, and deduce
the existence of a measure g, > —C' satisfying the properties described there. The choice of
{R,}n ensures that

(4.26) lim inf Wy () > lim inf 20 X00) oo ][ v, dgin,
n—-4oo n—-4oo |Vn| n—-4o0o Vi
using (4.12).

Now we apply the abstract scheme described in Theorem 3. Let X = L (R? R?) x Mo,
where My is the space of Radon measures on R? bounded below by twice the fixed constant
given by item 1 of Proposition 4.9 (this means that we are considering measures p such that
wu+ C is a positive Radon measure), and the topology is that of convergence in LfOC(RQ, R2)
and weak convergence on My. X is a Polish space, and on it we have the natural continuous
action 0y(7,9) = (J(A+-),9(A+-)). We may check the hypotheses of Section 2 are satisfied.
Then we choose a smooth positive x with compact support in B(0, 1) and integral 1, we let

V! = Vg, —c where C' is chosen (according to (1.5)) such that

(4.27) XV, > X * Ly everywhere and xy, = x* 1y, =1in Vg, 2c

and define
£,(j.g) = X(y) dg(y) if there exists A € V! such that (j, g) = Ox(Jn, Gn),
s + otherwise.

We also let

Fu(i0) = f a(62(5.9)) A =

n

ﬁ fX * ]-V,Q dgn i (3,9) = (Fn> n);
400 otherwise.
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Since g, > —C, the property (4.27) implies that

(4.28) / XVy, dGn > |Vo|Fn(Tns Gn) — O(Rn).

Then we check the coercivity and I'-liminf properties of {f,}, as in (1.15)—(1.16). The
latter is the trivial observation that if (j,, gn) — (4, g) then for any subsequence (not relabeled)
such that {f,(jn, gn)}n is bounded we have

lim £,(jn,gn) = lim /xdgn:f(j,g), where f(j,g)Z/xdg-

To prove coercivity, assume as in (1.15) that for every R

(4.29) limsup/ £,(07(Gn, gn)) dX < +o0.
Br

n—-4o0o

Then for every R, if n is large enough the integrand is finite a.e. hence there exists A\, € V!
such that (jn, gn) = Ox, (Fn, gn) and X+ X, € V! for almost every X\ € Bg, i.e. A\, + Br C V..
Then (4.29) reads

n—-+o00

limsup/ /X(x_)\n_)‘)dgn($) d)‘:/X*l)\n-i-BR dgn < +00,
Br

which is equivalent to saying that {g, = gn(\n+ )} is bounded in L!(Bg) for every R. This
implies that a subsequence converges in M.

Then, in view of (4.13) this proves that {©, (A, + )}, is locally bounded. Inserting
this information into (4.12) we find that {W(j,(An + ), Xg)}n is bounded and then using
Lemma 4.7 we deduce that {7,(\, + -)}» is bounded in LP(Bpg) for any R. Thus going to
a further subsequence {j, = 7,(An + -)}n converges to j locally weakly in LP. Moreover
div j,, = 0 and by the above curl j, is locally bounded in the sense of measure, hence weakly
compact in I/Vlgcl P By elliptic regularity it follows that the convergence of j, to j is strong
in LI (R? R?). This proves coercivity.

We may now apply Theorem 3. Letting P,, be the image of the normalized Lebesgue
measure on B/, by the map X — 60)(7,,gn), there is a subsequence such that P, — P, where
P is a probability measure on X and

hmlan (]n,gn)Z/ff’}(j,g)dP(j,g), where f77(7,9) lim ][ / x — A\)dg(x)dA,
Ugr

n—+00 R—>+oo

for any family of open sets {Ug} r~¢ satisfying (1.4).
We claim that if (j, g) € Supp(P) and £};(j,9) < 400, then

(4.30) j € Arand (5, 9) = Wu (4)-

Assuming this, and choosing (j,g) € Supp(P) such that £;(j,9) < liminf, F,,(j,,gn) we
obtain, using (4.26) and (4.28),

(4.31) lim inf Wy (7,) > liminf Fy, (70, gn) > Wi (j).
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Choosing V' = U shows that inf 4, Wy is achieved. Taking for 7, a minimizing sequence
for Wy, it follows from (4.31) that mina, Wy > min4, Wy, hence the value of min 4, Wy is
independent of U.

We prove the claim (4.30). Since ff;(j, g) < +oo, we have g(Ug) < C|Ug| < CR? and
thus VR > 1 there exists Np € N such that n > Ng implies g, (Ug) < CR2. Using (4.13) this
in turn implies that if n > Ny then v,(Ug) < CR? and then, passing to the limit n — oo,
that v(Ug) < CR?, so that in particular j € A;.

Moreover, still if n > Ng, from g,(Ug), v,(Ugr) < CR? and using (4.12) we deduce that
W (jn, Xuyp) < CR?log R and then, as in the proof of Corollary 4.12, that

‘W(jnaXUR) —/XUR dgn| < o(R?),

for some # < 2. Passing to the liminf n — oo we obtain in view of Lemma 4.8 the same
relation for j, g. Dividing by |Ug| — which is bounded below by cR? for some ¢ > 0 — and
letting R — 400 we find that Wy (j) = £5(4, g), which finishes the proof of (4.30).

O

Independence w.r.t. the shape. We have just seen that if U and V refer to two families of sets,
the infimum of Wy and Wy are both achieved and are equal. There remains to show that
minimizers are also the same.

Consider jy a minimizer of Wy,. By Corollary 4.12 we have for any {Ugr}r satisfying
(15),

. W(iv,xug) ][
4.32 lim —— 2 AURS dguy, =0
(4.32) A , X\Und9ur =0,

where gy, is the result of applying Proposition 4.9 in Ugr. We deduce that

(4.33) WUUv):hmsup][ XU dgu, = limsup / £(j.9) dPu, (j.g) >
Ur

R—o0 R—oo
liRHLiogf/f(j,g) dPug(j,9) > /f(j,g) dPy (4, 9),

where £(j,9) = [ xdg, xu, = 1lu,_o * X, and where Py, is the image of the normalized
Lebesgue measure on Ugr_¢ by XA — 0,\(jv,gu,). Moreover we have chosen a subsequence
{R} such that { Py, } r converges to a probability measure P.

Since Py is f-invariant and using the ergodic theorem and (4.30) we get

[ tG.90dr0t9) = [ 0.9 dPuti.o) = [ W) dPu.g) = winw.

where W can be defined using any family of sets satisfying (1.4), (1.5), not necessarily the
family U. Together with (4.33) we get

(434)  Wy(jy) = limsup / £(j,g) dPu,(isg) > / £(j,g) dPu(j,g) = / Wy (j) dPy (4. 9)

R—oo
and this is bounded below by miny4, W. From the minimality of jy and since min Wy =
min Wy, applying (4.34) to {Ugr}r = {VRr}r implies that there is equality everywhere and
therefore

(i) lim s.up/fdPVR = /fde, (ii) Py-almost every j minimizes W.
R
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Since f is continuous and bounded below on the support of Py, independently of R,

limsup/fdeR - /fdPV — Sup/ fdPy, 2212,
R R J{f>M)

Now choose ¢ > 0 such that U.g C Vg_¢ for every R > 1 and let P{,Rbe the image of the
normalized Lebesgue measure on U.gr by A — 0x(jv, gv,). Then

|UcR|
'Ve_c|

for some § > 0 independent of R (this follows from (1.5)). It follows that

(4.35) Py, > Py, > 0Py,

sup/ fdpry, M=o,
R J{f>1r)

and then that, choosing a subsequence {R} such that P, — Py, that limsupg £ APy, =
[ £dP{, (ct. [Bi, Du]).

Now we claim that the support of P, is included in the support of Py. Indeed if ¢ > 0 is
continuous with compact support in (Supp Py )¢, then [pdPy,, — [ ¢ dPy = 0 hence from
(4.35)

R—oo

1 cde\’,R —0
and thus [ pdPy, = limp [ @dPy, =0
It follows that P{,-almost every j minimizes Wy and that

(4.36) / £ APy, T2 min Wy,

But [fdPy,, = fy - XU, dgv , by definition of f and Py, and using Corollary 4.12, we have
that f; XU, d(gvy, — gu.p) tends to 0 as R — +o0. Therefore [fd(Py,, — Pu,,) tends to
0 as well, which together with (4.36) and (4.34) yields

Wy (jv) = limsup / fdPy,, = min Wy.
R—+00 ) A1

It follows that jy minimizes Wy. 0

4.3 Proof of Proposition 4.2 and Corollaries 4.4, 4.5

The first lemma (whose proof is postponed to the end of the subsection) serves to extract
a good boundary. We denote by Wi the renormalized energy relative to the family {Kr =
[_R? R]Z}R-

Lemma 4.14. Let G satisfy the assumptions of Proposition 4.2. Then for any v € (0,1),
any R large enough depending on 7, and any p € [1,2) there exists, for any j € G, some
t € [R—2R",R— R"] such that

(4.37) / ilP < o R2
0K}
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(4.38) fim V1K)

= j K,) — |K|| < CR*™
AR TR Wk (4), |v(Ky) — | Kq|| < CRT7,

where C, Cp, do not depend on j € G, and where the convergence in (4.38) is uniform with
respect to j € G.

The next steps consist in modifying j in Kr\ K so that j-7 = 0 on 0Kg, and so that the
ensuing modification of W (j, 1k, ) is negligible compared to R? as R — +o0. This relies on
the following two lemmas.

Lemma 4.15. Let R be a rectangle with sidelengths in [%, 3], Letp € (1,2). Let g € LP(9R)

be a function which is 0 except on one side of the rectangle R. Let m be a constant such that
(m —1)|R| = — [, g- Then the mean zero solution to

—-Au=m-1 m R
(4.39)

%:g on OR

satisfies for every q € [1,2p]

(4.40) /ww<%¢pmmm

Proof. We write the solution u of (4.39) as u = u; + uz where

—Auy=m-—1 in R
(4.41)

8“1 =g on OR

where g is equal to the average of g on the side where g is supported and is 0 on the other
sides; and

{ —Aus =0 in R

%122 g on JOR.

g —
Assume that R = [0, 61] x [0, £], with ¢; € [5, 2£], and that g is supported on the side x5 = 0.
Then, up a constant, the solution of (4.41) is u(x1,z2) = mT_l(a:g — 05)2. Therefore

q+1

lo
/ |VU1|q = (m — 1)q€1/ ($2 — fg)q dl‘z = (m — 1)q£1 EQ
R 0 q+1

< C(m —1)1L*,

_1
Then, m — 1 = —ﬁ J5r 9 and using Hélder’s inequality |m — 1| < CL_2HgHLp(3R)L1 P,
Inserting above we are led to

(4.42) /WW“%MLHWMW

For w9, note that the conjugate harmonic function w3 has trace ¢ which satisfies 0,¢ =
g — g, hence |Vl por) < lg — llzr(or)- Then from the Sobolev imbedding W!'P(9R) —

Wl_ﬁ’% (OR), which is the trace space of W2P(R), and elliptic regularity it follows that

[Vuzl|z2er) = IVUsl 20 (r) < CrIlg — llr(aR)s
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and it is easy to check that the constant Cz may be chosen to depend only on p, L and not
on /;, as long as ¢; € [L %] Scaling arguments then show that for some C), ; independent of

272
L we have
(4.43) [ 1902l < Coa 2 g1
Combining (4.42) and (4.43), we obtain the result (4.40). O

Lemma 4.16. Let R be a rectangle of barycenter 0, and sidelengths € +/ 271'[%, %], and let m
be a constant such that m|R| = 2n. Then the solution to

—Af=2n6g—m in R
% =0 on OR
satisfies

(4.44) lim
n—0

<C

/ IVf]? + 2mlogn
R\B(0.1)

where C' is universal, and for every 1 < q < 2

(4.45) /R VT < Cy,

where Cy depends only on q.

Proof. This is a standard computation, of the type of [BBH|, Chap. 1, observing that f =
—log |z| + S(x) where S is a C! function. O

4.3.1 Proof of Proposition 4.2

Let j € G. Apply Lemma 4.14 with p € (%, 2) and v = %. For any R large enough it provides
us with a square K3, where t depends on j € G but satisfies

(4.46) R1<R—t<2R1.

We wish to extend j in Kgr\K;, keeping j and A unchanged in Kp\K;, to obtain a
Jjr satisfying jr -7 = 0 on 0Kp and curljp = 27 ) pery Op — 1 — while the extension’s
contribution to the renormalized energy remains negligible compared to R2, uniformly with
respect to 5 € G.

Below, the notations o(:), ~ and O(-) are understood with respect to R — 400, and
uniform with respect to j € G.

We divide each side of K into [V/R] intervals, so that there are a total of 4[v/R] intervals,
which we label {I;};, of length ; \F]’ which is equivalent to 2v/R as R — 400, uniformly with

respect to t satisfying (4.46). For each i we consider the square K; C Kp \ K; with one side
equal to I;. By perturbing the length of the other side of an amount which is O(1/v/R) as
R — 0o we may obtain a rectangle R; whose aspect ratio tends to 1. and such that

(4.47) |Ri| — / j-7 € 2mN.
I;
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We let g; denote the restriction of j - 7 to I; (and extend it by 0 on the rest of OR;), and let

m; =1— I’T%’i |g " Using Holder’s inequality, we have

1
=1l < o ([ 1erp) RO <ort D ([ e
IRl \Js, 0K,

In view of (4.37), we deduce

|

since v = % and p > %

By (4.47) and by choice of m; we also have m;|R;| € 2rN. We may thus tile R; by
an integer number of rectangles R;x, whose sidelengths are in \/ﬂ[%, %] and such that for
each i, k, we have m;|R;x| = 2m. Since m; ~ 1, the number of rectangles inside each R; is
equivalent to |R;|/2m ~ R/2m as R — +oo.

On each of these rectangles, we may apply Lemma 4.16, which yields a function fi;
satisfying (4.44)—(4.45). We then define the vector field j; in U;R; by j1 = —V fi in each

Rir.- We can check that j; satisfies

{ curl j; = 27 ZpeF (5p — Zz milni in U;R;

(4.48)
j1-7=0 on 8(UZR1)

where I' is the union over %, k, of the centers of the rectangles R;;. Indeed since aa;j =
no curl is created at the interfaces between the R;;’s, and no curl is created either at the
interfaces between the R;’s.

Moreover, by (4.44)—(4.45), since the number of R;; for each i is of order |R;|, and since
the number of R;’s is O(v/R), j1 satisfies

(4.49) lim / 1j1]2 + 74T logn| < CR?,
=01 JU; RA\UB(p,1)
and for ¢ < 2
(4.50) | <Rt
Ui R;
Since (m; — 1)|R;| = — faR_ gi, we may also apply Lemma 4.15 in each R; with g = g; for

boundary data. It yields a function w; satisfying (4.40). We then define the vector field jy as
—V4u; in each R;. It satisfies
{ curl jo = Zz m;lg, — 1 in U;R;

(4.51)
JoT=g on 0U; R;

where g = j - 7 on 0Ky and 0 on the rest of 9(U;R;). Indeed, g; is only supported on the I;
i.e. on the sides of the R; which are in 0K}, so jo - 7 = 0 on all the boundaries of the R;
which intersect, therefore again no curl is created there. For every 1 < g < 2p we have, since

|Ii| ~ VR,
. 1-Z
/ 2| < Cp gt 2 Hgi”ip(am)'

7
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Adding these relations, we obtain
q
. 1—42 P
[ e B ([ lal)
Ui Ry i OR;

But when ¢/p > 1 we have ), acg/p < (32, max(1,2;))%? and number of R;’s is O(v/R) hence,

q
[ 1ai < CurtE (/ |g|p+ﬁz>p.
UiRi 0Ky

Using (4.37), we deduce, for all 1 < g <2p

(4.52) / |72? < Cp,qu_%—Fg(Q_%) < Cp7qR1+%g_
UiR;
From now on we choose p € (%, 2) and we have for every ¢ < %7’,

4.53 2|7 < C,R%, for some o < 2.
( J qlt
UiR;

A

We can now define jr more precisely. In U;R; we let jr = j1 + j2 and vg = 27 ZpEF Op-
By summing (4.48) and (4.51) we have

curl jp = 27 ZpEF 0p—1 In UTR;
JR'T=yg on a(UiRi),

where g = j -7 on 0(U;R;) N OK; and g = 0 elsewhere. Also,

(4.54) / jrl* = / 1l + 1g2]® + 241 - o
U;Ri\UB(p,n) Ui R \UB(p,n)

We have
AV 1/q
/ Jiga| < (/ rj1|q> </ |j2|‘1)
UiR:\UB(p,n) UiR; UiR;

where ¢ > 2 and % =1- %. Using (4.50) and (4.53) where we can choose g > 2 since p > 3,
we find

o
q

< CRa 7 = o(R?),

/ J1-J2
UiR:\UB(p,n)

since o0 < 2 and % + % = 1. Inserting into (4.54) and combining with (4.49) and (4.52) we
obtain

. 3
lim 2
n—0

= O(R2) + o(R?) = o(R?).

/ jrl® + T#T log
Ui Ri\UB(p,n)

There remains to define ji in A := K \ (K; U; R;). First we note that |A| € 2aN. Indeed,
from curlj = v — 1 and (4.47), we have

2r# (AN K;) — | K| :/ jor=>_|Ri| (mod2m),
oK, P
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thus |A| = |Kgr| — >, |Ri| — |K¢| is in 27N if |Kg| € 27N.

The set A can be described as follows: It is the union of four squares of sidelength R — ¢
positioned at the corners of Kp, and a union U;R}, where R/ is a rectangle having a side
of length |I;| in common with R;, and such that their union is isometric to I; x [0, R — t].
Since both dimensions of these rectangles as well as those of the four squares tend to +oo as
R — 400, and since |A| € 27N, it is possible to tile A by rectangles of area 27 and aspect
ratio close to 1. Applying Lemma 4.16 in each of them yields a current j4 which satisfies
curlj4 = 2w Zper, dp—1in A and ja -7 =0 on A — where I'" is the set of centers of the
rectangles tiling A.

The cardinal of I" is |A|/2m, which is O(RH'%), and therefore from (4.44) we deduce

(4.55) lim
n—0

/ jal? + 7#T" logn| = O(R7),
Kr\(KtU;R;)

and from (4.45), for all 1 < ¢ < 2,

(4.56) / jalt < CuRE.
Kr\(KtUiRy)

Letting jr = ja in A and

Arp=ANK)UTUT, wvg=271 ) 6,
PEAR

we have j = jrin K;, vg = vin Ky, curl jg = vg—1in Kg, jr-7 = 0 on 0K g, and combining
(4.55), (4.54) and (4.38) we get

W(jR7 1KR)

(4.57) ol

=Wk(j) +o(l) as R— +oo,

where the o(1) is uniform with respect to j € G. This completes the proof of Proposition 4.2.
We also note that from (4.50), (4.53) and (4.56), for every 1 < g < 2, we have

(4.58) / l7ir|? < R® for some o < 2.
Kgr\K¢

4.3.2 Proof of Lemma 4.14

Let G satisfy the assumptions of Proposition 4.2, and R > 2 with |Kr| € 27N, 0 < v < 1 be
given. Assume j € G. In this proofs the constants and limits as R — +o0o are understood to
be uniform with respect to j € G.

Step 1: Denote by gr the result of applying Proposition 4.9 in K to (j,v). We apply
(4.12) to functions of the form x(z) = p(||z|lo), i.e. whose level sets are squares, with the
additional assumption that p'(t) = 0 outside [R — 2, R — 1] and p =0 on [R — 1, 4+0c]. Since
for any Radon measure p on Kp we have

[xan=-["" putsoa,
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we deduce that
R-1
(4.59) /R , (W (5, 1k,) — gr(Ky)) p'(t) dt = =W (4, x) + /xng < Cn(logn + 1)[|p]co,

where the last inequality is (4.12), and n = #{p € A, B(p,C) N Supp Vx # &}, so that
2mn < v(Kpryc) — V(Kr—c). Here C denotes a universal constant, hence independant of
j € G. We deduce by duality that for some universal C' > 0 we have

R—1
(4.60) [ 1W0 k) — gn(KD)] de < Cnllogn-+1),
R—2

On the other hand, Lemma 4.7 yields that for any p € [1,2) and R > 0,
I3l zr(xR) < CR*Plog'/? R,

where C' depends only on p and on the constants in (4.3) and (4.4). Arguing as in the proof
of Lemma 4.11 this implies that

1 o(1—1) . p(1-1)42 . 1
(461) 1< —p(Kric) = KR < CR" D jlloien 0y < OB 7 l0gh R < CR?
for some 3 < 2, where we have chosen p < 2 close enough to 2 and used 6 < 2 in (1.5). It
then follows from (4.60), (4.61) that

1 R—-1

4.62 —
( ) R2 R_9

(W (4,1k,) — gr(Ky)| dt < CRP2 log R.

Now denote by {xr}r a family of functions satisfying (1.3) relative to the family { Kr}r.
We also assume yr < 1. Since g > —C and since yg = 1 on Kr_1 we have for any
t € [R — 2, R — 1] the inequalities

/XRZ dgr — C|Kr—1 \ Kr—3| < gr(K;) < /XR dgr + C|Kr \ Kr—2| < /XR dgr + CR.
and thus
(4.63) /XR2 dgr — CR < gr(Ky) < /XR dgr + CR.

Step 2: For any integer k > 1 let & = Xxr11 — Xk, and let &g = x1. Then & > 0, since
Xk+1 = 1 on K} and since xx < 1 and is supported in Kj. Moreover & is supported in
Cr := Kg+1 \ Kg—1. Since (4.3) holds, the number of integers k in [R —2RY + 1, R — R"] such
that v(Kjy2 \ Kr_2) < CR?>77 is greater than RY/2 if C is chosen large enough. Similarly,

[R—R7]

Z /fk dgr = /(X[RRW]+1 — X(r—2r"]) dgr < CR?,
k=[R—2R"]

where we use Corollary 4.12, Remark 4.13 and (4.4). Since gr > —C we have [ {,dgr > —CR
and therefore the number of integer k’s between [R — 2RY] + 1 and [R — R”] such that
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[ &k dgr < CR*77 is larger than R7/2 if C' and R are chosen large enough, and thus such a
k satisfying

V(Kipr \ Kjy) < CR2, / & dgr < CR*,

for some C' uniform with respect to j € G.
Applying Proposition 4.9 in Cy to &, we have

’W(]aék) _/fk dgr| < CR*7logR

hence W (4, &:) < CR?>™7log R and applying Lemma 4.7 we find that for p < 2,

p
2

| ladtll < cr = (Rog ) < R
Ck

But & () = 1 if ||z||cc = k and thus from the gradient bound & > 1/2 if k — 1/C < ||z]|o0 <

k+1/C. Therefore
/ P < oRe
K, 1 \K

b+
By a mean value argument on this integral as well as on (4.62) (applied with R =k + 1), we
deduce the existence t € [k — 1, k] — hence t € [R —2RY, R — R"] — such that, one the one

hand
/ lj|P < CR*7,
0Ky

proving (4.37) since C' is uniform with respect to j € G — and on the other hand
(4.64) gr(Ki) = W(j,1k,) < CR’log R.

Now, from (4.63) applied to R = k + 1 and using (4.12) in Proposition 4.9 together with
(4.61) we obtain

W(j, xr-2) — CRlog R < Ir(Ky) < W (j,xRr) + CR®log R,

Which together with (4.64) and in view of (4.4) yields (4.38). Finally,

_1 B
< 5l ooy | 0K > < CR*Y,

V() — K| = \/ jor
0K

using (4.37). Lemma 4.14 is proved.

4.3.3 Proof of Corollary 4.4

Let j € A; be such that Wi (j) < +oo. Let R be such that R? € 87N, and jr be obtained by
applying Proposition 4.2 over K = [0, R] x [0, R]. We let jJr = jr — V(, where A( = div jg
on K and ¢ = 0 on 0K. Then jr = —V+Hp in K since div jp = 0 there, and we have
OyHpr = 0 on 0K since jr-7 = jr-7 = 0 there. Thus defining Hr on Kr = [-R, R] X [—R, R)
by letting Hr(+x,+y) = Hgr(z,y) we have —AHp = > 6, — 1, where Ag is obtained
from the restriction of curlj + 1 to K by reflections across the coordinate axis. Moreover
Hi(—R,y) = Hgr(R,y) and Hg(x,—R) = Hgr(x, R) so that we may periodize Hg to have it
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defined on R2. Then jg := —V+Hp belongs to A; and since everything is periodic W can be
computed through the results of Section 3.1:

Wk (jr) = < Wk(j)+o(1) as R— oo.
The last assertion of the Corollary follows by taking j to minimize Wi over A; (a minimizer

exists by Proposition 4.1), and remembering that the minimum does not depend on the choice
of shapes used.

4.3.4 Proof of Corollary 4.5

The proof of Corollary 4.5 consists in constructing a sequence from a Young measure on
micropatterns, to use the terminology of [AM], while retaining an energy control. We thus
assume P is a probability measure on L (R? R?) which is invariant under the action of
translations and concentrated in Aj.

loc

First we choose distances which metrize the topologles of LV (R?,R?) and B(L!
set of finite Borel measures on LY (R2 R2). For ji,jo € L (R? R?) we let

loc

), the

loc

(e}

171 = J2llze(Bo.x)
d(i ’ . _ 2—k . - > .
(1, J2) kZ_l L+ l71 = d2lle(B(0,.k))

On B(L},,) we define a distance by choosing a sequence of bounded continuous functions
{&r}r which is dense in Cy(L¥ ) and we let, for any p1, po € B(L},,),

o0
po (ks 1 — p2)]
511, p2) 2" ,
; L+ |k, p1 — p2)|

where we have used the notation (¢, u) = [ ¢ dpu.
We have the following general facts.

Lemma 4.17. For any e > 0 there exists no > 0 such that if P,Q € B(L} ) and |P—Q|| < no,
then d(P,Q) < . Here |P — Q|| denotes the total variation of the signed measure P —Q, i.e.
the supremum of (p, P — Q) over measurable functions ¢ such that |p| < 1.

In particular, if P = Y %, a0y, and Q = Y .2 Bidy, with > oy — Bi| < mo, then
dB(P, Q) <e.

Lemma 4.18. Let K C L{’OC(R2,R2) be compact. For any e > 0 there exists m1 > 0 such that
ifre K,y € LP

(R2,R?) and dy(z,y) < m then dp(6z,0,) < €

loc
Lemma 4.19. Let 0 < ¢ < 1. If p is a probability measure on a set A and f,g : A —

(R?,R?) are measurable and such that dg(8(y),04(z)) < € for every x € A, then

loc

dp(f#p, g% 1) < Ce(llog €| + 1).

Proof. Take any bounded continuous function ¢y, defining the distance on B(L} ). Then if
dB(0¢(2), 0g(x)) < € for any x € L (R? R?) we have in particular

oe(F(@) — on(g@)|
T4 el f (@) — erlg(@)] =2
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It follows that

[e.e]

ds(f* u, g ) Z min(e2¥,1) < e ([logy €] + 1) + Z 27% < Ce(|log €| + 1).
k k=[log, ]+1

O

Selection of a good subset of LY. .. We must restrict to a compact subset of LY | (R%2,R?) in a
suitable way. This is not surprising when constructing an approximation: note that the set
of micropatterns in [AM] is assumed to be compact, and we need to reduce to this case. This
is the aim of the following Lemma.

Lemma 4.20. Given P as above and €, R > 0 there exist subsets H. C G, in L
with G. compact and such that:

(R?,R?)

loc

i) mo being given by Lemma 4.17 we have

(4.65) P(G:%) < min(no?, noe), P(HZ) < min(no, €).
ii) For every j € H. there is a subset I'(j) C Kr such that

(4.66) IT(j)| < CR?npy and A ¢ T'(j) = 6yj € G-.
i)
v(KY)

t2

(4.67) Wgk(j) and are bounded uniformly with respect to j € Ge and t > 1,

where curl j = v — 1, and the convergence in the definition of Wi (j) is uniform.
iv) We have

1

(4.68) dp(P,P") < Ce(llog e + 1), where P = / 1
a. KRl Jkp\r0)

3o, ANdP(j).
Moreover, there exists a partition H, = uf.Vng;‘ such that diam (HY) < n3, where n3 is such
that

(4.69) j € He, dy(5,5') <m3, A€ Kp\L(j) = dp(de,;,00,) <&

and for all 1 <1 < N, there exists J; € Hg such that

(4.70) Wi (J;) < llglf Wk +¢€.

€

Proof. Choice of G.. Since L:fOC(RQ,]RQ) is Polish we can always find a compact set G,
satisfying (4.65) and P(G.°) < mo. Then from Lemma 4.17, PLG. (the restriction of P

to G¢) satisfies dg(P, PLG.) < ¢
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From the translation-invariance of P, we have for any A\ that P(0,\G:) > 1 — n and
therefore that dg(P, PLO\G.) < ¢. It follows that for any A € R? we have ||P — Py|| < no and
then dp(P, Py) < €, where

Py = / 5; dP(j) = / 59,5 AP(j).
0,Ge Ge

Then using Lemma 4.19 we deduce that if A C R? is any measurable set of positive measure,
then

(4.71) dp(P,P") < Ce(|log €| +1), where P’ :/G ]{‘59” dAdP(j).

Moreover, since P is invariant, choosing x to be a smooth positive function with integral

1 supported in B(0, 1), the ergodic theorem (as in [Be]) ensures that for P-almost every j the
limit

lim

[ WG+ ), x(A+ ) dA
A TR GA+-), x(A+))

exists. Then 1, * x is a family of functions which satisfies (1.3) with respect to the family of
squares {K;}, and from the definition of the renormalized energy relative to {K;}; we may
rewrite the limit above as

(4.72) Wicli) = lim_ WG L # ).
By Egoroff’s theorem we may choose the compact set G- above to be such that, in addition
to (4.71), the convergence in (4.72) is uniform on G.. In fact, since Wi (j) < +oo and
lim sup, v(K;)/t? < 400 for P-a.e. j, where curl j = v — 1, we may choose G such that (4.67)
holds.

The difficulty we have to face next is that 8yj need not belong to G if j does.

Choice of H.. For j € G, let T'(j) be the set of X’s in Kp such that 0y ¢ G.. Since,
from (4.65) and the translation-invariance of P, for any A € R? we have P(0)(G:)¢) < no?, it
follows from Fubini’s theorem that

/ |r(j)ydP(j)=/ P((00G2)°) d\ < 4R* min(no?, noe).
Ge Kgr

Therefore, letting

(4.73) H. = {j € G : |T(j)| < 4R%no},

we have that (4.65) holds. Combining (4.65) and (4.73) with Lemma 4.17, we deduce from
(4.71) that (4.68) holds.

Then we use the fact that G; is compact and Lemma 4.18 to find that there exists 4 > 0
such that

(4.74) Vj € G, Vi € LY _(R*R?), dp(j,j") <ma = dp(0;0;) <e.

Moreover, from the continuity of (A, ) — 6,7, there exists 73 > 0 such that

Vj € G57V)\ € KRv dp(j7j/) <n3 = dp (0)\ja 0)\j,) < M4.-
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Now if j € H. and A € Kp this implies that if d,(j,j") < n3 then dp, (0xj,0,j") < na. But if
A ¢ \I'(j) we have 6,5 € G. hence applying (4.74) to 0], 0,7, we get (4.69).

Choice of Jy,...,Jn.. Now we cover the relatively compact H. by a finite number of balls

By, ...,Bn. of radius n3/2 and derive from it a partition of H. by sets with diameter less
than n3 by letting HE1 = B; N H, and

H =B nH N\ (BiU---UB).

We then have

Ne
(4.75) H.=|JH., diam (H.) < ns(R),
i=1
where the union is disjoint. Then we may choose J; € H! such that (4.70) holds. O

Completion of the construction. First we apply Proposition 4.2 with G = G.. The proposition
yields Ry > 1 such that for any j € G. and any R > Ry such that |Kg| € 27N there exists jr
defined in K such that (4.5) is satisfied and such that, if € Kp_,ps/a, then jr(z) = j(z).
Moreover,

(4.76)

We choose R. > Ry such that |Kg_| € 27N and large enough so that
3
(4.77) KR (1—ny) C{z 1 d(w, Kg.©) > Rc1}.
where 79 is the constant in Lemma 4.17. ,
If X € Kp_(1—p,) and since j(v) = jr.(v) if d(x, Kg.) > R.4, we deduce from (4.77) that
0\jr. = 0,5 in B(0, RE%) as soon as 1yR. > ZRﬁ, so that from the definition of d,, taking

R, larger if necessary,

(4.78) Vi € L} (R*,R?),YA € Kp_(1-y), J =Jr. on Kr. = dp(0x5,0:5") < m,

loc

where 71 comes from Lemma 4.18 applied on G, i.e. is such that

(4.79) j € Ge,j € L (R R?) and d,(j,5) <m = dp(6;,6;) < e.

loc

Having chosen R., we get from Lemma 4.20 a set H. and a partition H, = Ugvjlﬂg and
in each H! a current J; satisfying (4.70). We also choose an arbitrary Jy € A; such that
Wik (Jp) < 4o0.
Second we choose an integer ¢. large enough so that
N, N

3
(4.80) 2 < no, 2 X e Wi (J;) < e.

Now if j € H! then d,(j, J;) < n3 and we deduce from (4.69) that for every A € Kg_\T'(j)
we have

(4.81) dp (09,5, 66,.;) < €.
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Using (4.81) together with Lemmas 4.18, 4.17, and the bound (4.66), we deduce from (4.68)
that dp(P, P"") < Ce(|log €| 4+ 1), where

(482) P/l/ _ Z pl][ 59)\JZ d)\ where Pi = P (H;) .
1<i<Ne

We now replace p; in the definition (4.82) by

(4.83) where n; = [qﬁpi} :

Then Z S < ¢-2 and

(4.84) >

1<i<Ne

Then Lemma 4.17 implies that dg(P, P®) < Ce(|log €| + 1) where

(4.85) pH= 5y M ][ 5g, 7, dA.
Kgr,

1<i< N

Now we let K. = [—q-R.,q-R:]?, and ng := ¢.2 — ZN1 n;, so that ZZ 0N = ¢-2. Then
we divide K, in a collection £, of ¢.? identical subrectangles which are translates of K R., and
for each 0 < i < N we choose n; subrectangles in an arbitrary way and call the collection of
these subrectangles L. ;, so that {L. ;}o<i<n. is a partition of L..

Let us call J; g, the currents obtained from J; using Proposition 4.2. They satisfy (4.76)
and (4.78). We claim that, as a consequence of the latter, we have for any L € L. ; that

(4.86) j, = Ji,Rs on KRE = dp (][

69AJ1' d)\y][ 59/\]'/ d)\) < Ce(’log 5| + ].)
KRE KRE

This goes as follows: (i) Using (4.66) and Lemma 4.17, integrating on K (;_,,)g. \I'(/;) instead
of K, induces an error of Ce. (ii) From (4.78), and (4.79) applied to 0)J; by 6,j" we have
dp(0e, J,,09,/) < € and thus in view of Lemma 4.19 we may replace 6)J; by 65j' in the integral
with an error of Cel|log ¢| at most. (iii) Using (4.66) and Lemma 4.17 again, we may integrate
back on Kpg_ rather than on K(;_,g. \ I'(J;), with an additional error of Ce. this proves
(4.86).

Then combining (4.86) with (4.85) and dg(P, P®) < Ce([log €| 4 1), using Lemma 4.19
we find dg(P, P®)) < Ce(|log | + 1), where

(4.87) =y ][ S d

1<i<Ne

and jl R. is an arbitrary field in Lf’oc(RQ, R?) such that jl r. = Ji,r. on Kpr_, the constant C
being independent of the choice of jz R.-

We chose above an arbitrary Jp in A; such that Wi (Jy) < +o00. Let the sum in (4.87)
range over 0 < ¢ < N, instead of 1 < i < N, this defines a measure P©) guch that, by (4.80),

£

n
(4.88) IP = PO <5 < m,
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where we have used (4.84) and the fact that 1 — >, p; = P(H.°) < 1o, from (4.82), (4.65).
Hence using Lemma 4.17 we have dg(P®), P(9)) < ¢ and then dg(P, P(®)) < Ce(|log €| + 1).

We now define the vector field j. : R? — R? by letting j.(z) = J; r.(x — z1) on every
LeL.;0<1i<N,— where zy, is the center of L and thus L = z;,+Kpg_ — and by requiring
Je to be K -periodic. For every L € L.; we have j.(x +-) = J; p. on Kg_, therefore we may
choose J; g. = j-(xr, +-) in (4.87) and then

69}\]5 dX = Z /59)\Jed)‘_ Z / 59>\Js (xr+) d>‘_ Z nl/ GAJlRE

0<i<N. 0<i<N. 0<i<N. Kpe
Lel.; LeL. i

Therefore we may summarize the discussion concerning P®), P(6) by writing
(4.89) ds(P, P©)) < C=(Jlog &| + 1), ][ 5oy dA.

Note that since J; r. = 0 outside Kg_, and J; g, - 7 = 0 on 0Kg,_ we have, in K,

(4.90) = Y Jig(-—x), culjo=2rY 8§,—1, jo-7=0o0n0K..
1<i<Ng pEA,
LE[:EJ'

where A is a finite subset of the interior of K.. This completes the construction of j..

Estimate of the energy. We have

W(je, 1x.) = Z W(Jig. (- —2L),1L) = Z W (Ji,Res Licg, )-

0<i<Ng 0<¢<Ne
LeLl.; Lel. ;

From (4.76) applied to the J;’s we deduce that

Ne
(4.91) W(je, 1x.) < |Kr.| Y ni Wi (i) + Ce).
=0

Now from (4.84) and the fact that 1 — >, p; = P(H.°) < € we deduce that ng < N; + ¢-¢,
and then from (4.80) that ng < Ceq.2, where we have included Wi (Jp) in the constant. This
and (4.91), together with the estimates (4.84), (4.80) and the definition of p; in (4.82), implies
that

Ne
W(j57 1K5) < Q62’KR5| <Z P<H;)WK(Ji) + CE) )

i=1
and then from (4.70), and since |K.| = ¢-2|Kg.|, that

s Wik < Ik [ Wi(7)dP(G) + cz) < il ([ witiyar() +cz)

using (4.65) and the fact from Proposition 4.1 that W is bounded below.
Choosing a sequence {¢} — 0 we thus obtain a sequence {R} tending to +oco, where
R = g-R. and a sequence of currents {jr}, where jr = j. such that (4.7) is satisfied — this is
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W(ir,1

(4.90) — and lim supw < /WK(j) dP(j) — this is (4.92). Moreover from (4.89)
R—o0 R

we have Pr — P, using the notations of Corollary 4.5. Thus Corollary 4.5 is proved.

Part 11
From Ginzburg-Landau to the
renormalized energy

5 The energy-splitting formula and the blow up

In this section, we return to the Ginzburg-Landau energy and prove an algebraic splitting
formula on it already discussed in Section 1.8, as well as results on the splitting function. We
recall that if lim._,g hex/|log €| > Aq, then ho. may be used as the splitting function. Only
when the limit is equal to A does one need to use h. xy with N # Ny instead.

We recall hg . is the minimizer of (1.35) and h. n is given by (1.40). We also introduce
the notation of the appendix: for m € (—o0, 1], H,, denotes the minimizer of

1
(5.1) min (1—m)/\—AH+H|+/ \VH> + |H — 1.
h—1€H} () Q 2 Jo

H,, is the solution of an obstacle problem and its properties are studied in the appendix. In
particular H,, > m and —AH,, + H,, = ml,, , where w,, = {H,, = m} is the so-called
coincidence set. We have

Lemma 5.1. For any 0 < N < % there exists a unique m € [1 — ﬁlﬂ, 1] (and conversely)
such that he N = hexHp, and m and N are related by 2N = hexm|wy,|. Moreover m and
|wm| are continuous increasing functions of N.

Proof. The minimization problem (1.40) has a unique minimizer h. y by convexity. On the
other hand, by the theory of Lagrange multipliers, h. n is the minimizer of

1
min /|Vh]2+]h—hex2+/\/|—Ah+h|
h—hex€HL(Q) 2 Jq Q

for some number A characterized by the fact that the unique minimizer satisfies
fQ\ — Ah + h| = 2rN. But this minimizer is precisely hexH,, with m such that 27N =
hexm|wp,| hence he N = hexHy,. From Proposition A.1, m +— |wy,| is continuous increasing
and one to one from I = [1 — ﬁ, 1] to [0,]€2|], hence if 2N is between 0 and hex|€?|, then
there exists a unique m € I such that h. v = hexH,,, and m is a continuous increasing func-
tion of 27 N/hex — hence of N — characterized by m|wy,| = 27 Nheyx, and obviously |wy,]| is

too. O

We will denote by m,. y the m corresponding to h. n, and note that

1
2 1——<m.ny <1
(5) 0< 2)\Q_m7N_
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It follows from Lemma 5.1 that h. y is also the solution to an obstacle problem, hence
he N € CH1! (see [Fr]) and satisfies hexme N < he N < hex and

He N ‘= _Ahs,N + hs,N = me,Nhex1w57N7 where We, N = {hz-:,N = hexms,N}-

Note that p. n(€©2) = 27N,
We will also let

1
(5.3) Ce,N = hex(Me N — Mo ) = hexMe N — hex + 5] loge’|.

)

It is immediate from (1.48), (5.2) that

ca,N = O(hex> .

The minimizer ho . of (1.35) is equal to ke n,, where Ny is given by (1.38). Moreover, we recall
(see (1.36)) that ho. = hex — 3|loge’| on its coincidence set, hence hexme n, = hex — 3| log /|
and ¢ n, = 0.

On the other hand H,, is increasing with respect to m, see Proposition A.1, hence if
mi1 < mg then H,,, < H,,, (see Proposition A.1 in the appendix) so

(5.4) CE,N Z 0 if N Z N() CE,N S 0 if N S No.

We will be most interested in the cases where N is one of the two integers closest to Np.

5.1 Energy-splitting

Let h,, a “splitting function”, be any function such that u := —Ah, + h, € L?(Q) and
hy, = hex on 0€2. Let

(5.5) A =A—-Vth,

Then,

Lemma 5.2. For any (u, A) and h, as above we have

1 1
5.0 Gl 4) = 3y~ hosley + 5 [ (1l = 1) [T+

(L — Jul*)?

1
+ 5 /Q |V 4, ul* + (curl Ay — p)* + 52

[ (= ) 1 A1) = ).
Proof. From (5.5), we have
Vaul® = [Vayul? =2V hy, - jilu, An) + [u][ Vi,

where we have used the notation j(u, A) = (iu, Vau). Also, since curl A = curl A; + Ah, =
curl Ay — p + hy,, we may write

(curl A — hex)? = (hy — hex)? + 2(curl Ay — 1) (hy — hex) + (curl Ay — p)?.
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Replacing in (1.22) and integrating by parts the term VLh, - j(u, A1), using the fact that
hy, = hex on 0%, we find

1 1
Gulut, A) = gl = el + 5 [ (1 = 1) (9, P+

1 1— 2\2
+ 3 / |V 4, uf? + (curl Ay — p)? + (25’) + / (hy — hex) (curl j(u, Ay) + curl Ay — p) .
Q Q
This yields (5.6), using the fact that pu(u, A1) = curl j(u, A1) + curl A;. O

Using the particular choice of splitting function h, = h. y in Lemma 5.2, we obtain the
following result:

Proposition 5.3. Let 0 < N < hegijrﬂl and let he N be the corresponding minimizer of (1.40),
then for any (u, A), denoting A1 = A — VLh. n, and using the notation (1.41) we have

1
(57) G$w®=G5+E@¢ha—zéﬂ—mmwmwﬁ
where
1 1 — |ul2)2
(5.8) Fe(u,A) = / |V qu|? 4 (curl A — pe n)* + %
2 Ja ' 2e

+Amw-mfwwmmAHQwAmmm—%W>

Proof. In (5.6), we replace [;,(he,n — hex) (1(u, A1c) — pie,n) by using the fact that by defi-
nition of he n, on the support of pe N, he N — hex = hexMe N — hex = —%| loge’| 4+ ¢ v and
fQ pe, N = 27N ]

Note that the functional F. depends on N but for simplicity we will not denote that
dependence.

5.2 Dependence on N
We have the following

Lemma 5.4. For N € |0, %] we have
dG¥N
(5.9) d]\sf = 27 hex(m — mo¢)

where m is the one-to-one function of N given by Lemma 5.1. Moreover, Gi_v 1§ minimized
uniquely at Ny and minimized among integers at Ny or NO+ (or both) where N is the largest
integer below Ny and NO+ the smallest integer above.

Proof. From (1.41) and Lemma 5.1 we have
1
(5.10) GY = 7N|loge'| + 5heX2HHm — 13
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where m and N are related by 2rN = hexm|wy,|. On the other hand, since H,, minimizes
(5.1) we have

2N’ 1

2rN 1 9
ho Tl = e

+

G1)  Q-m)— gl

Hpn =1l (q) < (1= m)

where 27N’ = hexm/|w,y|. Reversing the roles of m and m’ and taking m’ = m + § with
6 — 0, we obtain

d 47 dN

o [ Hm — Ui (o) = hTX(W -1)——

(in the sense of BV derivatives). Inserting into (5.10) we deduce

dm

dG¥y
AN

1 /
= 7|loge’| + 2mhex(m — 1) = 27hey (m -1+ | 2056 |)
ex

hence the result (5.9) in view of (1.36). But mg. is the m that corresponds to Np. It
immediately follows with the monotonicity of N + m that GY is decreasing in [0, No],

increasing in [Ny, | QIZeX], hence minimized at Np, and minimized among integers at IV, or

NG O

For the rest of Section 5 and Section 6, N € {N,, N, }. Since 27Ny = Jo o <

1 (hex — 3|loge’]), see (1.37), it is clear that Ny < N < % so Lemma 5.1 applies and
the corresponding h. n are well-defined. We also record the following

Lemma 5.5. If No > 1 and N € {Ny , N} then

Ce,N

5.12 =
(5.12) e50 |log &’|

lim Me N = M),
e—0

where A = lim._,g UQTE’}' and my =1 — %

! ’ o, .
| O}%E ‘, hence by definition of A, we have lim._.gmo. =
ex

Proof. First we recall that mg. =15

my.
Assume that N = N;. We use the fact, seen in Lemma 5.1, that m and |wy,| are increasing
functions of N. Thus, since Ng < N < Ny + 1, we have |w. n| > |wo | and, using

27TN6r 21 Ny < 271']\75r 27 Ny 2w mo.e 1

0 <meNn—moe = - < - < = < =
© o hex|ws,N| hex‘w0,5| hex|w0,5| < |W0,5’ hex|w0,€| Ny NO’

because we always have m < 1. Since we are in the regime Ny > 1, we find that m. y and
mo, have the same limit, that is my. The case N = N is treated analogously, and we deduce
in both cases

1
(5.13) |m£7N — m075] § O(F)
0
Assume then that hex < O(|log €]), from (5.3) and (5.13), we deduce c. v = 0(hex), which
proves (5.12). If hex > |log €], then mg . ~ 1 and 20Ny ~ hex|€2] hence combining with (5.3)
and (5.13), we find ¢, v = O(1) which also implies the result in this case. O
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5.3 Blow-up procedure

We write for simplicity w. instead w, y and m. instead of m. y, when the precise value of
N € {N;,N;} does not need to appear explicitly.
Assume (1.48) holds. Let
1
Vhex

and, assuming 0 € w, C , write x = £.2’. Under this change of coordinates the domain
becomes 2. and the subdomain w. becomes w., both becoming infinitely large as ¢ — 0 —
this is obvious for Q. and for w., it is proven to be a consequence of (1.48) in Proposition 5.6
below. We call F! the expression of F.(u, A;.) (see (5.8)) in terms of the rescaled unknowns
v (2') = u(x) and A'(a') = L. Ay -(z). Tt is given by

le =

(1 Ju'[*)

1 1
14) Fl(u/,A) =< )P+ —eurl A — m 1, 2
514 Fut A) =5 [ IV e A= matos P Sl

2

- QMUAU+%N/(MUAU—md%%
o Q

/
£

where €, ./ are given by
(5'15) e = 7 Csl(xl) = hex — hs,N(x) + ce,N-

We also define the blown-up current in
(5.16) J = curl (iv/, V 4u')

and the blow-up measure u. = p(ul, AL) and extend them by 0 outside Q.. Note that
Je(@') = Lejr(Lea”) if j1 o denotes the current (iue, V4, uc) in the original variables.

The function h. y is in Cl’l(Q) and equal to hex on 0f). It attains its minimum hexm. n
on we n. From (5.3), (5.15)

. 1 1 .
Ce, N = Hgn(hs,N - hex) + §| IOg 5,|7 Csl(l‘/) = §| IOg 5,| - hs,N(l') + mén hs,N»
thus ¢/ € CHH(QL), ¢/ = cc v on OO and (.’ attains its maximum on w’. Moreover

1
(517) max (. = | loge'l, V¢l < C/TTog e,

€

this last assertion following from (5.20) in Proposition 5.6 below.

5.4 Additional results on the splitting function

In this subsection, we adapt some results from the appendix that we will need below. In the
appendix we introduce an ellipse Eg of measure 1 and a function Ug > 0 defined in R? such
that

A
AUg = TQ]'RQ\EQ’ {Ug =0} = Eq,

where @ is the quadratic form D?hg(x¢) as introduced in (1.31).
The following proposition can be applied to N € {No, Ny , Ny }. In either case we denote
by w. the associated coincidence set, and by w’ its blow-up.
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Proposition 5.6. Assume (1.48) holds. Let he y be as above with |[N — No| < 1.

1. We have No > 1, and if hex — He, < |log €| then Ny < hex and

heX
(5.18) hex — Hey ~ Ao Np log —.
No

2. For every x € )

log e’ log e’
(5.19) d@wggc|2“ﬂ Q\w.| < C w?ﬂ

Moreover
(5.20) ||Vh5’NHLoo(Q) < Cy/hex|logé!|.

3. If K is any compact subset of (Aq, +00),

(521) lim |{.T | d(x’aw5) < 5}| -0 lim |{hexm6,N < ha,N < hexms,N + 6hex}‘ _

0
§—0 |we | §—0 |we |

uniformly with respect to € such that ‘lgge"g‘ e K.

4. If hex/|log €| — Aq then there exists {Le¢}- such that for any 6, M > 0 and if € is small

enough
he N — ming h
{ e,N Hlln;z e,N Z M} C Zo +L€{UQ 2 M—(S},
hexLe
he N — ming he
(522) { Whﬁ? WSM}Cm+MﬂbSM+%
exHe

{d(xz,wQ) > 0L.} Cw. C {d(z,wg) < 0L},

where wg = xo + L:Eg and xq is defined in (1.31). Moreover there is a constant Cq
depending only on € such that

hex — Aq|log €|

(5.23) L% log L.| ~ Cq ;

In particular % < L% log L.| and {. < L., and from (5.22)

L3|WQ’ ~ |Wa‘7 {x | d(xaawa) < f%a} < |wa|'
5. For any R > 0,
(5.24) {z | d(z, (wg)%) > R} ~ |w|

as e — 0, i.e. w. satisfies (1.14).
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6. We have

(5.25) GN=gM 4+ 0 <sz\[ ) < Chey|loge'|.
0

If |log e€|4 K hex K 5%,

1
(5.26) GY = 5 hex|€| log €| + 0(hex)-

Proof. Proof of item 1: We apply Proposition A.1 to mp, =1 — “Oga |, We denote by L. the
L,,, corresponding to mg . given by Proposition A. 1 In particular we have lwo.e| ~ E. In that

proposition h denotes min i and is equal to 1 — 55—. Moreover hex — Ag|log €| > log |log €|

log |1
2(17%0@) — 2(17%) > Og‘lo|;§‘a| Wthh in turn is equivalent to mo. — hy >

is equivalent to

log _[log ¢
%. From (A.7)

o (1 |logé/|
(5.27) L2|log Le| ~ 2m(moe — hg) /g = o <2AQ Qhex )

Then, since |w05] ~ L? and Ny = hexmoclwo | we have L?|log L.| ~ %|w07ngog|wo75H ~

%moj,\i(;lex| g mo ;| and inserting into (5.27) we find

(5.28)
1 Ny No 2n (1 |log €’ ™ 1
= 1 ~— — = hex — A/l —log hex | -
2 mO,Ehex| °8 mO,ahex| ﬁ(] <2)\Q 2hex Aﬂbohex ¢ Q‘ °8 E| * 2 08 e

It follows, since mg. > hg > 0, that if (1.48) holds, we must have Ny > 1, for otherwise
the left-hand side is O(log [log ¢|) while the right-hand side is > log |log €|. Moreover, if
hex —H., < |log €| then mp. ~1— g = hg and inserting into (5.28) and rearranging terms,
we obtain Ny < hex and (5.18).

Proof of item 2. From (1.36), mp. = 1 — |120}§;ei’\ hence using Proposition A.1 we have

[Vhoelloo = hex||VHmg |loo < Cy/hex|loge’|. If [N — Nyl < 1 then from (5.12) we have
|log e’
h

|mo e — me n| < |loge’|/hex and therefore m. y < 1 — - Hoge’] ¢ ¢ small enough. Proposi-
tion A.1 applied to m¢ n yields the same bound for Vi, n, and (5.19) follows similarly from
Proposition A.1 using me ny <1 — |12g€ |
Proof of item 3. First note that if hey/|log €| is bounded above as € — 0 then [log &| ~

|log ’| hence heyx/|loge’| is bounded as well. Moreover, since |loge’| < [log |, if hex/|log €| >
a > Aq then hey/|loge’| > o hence if hex /|log €| belongs to a compact subset K of (A, +00),
then hey/|loge’| belong to a (different) compact subset K’ of (A, +00). But, from (1.36), if
this is the case then mg - belongs to a compact subset K of (hg, 1). Then from (5.12) and if &
is small enough the same is true of m, n, and the result follows from Proposition A.1 applied

to me N.
Proof of items 4 5. This is again Proposition A.1. Indeed hey/|log €| — A implies that
mo,e — hy =1 — 53— hence lim._.gm. y = hg and (A.7) holds, and for any 6, M > 0, (A.8)

also if £ is small enough It is easy to check using (5.12), (1.36) and (A.3) that (A.7) implies
(5.23), and (5.22) is (A.8) since he v — ming he N = hex(Him, y — MeN).
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To prove (5.24) we distinguish the case m. y — hy from the case where m. y is bounded
away from hg. In the latter and using Proposition A.1, |w. x| is bounded away from 0 and

{z [ d(z, (w2)) > R}| _ |wg]

jwel jwe |

,  where wp = {z | d(z,w:°) > R }.

Since Rl. — 0 we have |wg| — |w:| — 0, proving (5.24) in this case.
If me N — hg then mg. — hg, i.e. hex/|loge’|
Then L. > (. and therefore, using (5.22),

— A, or equivalently hey/|log e| — Aq.

{d(z,wq) > 0L:} Cwr C {d(z,wg) < 0L}
holds for any R,§ > 0 if € is small enough. It follows, since |wg| = L2, that
lwr| ~ |wg|

as € — 0 for any R > 0, which implies in particular (5.24).
Proof of item 6. Combining (5.9) with (5.13) it follows that

N
2rthes
G — GNoj = ’/ Dthex(m — mo.)| < 2
No No

where we have used the fact that N — m is increasing and [N — Np| < 1.
The upper bound part of (5.26) follows from (5.25) by noting that

|log &' / o + lhos — hexl2n < 92| loge'],

which follows from the minimality of H.,,,. in (5.1), using 1 as a test function. Finally, for
the lower bound part of (5.26) we note that from (5.19)

|log<'| / Hoe + [hoe — hex|2pn > loge'[lwo.elmoe

log &’| |log €’
- : o B
> |loge'| [ |92 = C B <1 e

> [log £'[|9] + o(hex),
if hey > |log ] O

Remark 5.7. In (5.18), we have recovered the formula (9.88) from [SS4].

5.5 A priori bounds

Lemma 5.8. If (ue, Ac) minimizes G then

(5.29) Ge(ue, Ac) < Chex|logé'|.

Moreover, for any (ue, A:) satisfying (5.29) we have, if N € {Ny , Ny },
(5.30) Ge(ue, Ac) = GY + Fe(ue, A1) + o(N),

where F. is defined in (5.8).
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Proof. The a priori bound (5.29) is a consequence of the upper bound in Theorem 7, see
Corollary 7.1. For the other relation we observe that, since Vh, y is supported in 2\ we, it
follows from (5.20)—(5.19) that

(5.31) / Vhe | < Chex®?|loge'P2.
Q

We then claim that

(5.32) /Q(l - |u|2)|Vh€’N|2 = 0(hex|we, N ])-

Indeed we have [,(1 — [u?)? < e2G.(u, A) < Ce?hex|loge’|. Applying the Cauchy-Schwarz
inequality, it follows from (5.31) that

/(1 — |u)|[Vhe n|? < Ce/hex|loge'|[|[Vhe n|[34 < Cehex/?| log5’|7/4.
Q

If hex < Cllog €] this is o(1) hence o(N). If [log e| < hex < 1/€% then hex|we n| ~ hex|€|
and this is also o(hex|we, N|). (5.32) is proven, since we recall that 20N = m. yhex|we n| with
(5.2). Then (5.30) follows from (5.7).

U

We also note some consequences of the second Ginzburg-Landau equation (1.47).

Lemma 5.9. Assume that (u., A.) satisfies (1.47). Then, letting A1 = A — Vthe y and
J1e = J(ue, A1), we have
[div j1ella-1(0) = o(NV)

(5.33) curl j1 e — p(ue, Ae) + curl Ay ¢ || g-1(q) = o(N).

Proof. By definition of ji. and A;. we have ji. = (ius,Va uc) — |u5|2VLh57N. It fol-
lows that div ji. = div (iue, Va,ue) + div (1 — |ue|?)VEhe n). If (1.47) is satisfied then
div (iue, Vau:) = 0 and div ji o = div ((1 — |uc[*)V+the ). On the other hand, combining
(5.32) with |u.| <1 we find

(5.34) /9(1 — |ue*)?|Vhe n|? = o(N).

It follows that
[div j1.ell 1) = o(VN).

By direct calculation we have p(uz, A1z) — p(ue, Ae) = curl ((Juz|? — 1)V+he n) and since
p(u, Ay o) = curl ji o + curl Ay ., (5.33) follows again from (5.34).
U

6 Proof of Theorem 4, lower bound

In this section we state the key result from [SS3] which we need in order to apply the framework
of Section 2 to the minimization of the Ginzburg-Landau functional as explained in Section 1.8.
In paragraphs 2 (resp. paragraph 3) we use it to derive the lower bound part of Theorems 4, 5
in the case of moderate (resp. high) applied fields. In paragraph 4 we prove Theorems 4 and
5 assuming the upper bound of Theorem 7, proven in Section 7.
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6.1 Mass displacement

There are two problems which arise when trying to apply the abstract scheme described in
Section 2 to the Ginzburg-Landau energy. The first, and less problematic one, is that F; is not
translation invariant. Indeed 1., and ¢.' are constant only in the subdomain w!. Therefore
we need to reduce to integrating on w. rather than Q..

The second, more delicate problem, is that the integrand in F is not positive, and not even
expected to be bounded below uniformly as ¢ — 0: Each vortex creates in F. two terms which
get infinitely large as ¢ — 0 and which balance each other. To capture the difference in the
limit we need to absorb the negative part in the positive part to obtain an essentially positive
integrand (this will by the way solve in essence the first issue). Note that the cancellation is
not a pointwise cancellation of the different terms: While the negative contribution is very
concentrated near each vortex, the positive one is more spread out.

The method, introduced in [SS3] is the same that we used in Proposition 4.9 in a simpler
setting, so the reader can refer to that section for an idea of it.

Let us denote the free energy functional

1 1 1 2
0 2 2 2
(6.1) Gg(u, A) = / €, €g = 2|VAu| + 2(cur1A) + 2 (1 |ul ) )

Qe

where (). is a smooth domain depending on € and large as € — 0.

We now state the result of [SS3] for the sake of completeness. It contains (in a slightly
different form) Theorems 1 and 2, as well as Corollary 1.1 of [SS3].

First, f+ and f_ will denote the positive and negative parts of a function or measure,
both being positive functions or measures. If f and g are two measures, we will write f < g
in the sense of measures to mean that g — f is a positive measure.

For any set E in the plane, E will denote the 1-tubular neighborhood of F in €, i.e.

E = {z € Q. dist (z,E) < 1}.

This way -
Qe = {x € Q.,dist (z,00,) < 1}.

For any function v on €. we denote (notice the absolute value)

o(x)= sup |v(y)l.
y€B(x,1)NQe

Note that here the choice of the number 1 is arbitrary.

Theorem 6 ([SS3]). Let {Q:}c=0 be a family of bounded open sets in R%.  Assume that
{(ue, Ac)}e, where (ug, Ae) is defined over Q., satisfies for some 0 < 3 < 1 small enough

(6.2) GO(ue, A) < e P

Then for any small enough ¢, there exists a measure g. defined over ). and a measure v,
depending only on u. of the form 2w, didq, for some points a; € Q2. and some integers d;
such that, C' denoting a generic constant independent of :

1. We have

(6.3) [1e(ue, Ac) — VEH(Cg’l(QE))* < CVeGe(ue, Ae),
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. The following inequality holds
1
-C < ge < €.+ 5’10g 5‘(7/5)—‘

. For any measurable set E C €.,

e-(E)
log &’

(6.4) (9:)-(E) < C (9:)+(E) < Cec(E).

. Letting
1
fe=ec— 5‘10g 6‘1/5,
for every Lipschitz function & vanishing on 0Q. and every 0 < n <1 we have

2
[ 1og 7 } +C | e..
n 00,

63) [ cdr-g) <0 / Ve [d\uew (64 n) d(ge)s + L8

. For any measurable set E C Q). and every 0 < n <1 we have

~ 1 =~ eE(Eﬂa/\QE) 66(E)
6.6)  |nl(B)<C (n(ga)+(E) + 1Bl |10g6!> o el < O

. Assuming |us| <1 in Q., then for every ball Br of radius R such that Bryc C Qe and
every p < 2,

/B e < Cy ((92)+ (Bric) + R?).

. Assume |uc| < 1, that dist (0,0€)) — 400 as € — 0 and that for any R > 0
(6.7) limsup g-.(Ug) < 400,

e—0
where Upg is any family satisfying (1.4)—(1.5).
Then, up to extraction of a subsequence and for any p < 2, the vorticities {p(ue, Ac)}e

converge in I/Vlgcl’p(R2) to a measure v of the form 2wy 5 0y, where A is a discrete

subset of R?, the currents {j(uz, Az)} converge weakly in LY (R* R?) to j, and the
induced fields {curl Ac}. converge weakly in L2 (R?) to h which are such that

curlj = v —h, inR>
. If we replace the assumption (6.13) by the stronger assumption

limsup g.(Ug) < CR?,

e—0

where C' is independent of R, then the limit j of the currents satisfies, for any p < 2,

(6.8) lim sup][ |77 dx < 4o0.
R—~4o00 UR

Moreover for every family xu, satisfying (1.3) we have

o XU W(j, xug) 1][ 2, 7][ )
6.9 hmmf/ B dg. <R + = h h) +og(1),
(6.9) S Gal 2fu,” Tanfy, ) Tor

where v is the constant in (1.52) and og(1) is a function tending to 0 as R — +00.
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The main point is that g. is a modification of f. = e. — %\log e|ve with a small error
(measured by (6.5)) which, contrarily to f;, is bounded below according to item 2.
Now, using the notation of Section 5, we blow up at the scale £ = \/hey, letting 2’ = (.x,
e =¢/l., and
(6.10) ul(z') = ue(z), AL(x') = le(Ac(z) — VEhe n(2)).
Then we deduce from Theorem 6 applied in {Q.}. to {(u., AL)}.
Proposition 6.1. Assume that as ¢ — 0
h 1
T s N€ [N, +o0], logllog ] < hex — Aallog e|  and  hex < —,
llog €| ef

where [ is small enough, and that G:(us, A:) < Chex|loge’|. We also assume that (1.47)
holds. Then there exists N € {Ny , Ny"} such that there exist measures {g.}. defined on ).
satisfying the following four properties, for any family {Ugr}r of sets satisfying (1.4), (1.5)
and any family of functions {xu,}r satisfying (1.3).

1. gL is bounded below by a — not necessarily positive — constant C independent of €.
2. Defining F, as in (5.14) we have, writing . for w_ y and letting &, = {z | d(z,w.") >

2},

11 i f
(611 iy ]

Flul, AD) = 0@ -,

and for any 1 <p < 2,
(6.12)

U < G (P A + 1) g [ e AL = a1 < € (UL AL + 1),
where jl := (iul, Varug).

3. If {al}: satisfies dist (zl, (wl)¢) — +oo and
(6.13) VR > 0, lirsnj(l)lp gi(zl + Ug) < +o0,

then, up to extraction of a subsequence, the translated vorticities {u-(xL + )} — where
pl = p(ul, AL) — converge in ngcl’p(]R2) to a measure v of the form 27} \ dp
where A is a discrete subset of R, and the translated currents {j.(x’. +-)}- converge in
LP (R?,R?) for any p < 2 to j such that div j = 0 and curl j = v — m,.

loc
4. If, in addition, we assume that there exists C' > 0 such that for any R > 0
/ /
U
(6.14) lim sup 9e(we + Ur)
e—0 |UR|
then j € Ay, (Am, is defined in Definition 1.1) and

< C,

(6.15) lim sup][ |77 dx < 400,
R—+400 JUR
and
(6.16) hmmf hmlnf Tl /XUR Dydgl(zx) > hglj;pw + %m)\
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Proof of Proposition 6.1. We apply Theorem 6 to {(u., AL)} on QL. First, we check that (6.2)
holds. Since AL(z') = £.(A: — V+he n)(2),

(1 —Jucl?)?
22

1
heX

1
GS,(uQ,A’a) =3 /Q |VA€_VJ_}L57NU5’2 + Eg(curlAe — AhE’N)2 +

S 2Ga(ua; AE) + / |Vh5’N|2 + ’hex + He, N — hE,N|2a

Q
using the fact that —Ah. y = pen — heny. If N € {N(;,Ngr}, then (5.25) implies that
Hhex - ha,NH%n < Chex| log 8/‘, while

2
/ =N _ / h/eXm€2 < Chex.
o hex Q

Therefore, if hexy < e7? and G, (ue, A.) < Chex|loge’|, then Gg, (ul, AL) < Ce2P if € is small
enough. We conclude by noting that if hey < £~ then ¢ < g3/4
Theorem 6 applies.

It gives us a spread out density (g.)o of . and a measure v, = 27 ). d;d,, depending only

on u, hence on u, but not on our choice of N. Noting that -v/(€2.) is an integer, we let

hence if § is small enough,

' N =Ny if 5ol (Q) < Ny

and this is the choice of N we make from now on.
Testing pu(ul, AL) — v against ¢/ — ¢, x which is in C''(QL), we find, in view of (5.14)

©18) FOLA) = [ 9l o e 4L -y O
e\Mer “le 9 Q e € 652 € A 2(6/)2

— [ A+ CE’N/ (dv. —mely) + o(1).
Qc Qc

Note that mg|w.| = pie n(we ) = 27 N. But, from the choice (6.17), if 5-1/(QL) > Ny then
we have N = NO+ > Ny and thus ¢,y > 0 by (5.4), hence

Ca,N/ (dv —mely) > 2me. N(NS — N) = 0.
QL

If on the other hand 5-1.(QL) < N, then by (5.4) we have c. x < 0 hence

CEVN/ (dvl —mely) > 2mee n(Ny — N) =0.
QL

So in both cases, the last term in (6.18) is nonnegative and we are led to

1— | 2\2
( |u€| ) _ Cg/dyé_i_o(l).

1 1
6.19 F”A’>/v,’2 1A —m 1, |?
( ) s(u€7 5) =9 Qg’ AEU’E’ +€€2’CHI‘ e~ Me We| + 2(5/)2 o
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To the spread out density (g.)o we add
1

1
(95) K (curl AfE — melwé)2 — §(curl A'E)2

and call the result g.. Using the notation (6.1) we may rewrite (6.19) as

(620 P A 2 [ ot [ &),

We now check that g, satisfies the required properties. Since m. € (0,1] we have that
(gL)1 is bounded below by a universal constant if, for instance, £, < 1/2, which is true for
small ¢ since lim._,¢ ¢, = 0.

1. Since (g%)o and (g.)1 are both bounded below by a constant independent of &', so is g_.

2. Item 2 will be proven in full below. We prove here the case A\qg < A < 400, which is
technically simpler. Using f.' = e, — %| log e’|VL, rewrite (6.20) as

(6.21) (ul, AL) /édfe / -+ [ ()i+o),

where £ = 2(.'/|1oge’|. Then, from (6.5) applied to —¢ and since from (5.17), we have
¢ =1 on ., it follows that

(6.22) [ car> / £d(g)o — Vel /Q I+ )

€

Since again £ = 1 on w., we may write

6239 [edio= @@+ [ eai— [ edl)

Let A = Q/\ ! N{€ > 1/2}. Since, from (5.17), |VE|loc < Cls, we have A ¢ A :=
{& > 1/4} \ &L if € is small enough. Using (6.6) with n = 1 we deduce that

(6.24) |l (U\wLN{€>1/2}) < CDFA) + CI < C | €d(gl)T + Che.
Q\wz
The same bound is trivially true for (g.) ( rn{E>1/ 2}>

On the other hand, letting B = QL \w N{¢ < 1/2}, we have £ < 2/3 on B if  is small
enough, therefore using (6.6) we find that

025 (et {e<1/2)) < Cele <23 < C [0,

LAt this point we could also choose N to be iyé (QL) i.e. the total degree of u.. Then the term in factor

of ¢, in (6.18) is 0, and we still have (6.19). We may then proceed with an unchanged proof of the lower
bound with that N. Alternatively, we may analyse further the positive term c. n fQ, vl —me1l ) that has

been discarded.
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and the same bound is true for (g.)g (Qf\\wg n{¢> 1/2}), using (6.4). We have thus

obtained that the negative terms in the right-hand side of (6.22) can be absorbed (since
IV&|lo < Cle = o(1)) in the positive terms of (6.21) and (6.23). There remains to

absorb the negative term of the right-hand side of (6.23).

Moreover for any n > 0 and letting A,, = {£ > 1 — 1/n} we have if € is small enough
that A¢ C A§, and C/|log €| < 1/4n. Thus, splitting into A,, and AS, and using the
fact that (g.), < C and (6.4) we have

C 1
626) [ €ty < omela5) + (@) (4n\30) < 5 (1O + Ol

Using the fact that [|[V¢||s = o(1), and the fact that (g.)1 > 0 outside w! and is bounded
below by —C' in w. \ @, we deduce from (6.21)—(6.26) that for any n > 0

F(uz, AL) > (9)o(@0) + (g0)1(@2) — ClAn \ @¢| + o([log e]).

Then (6.11) follows by dividing by |w’| and taking the limit first as ¢ — 0 and then as
n — +o00, noting that from (5.15), (5.3), (1.36), we have

he n (€ log e’
A\ @ ={z €Wl | d(z,w.) <2} U {w Ewl|men < 612( =) < Mme N+ Hog<] 02%15 |}
ex
and thus — using Lemma 5.6, (5.21) — that limsup,_, |ﬁgg\%‘| tends to 0 as n — +o0.

. For notational simplicity, we assume z. = 0. Since (g.); is bounded below, fUR gL
being bounded above independently of € for any R > 0 implies that the same is true
for fUR (gL)o hence (6.7) is satisfied and from item 7 in Theorem 6 we deduce the

convergence of the currents (locally weak L), vorticities (T/Vlgcl P) and fields (weak L2 )
to 7, v and h satisfying curl j = v—h. Since we assume (1.47) we have div j(ue, Ac) = 0.
But a direct computation (see Lemma 5.9) gives div ji . = div j(ue, Ac) + div ((1 —
‘UE‘Q)VJ‘haN) = 0 in w, N since Vhe vy = 0 in w. y. At the blown-up scale this means
that when d(0, (w.)) — 400, we have for any R > 0 and ¢ small enough div 5. = 0
in Bg. We deduce that div j. — 0 strongly in I/Vlgcl’p (R?) and thus div j = 0 . Since
curl 5 = pl 4 curl AL we also have that curlj. is compact in I/Vlgcl P(R?) for p < 2. Tt

follows that j. is compact in L{ = and the convergence of j. is strong.

Moreover we have

1 1
(6.27) lim sup][ <2 (curl A’E — malwg)Q . 5(culrl A’E)2> < 400
Ugr

e—0 £

for every R > 0, from which we easily deduce that the limit h of {curl AL}, is equal
to my, where A € [\, +0o0] is the limit of hex/|log €|. Indeed under the hypothesis
d(0, (W.)¢) — +o0, we have m.1,/(z. 4 -) — my locally from (5.12). We thus have
curlj = v —m,.

. Again we assume 2. = 0. The hypothesis that limsup,_, J[UR g is bounded above
independently of R implies as above that the same is true for limsup,_,, JCUR (gL)o-

78



Then item 8 of Theorem 6 applies and we obtain (6.8), hence (6.15), and from (6.9) we
get

(6.28) hmlnf/ XUR d(gs)o > Wi, XUR ][ my? 4+ —— my + or(1),
‘UR’ 27T Ug

where limp_, 1~ 0r(1) = 0. On the other hand (6.27) implies that curl AL — m, locally

strongly in L?, hence
1
hmmf/ XUR d(gl)y > —=my2

2
Together with (6.28), this proves (6.16).

To prove that j € A,,, we integrate curl j = v — m) over Bry+ and Br_ to obtain

mma(R— 1)+ / jr = v(Brt) < v(Br) < v(Brys) = ima(R+1)° + / jor
OBp_+ d

BRr+t

Then, a mean-value argument and (6.15), with p = 1, allow to deduce the existence of
t € [0,/R] such that
/ il < CR*2,
OBR_tUOBR_

and we deduce that v(Bg) ~ mmyR? as R — 400, and so j € A, -

It remains to prove item 2 in all generality using Theorem 6.

Proof of item 2 in Proposition 6.1 in the general case. Recall that from its definition (5.15),
¢! achieves its maximum %| loge’| on w., and is equal to ¢, y on 9. Thus

-
| log e’|
achieves its maximum 1 on w, and its minimum ¢, 5 /|log¢’|, which from (5.12) is o(1), on
oNL.
We let

EBi={reQ¢>1-6}, Ey={reQl ¢>1-26},

and recall that
@é ={z € wé,dist (z, (w;)c) > 2}

We will need the following lemma.

Lemma 6.2. For any M > 0 and & small enough there exist 6 > 0 such that

(6.29) Ei C By, |&> M|Ey\ &

> T,
| log €’
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Proof. First we treat the case where hex/[log €] — A € (Aq, +00]. In this case, using (5.21)
in Proposition 5.6 we find

_ !
lim {1 — 20hex/|loge’| < € < 1} _

6—0 el

0,

uniformly with respect to € < g, if ¢ is small enough. Since hey/|loge’| has the same limit
as hex/|log €], it is bounded away from 0 as ¢ — 0. We deduce easily that § may be chosen
small enough so that

{1~ 3hex/|loge| < £ < 1}] _ 2

(6.30) o < T

for any e < gg.

Then we note, since from (5.15) we have |V¢| < ]loge’\_%, that 1 C Ej holds for &
small enough, as well as Ey C {1 — 36hey/|loge’| < €}. Tt follows, in view of (6.30) and since
wl = {& =1}, that for & small enough

B\l _ 2

wel T M
To conclude we note that |w. \ &L < |{d(z,0w.) < 2(.}| = o(Jw.|), where we have used (5.21)
and scaled. Thus if ¢ is small enough and using (6.31) we find |&/| > M|Ey \ &.|.

If hey/|log €| — 400 then we choose § = 1/2. As above, ||VE||oo — 0 implies that Ey C Fs
for ¢ small enough, and of course 6 > M/|loge’| is satisfied for e small enough depending
on M. Moreover (5.19) implies that d(we, 2¢) — 0 as ¢ — 0, and d(@e, (w:)¢) = 26 — 0
as well. Therefore |2\ &:| = o(|w:|) and after scaling [ \ @] = o(|&]), and in particular
B \ WL| = of|@z))-

If hex/|log €] — Aq, we choose § = cL? with ¢ > 0 independent of € to be chosen small
enough depending on M. From (5.22) applied with M = ﬁ and § = %, and rewritten in
terms of

(6.31)

he N (lex) — ming he N

5(1‘):1_2 |10g€/‘

we deduce that

P L SN Uqg <

bex — 20 < c+n
“Aqllogé!|

L. - 2\

Therefore, since § = cL? and \q = lim. hey/| loge’|, for any n > 0 and if € is small enough
then

1—&(x) <20 = Ug (Zgaz—xo) < et

L. - 2\
Since ¢./Lc — 0 from Proposition 5.6 this in turn implies that if € is small enough and |y| < 1
then bex —xg £ c+2n

€ €
Using (5.22) again, this implies that &(z +y) > 1 — 2(c + 3n)L2. Choosing n = ¢/6 we
have proven that By C {£& > 1 =36} if ¢ is small enough. Similarly, we may prove that
E\g C {¢ <1—0} = Ef. We further deduce that, as ¢ — 0,

— Le 2 C Lm 2

le
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2
Moreover from item 4 in Proposition 5.6 we have |0 ~ (12—2”) . With (6.32), and since

HUg < f—;}\ — |Egl =1lasc — 0, and @ C E,, we deduce that \E\Q\GJ!/@\ can be
made arbitrarily small by choosing ¢, and then &, small enough. This proves (6.29) and the
lemma. O

Returning to our proof, we start from (6.20), and we bound from below
/ el — ¢ dvl.
QL
Let Cy be the constant in (6.6) i.e. such that for any set F C QL

O e(B)

6.33 E) <
(639 pel(B) < e

and assume that Cy > 2.

For notational simplicity we now write €2, e, v, g, Q, @, ¢ instead of Q., e, V., (¢)o, wL,
&L, ¢ and we let f =e — 1|loge’|v. Since £ = o(1) on 9N and [|VE|o = o(1) (recall (5.12),
(5.17)), for any n > 0 and € small enough there exists a smooth positive cut-off function x < 1
such that |Vx| <n, such that y =0 on {{(z) < ﬁ} and such that y =1 on {{(x) > ﬁ}
Moreover, {z | d(z,09) <2} C {¢ < ﬁ}.

We then note that since f = e — §|loge’|v and ¢ = 3|loge’|€, we may write

030 e- =) (e pellogly) + X7 -9+ €+ (1 o).

Step 1: We first study

(6.35) /Q N (€d(f —g) +Edg+ (1 )e)

:/befdg%— </(®)CX§dg++/QX(1—§)€>+ </QX§d(f—g)—/(®) Xﬁdg>.

The first parenthesis on the right-hand side contains positive terms, while the second one
contains negative terms. We use (6.4), (6.6) to bound from below the negative terms, and use
the positive terms to balance them. From (6.35) and (6.5) (applied with n = 1), and since
X =& =1 on @ by construction and x = 0 on {dist (z,0§) > 2}, we have

636) [ x(Edr=g)+¢do+1-90) > [dg+] [ x1-9e+g [

© xédg4 + 11 + I,

where

—= 1 1
o= 0 [ F0@d v [ xedssg [ X0 -9

—C/Qv(xﬁ)dIVI—/@cxﬁdg+4/(®)cx£dg++8/ﬂx(1—£)e-

I
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We first study I7. Since V(x§) = 0in w, we have {V(x§) # 0} C (@)°. In addition |V(x&)| <7
if € is small enough since |x| <1, [¢| < 1,|Vx| < n and |VE| = o(1). Thus, noting that x =1
on {¢ > 3},

2 [ T0@)dos <1 | g+ [ dgs
Q (@)en{e=3} (@)en{e<z}
<uf  exdgron[(1-9
(@)en{e>5} Q
where we have used (6.4). We thus obtain, choosing 1 small enough,
1
hz-g [ @-00-9e
Q

We turn to I> and split the negative contributions over Fo and ES. Using Lemma 6.2,
choosing M large enough and using (6.4), (6.6) and the above, we have

/Ec (V/(\Xf) dlv| +X§dg_) < Ce(ﬁg) < 1/

= Jloge’] — 8 o5

(1=9)e,

since ]/5\’5 C Ef and 6 > M/|logé’|.
On the other hand, using (6.6) with n = 1 and the fact that V({x) = 0 in @ and

L —

IV (x€)| < 0+ o(1) we have, since Es \ w C Es \ @ and by choosing 7 small enough,

_— 1 =\ -

Vo <0y [ (g1 < [ xedgs +CulEa\al

E> Er\w we
while using the fact that g is bounded below (hence g— < C), we have
| ¢dg <cimaal.
W°NEsy
Combining all the above, we deduce that choosing 7 small enough we have, if € is small, that
1 =y .
B> [ (=200 -9e-ClE\al.
Q

From Lemma 6.2, it follows that VM > 0 and ¢ small enough, I > —%|G)|—% Jo(I=x)(1—¢&)e.
Inserting the bounds for I; and I into (6.36) we find

630 [ x(€d -9 redgr -0 29@ + 7 [ X1 -gers [ xeds

1 [a=va-ge- il

Step 2: We examine [,(1 — x)(e — 3&|loge’| dv). Since €] < ﬁ on the support of 1 — x
we have there

1 1
e— §§|10g5’|y >e— ﬁ\loge'ﬂuy
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On the other hand, from item 2 of Theorem 6 we have g < e + %|loge’||v| hence on the
support of 1 — y we have
1 g+

e + — 2 |loge'||v|
10, T a0, 3G, 8

1
e — €llogelv > (1-
and thus

Ja=negetoeetan = 110 [1=ver g ([ 020 (doi = g ap)).

Step 3: Inserting the above and (6.37) in (6.34) we obtain

639 [e-carzg@ vy [ 30 -0etg [ a&ds,
-1 La=a-ge- el + - 120 [a-ve

1 |10g5’|
i [ 0=0de—SES [ ap

)¢

Since 0 <1—-¢ <14 ¢ n/|loge’| =14 0(1), and Cy > 2 we have

5 fa=0a-ger ] [xu-ger -5 [
> (o g5 =) [a-va-ge+ s [a-ge= 5 [a-ge

On the other hand, by (6.33) and choice of x we have
| log 5’| 1 /
X)dv| <= | ___
400 | | 4 {£<ﬁ

Since |VE| = o(1) we know that {& < ﬁ} C {& < 1} for  small enough and thus

|10g5/‘ d’l/‘ < ;/(1 —5)6
We have obtained
(6.39)
1 3 1 1 !
1 fa=na-ge+d [xa-ge+ -0 [a-0e-EEE [a-xap)

26/ —§&e>0.

For the terms in (6.38) involving g, g+, we use the fact that & > ﬁ on the support of x:

1 1 1 -
9@ + 15 [1=0das + 2/@0 XEdgs = 150 9+(0) — 9- (@),
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We may also bound this term below by ¢g(@). Combining with (6.39) and (6.38) we are led
either to

(6.40) /Qe—Cduzg(&J)—]\C4|cD],

where M can be arbitrarily large, or, using g_ < C' and keeping % J(1=¢&)e, to

(6.41) /Qe—Cdz/_ 1610 (9 )—C!JJ\—&-é/Q(l—{)e.

Step 4: Conclusion. We return to (6.20) and recall that the letter g stood for (g.)o. We
deduce from (6.40)

Fi(ui, AL) > (9L)o(@) + (ga() — 1] +o(1).

Since ( )1 > 0 on QL \ w., since (¢g.)1 > —C on w. and since |w. \ &L = o(|wl|), we have
(g0)1(92L) > (gL)1(&L) +o(wl). Then we deduce from (6.40), letting ¢ — 0 and then M — +oo,
that

F{(ug, AL) = gL(@l) + o(lwel),
proving (6.11).
To prove (6.12) we combine (6.41) with item 6 in Theorem 6 to obtain

1

Fl(ul,AL) >
Co St )=

. B 1
MW—CWA+/(1—®¢

This proves the first inequality in (6.12), noting that (1 — &) > 1/2 on {d(x,(Q.)¢) > C} ife
is small enough and that e, > 1[;.|?. Finally, from (6.40),

(6.42) F{(ul, A7) = (92)0(&2) + (90)1(2) + o(lwe]),

and it is straightforward to check that

() > {%6 s(curl AL —m.)? on w.
€ -

5.2 (curl AL)? on QL \ Wl
Therefore LA )
ney > [ MLl ey,
A 20,
which together with (6.42) finishes the proof of (6.12). O

6.2 The case of small applied field

Here, by small applied field we mean fields hey that satisfy the assumptions of Proposition
6.1. We are ready to define the appropriate space and I'-converging functions to apply the
scheme described in Section 2. We choose X = LfOC(R2, R?) x My, where My denotes the set
of measures p such that u + C is a positive locally bounded measure on R%, —C' being the
constant bounding from below g. in item 1 of Proposition 6.1. We consider on LIOC(RQ,]R?)

the strong topology and on My that of weak convergence. The space of positive measures
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equipped with the weak convergence is metrizable hence the space X is a Polish space. We
will typically denote by x an element of X.
There is a natural action 6 of R? on X by translations:

0x(5(),9() = GA+),9(A +))

which is clearly continuous with respect to the couple (j, g) as well as with respect to .

Denoting as above w! the rescaled coincidence set, we know from Lemma 5.6 that it
satisfies (1.14). Now consider {(u., A:)}. satisfying the hypothesis of Proposition 6.1, then
the proposition provides us with measures g’ defined on Q.. We also have the rescaled current
gt = curl (iul, V g1 ul) where (uf, AL) are as in Proposition 6.1. We define functions {f.}. on
X as follows.

Having chosen a smooth positive function y : R?> — R with support in the unit ball and
integral equal to 1, we let

/x(y—fc) dge(y) if Jr € Wl s.t. x = (ji(z + ), gt(x +-))

400 otherwise.

f.(x) =

Note that since j. and g¢. vanish outside a compact set, there is at most one z such that
x = (jLl(x +-),gL(x +-)) unless x = 0, in which case we let f.(x) = +o0.

The third statement of Proposition 6.1 implies that {f.}. satisfies the requirement of
coercivity (1.15). Indeed assume that {x.}. is a sequence in X such that

(6.43) lim sup/ f.(0rxc) dX\ < +o0

e—0 Bpgr
for every R > 0, then in particular this integral is finite if € is small enough, which implies
that f.(0y\x:) < +oo for almost every A € Bgr. Thus there exists {z.}. such that x. =
(jL(xe + ), gL(z + ) and A + x. € w. for almost every A € Bg, when ¢ is small enough. In
particular the distance of x. to R? \ w’ is larger than R for ¢ small enough, and (6.43) reads

VR >0, lim sup/ /X(y — A —z.)dgl(y) d\ < +oo0.
Br

e—0

Integrating first w.r.t. A we find

hmstl)lP/XR(y — ) dgl(y) < +oo,
A
where xp = x * 1p,.

Since g is bounded from below independently of e, and since xp is a positive function
equal to 1 on Bg_1, this implies that the second part of (6.13) is satisfied. Thus, up to a
subsequence, the currents j.(z.+-) converge in Lfo C(RQ, R?). Going to a further subsequence,
{9L(xe + )} converges in M.

Finally, y was chosen smooth, it is clear that the I'-liminf requirement (1.16) is satisfied
if we define the function f on X by

(6.44) £(j,9) = /x dg.

Now Theorem 3 applies and combined with Proposition 6.1 gives:
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Proposition 6.3. Assume that {(ue, Ac)}e satisfy (1.47) and

Ge(ue, A) < min - GN +CNy
Ne{Ng .Ng'}
for some constant C, and assume hex satisfy the hypothesis of Proposition 6.1 and (5.29).
Let (u., AL) and N be as in Proposition 6.1. Using the notation above, and letting P: be
the probability measure on LfOC(RQ,RQ) which is the push-forward of the normalized uniform
measure on w. by the map x — j.(x + -), we have the following.

1. A subsequence of {P.}. weakly converges to a translation-invariant probability measure
P on LP (R? R?) such that P-a.e. j € Ap, .

loc

2. For any family {Ug}r>o satisfying (1.4), (1.5), we have

F/ / A/
(6.45) lim inf M > /WU(j) dP(j) + mAl
£—0 || 27
and
2 . .
(6.46) Guluei 4 2 GX 43 (22 [y aP )+ +0(0).

Remark 6.4. We claim that under the hypothesis of this proposition, the limit of P-. which
is the image of the normalized Lebesque measure on w. by the map

R ACEE)

is unchanged if, in the definition of p, we replace AL(y) = l-(Ac(x + Ley) — Vi he n(z + Ley))
by leAc(x + Ley), i.e. define P as in Theorem 5.

Indeed, denote by Y the corresponding modification of p and by Q. the ensuing modification
of P.. From (1.14), there exists @. such that ©.+ Br C w. for any R > 0 if € is small enough,
and such that |&L| ~ |W.|. Since ©. C w. and |@L| ~ ||, replacing Wl by &L in the definition of
either P. or Q- does not change their limit. Then, since th&N(CC +0.y) =0 for any x € &L
and y € Br and if € is small enough, we find that P- and Q., seen as measures on LP(Bp),
coincide if € is small enough depending on R. It follows that their limits in LfOC(R2,R2) are
equal, proving the claim.

Proof of Proposition 6.3. Tt is immediate that (u., A.) satisfies the hypotheses of Proposition
6.1. Let N be given by Proposition 6.1. By Lemma 5.8, we have, for that N, Ge(ue, A:;) =
GY + F.(us, A1:) + o(N). But from the upper bound assumption, G.(ue, A:) < GY + CNy
so we deduce
F&(UsaAl,s) < CNO ~(CN = O(hex|u)57N|).
In blown-up coordinates, this means F(u., AL) < C|&L|.
On the other hand, from (6.11) in Proposition 6.1, we have

F{(ul, AL) = go(@l) — o(|&g]),
where we recall @, = {d(z, (w.)) > 2}. Also, since [ x = 1, since x has support in By and
since g’ is bounded below,
/

)= [ £(6a0gt) A o(je)

£
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where @! = {d(x, (w.)¢) > 3}. Combining these facts, we have

P = f £OnL0rgl)dh < C

€

and we now apply Theorem 3 to these functionals. We deduce that the measures {Q:}.,
where Q). is the image under

z = (Ji(x + ), gtz + )
of the uniform normalized probability measure on @., converge to a translation invariant
probability measure @ on X and

imigt OS2 > [ (i S s000)) doo)

Moreover, since from (1.14) we have |w.| ~ |@.|, we may replace @, with w. in the definition
of Q. and obtain the same limit. But, writing as above xuy, = x * 1luy, we have as above
from (6.44)
1
lim f(O\x)d\= lim —— x)dg(x),

Jim o= tim [, dte)
where x = (j,¢g). Now, if f(x) is finite and x is in the support of @, then there exists (see
Remark 1.6) a sequence {xz}. such that (j.(z-+"), gL(z-+-)) converges to x in X, with (6.14)
satisfied with Ug. It follows from Proposition 6.1 that j € A,,, and that (6.16) is satisfied,
thus

. 1 . .
RETOO@ / Xug(z)dg(w) = lm lim Tl / XU (z — ) dg.(z)
. W (4, xun) v . v
> lim sup ——2AYR/ - .
= limsup =7 Mg WU(J)+m>\27r

Letting P-(j) and P(j) denote the marginals of the measures (). and ) with respect to the
first variable, we immediately deduce that P. — P and that (6.45) is satisfied. Replacing
(6.45) in (5.30) we find (6.46), since |w.| = hey|we y| = 22N = QWN + o(N). O

Mme N

Remark 6.5. As in Remark 2.3 we can also obtain a result of equipartition of energy of F.
/
on w.

6.3 The case of larger applied field

We prove that the conclusions of Proposition 6.3 hold for larger fields as well, that is fields
which do not satisfy the assumptions of Proposition 6.1. The technical difficulty is that the
applied field is too large to have the energy upper bound that is needed to apply the result of
Theorem 6, so we use the strategy of [SS4] Chapter 8: average over smaller balls where most of
the time the local energy is small enough to apply Theorem 6 and the result for small applied
fields. Note that in this regime, by item 6 in Proposition 5.6 we have for N € {N,, NJ},
GY = G0 + 0(hex) = 5|0 hex| log €| + 0(hex).-

Proposition 6.6. Assume that

log e|* <« hex < 1/
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and that Ge(ue, A.) < 22(Q||loge’| + Chex. We also assume that |us| < 1 and that A. is a
critical point of G¢(ue,-). Then, using the same notation as in Propositions 6.1 and 6.3, we
have, for any U

1
(6.47) Ge(uz, As) 2 5 |Qhex log '] + [ e </ Wy (j) dP(j) + 21 + 0(1)) ,

T
and P-a.e. j € Aj.

Step 1: Blow-up. The proof follows the ideas in Chapter 8 of [SS4, SS5]. We recall the
rescaling formula from there. Define & = /0 and

- S -~ Qe -

Ue(T) = ue(z), A(ZT) =0A (), Q= — E= hex = 02 hex.
Then, denoting B = B(z,0), we have up to translation G¢(uc, Ac, BY) = ée(ﬂe,fla,B}:),
where G¢(ue, Az, BZ) denotes the Ginzburg-Landau energy restricted to B, and

PN
éAaaAﬁzi>=:§j;ngg%P%;;(mnqggﬁw)2+(1‘;§*ﬁ.
As in [SS4], Chap 8, if |log &|* < heyx < 1/€2 we may choose o < 1 such that
(6.43) hex = (log&)*  [logé| ~ |log€'|,
so that o2 log4 % = 2 hey. O

Step 2: Fubini. We give a formulation of the energy which follows from Fubini’s theorem:

e(ue, Ac, B NQ
(6.49) G.(ue, A, Q) = / Ge(u no)
r€R? ‘Bg|

Note that if we restrict the integration to the set €2, of those z’s such that B C €, then we
have an inequality.

For z € Q, we define P’ to be the push-forward of the normalized Lebesgue measure on
B7 by the map x — jL(F + ), where again j. = (iuz, Varug), and ug, AL are as in (6.10). It
is an element of P, the set of probability measures on X = LfOC(R2, R?). On P we define the
function

Ge(ue, Ae, BZ)  h

ex / .
Je e fe Pa) lloge’| if Iz € Q, s.t. P = P?
f.(P) = | BY| 2 :

+o00 otherwise.

We also define ). to be the push-forward under  — PZ of the normalized Lebesgue measure

on . It is a probability measure on P. Now (6.49) becomes, after subtracting h;" ||| log €',

hex
Gulies Aes) = X105 log'| = 9] [ £.(P)dQ(P).
P

Note that since |2\ Q,| = O(o), and since o|loge’| = o(1) — this easily follows from
(6.48) — we deduce from the above that

(6.50) Guluie: A2, 0) = (0 log| = o(ho) + 9] [ £.(P)dQu(P),
P
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Step 3: I'-convergence of hl f.. Assume that P. is a probability measure such that f.(P;) <
Chex and that P. € P converges to P. Then since f.(P:) < oo, there exists for each € some
re € €, such that P. = P* and

£

Ge(uaAsaBU ) hex

f.(P:) = |B7| = - 9 Hngf/’
1 és (e, Asa Bgl;g) 0% hex /
(6.51) =52 B 2 losel
1 és (ﬂea 1215, B%E) iLex /
== Bi] —7|logsl .

Since f-(P.) < Cheyx we get Gc(iic, A, BL) < C(hexo—Q + hexo?|loge’]) = Chex(1 + |loge’|)

and in view of (6. 48), note that &’ = ev/hex = €V hex, we may apply Proposition 6.3 with
replaced by €, hex by hex, ete. This way we find that, N being given by Proposition 6.3, P is
concentrated on A; and that

(6.52) és(ﬂE,AE,B%E) *HhéN ex”?{l(B}%) —|—7I‘N|]og5/|
o ([ W) aPG) + 5 +ol),)

where h; 5 is the solution of the obstacle problem (1.35), replacing 2 with B%,s, hex With fzex
and € with € ; and p. 5 = —Ah~ + h~ N> wz = Supp(p: ;). We can further check, since

hex = |log &%, that from (5.19), (5.26) in Proposition 5.6, we have, as € — 0,
- - 1- -
(6.53) |ws| = |B1| + o(1) ||h5,1\7 - hex||12g1 + mN| log5’| = 5heX]BlH 10g5’| + o(hex)-

In (6.52), P is such that P-a.e. J € A1, and is the limit of the probability measures
{P:}.. Using Remark 6.4, the measure P is the limit of the image of the normalized Lebesgue
measure on wz by ¢ : x +— j(u,, A;), where

Uw(y) = aa(x + eey) = Ua(ax + an)a A:v(y) = gsAa@? + Zsy) = Eaue(om + gsy)a

while P is the image of the normalized Lebesgue measure on Bf_ by the usual blow-up map
x — jl(z + ) which, changing the variable to Z, is equal to the image of the normalized
Lebesgue measure on Bl by ¢. From |wz| ~ |Bi| and ws C B} _, we then deduce that {P.}.

and {P:}. have the same limit, i.e. that P = P. Then (6.52), (6.53) yield

1 1 v
Ge(te, A, BY®) 2 hex|Bi1|log —i—heX]Bl </ Wy (5)dP(j) + ) +0(h x),
e\Ue, Ag, D 5\/h7

2T
ex

where P = lim, P is concentrated on A;. Then, from (6.51),

mint (P 2 [ Wo()dPG) + o

(6.54)
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Step 4: {Q:}< is tight. A consequence of (6.54) and Proposition 4.1 below is that the function
f. is bounded below independently of €, thus the results of Section 2 apply. The measures
Q. are regular from their definition hence given d > 0 there exists compact sets K. in P such
that Q(K:) > 1 — 4, and since hex ' [ £:(P)dQ-(P) < C from (6.50) and the energy upper
bound, we can also require that he, 'f. < 1/6 on K..

Now assume P. € K. for each ¢ > 0. Then f.(P.)/hex is bounded independently of &
and therefore from the previous step and after taking a subsequence, P. — P. This shows
that the hypotheses of Lemma 2.1 are satisfied and thus that any subsequence of {Q.} has a
convergent subsequence. In addition, we deduce that Q-almost every P satisfies that P-almost
every j € Aj. O

Step 5: Conclusion. Combining the convergence of {Q. }. and (6.54), we deduce with the help
of Lemma 2.2 that

059 it - [ear) = [ [warn) )+ -

£— ex ™

It remains to show that
(6.56) / ( / WU<j>dP<j>) iQ(P) = [ Wy()aPG),

where P = lim, P. and P. is the push-forward of the normalized uniform measure on wl by
the map x — j.(x + ) where j is the current defined from (6.10).
But, if ¢ is a continuous and bounded function on X, by definition of Q). we have

/dee=/</<PdP> 1Q-(P) + o(1),

since |w.| ~ Q,. Hence, passing to the limit, we find

/(de—/(/(de) dQ(P).

It is straightforward to check that this equality extends to positive measurable functions, and
in particular to W, which was proven to be measurable in Proposition 4.1. This proves (6.56).
In addition since @ almost every P satisfies j € A, and since P = [ P dQ(P), we also have
that P almost every j € A;. Renaming P by P, and since |[Q,| ~ |Q| as ¢ — 0, combining
(6.50), (6.55) and (6.56) proves (6.47). O

6.4 Proof of Theorem 5

We may now combine the results of Propositions 6.3, 6.6, Lemma 5.8 and the upper bound
of Theorem 7 below to prove Theorem 5.

Assertion 2 of the Theorem is part of Theorem 7 below.

For Assertion 1, in view of Remark 6.4, propositions 6.3 and 6.6 imply, for a suitable
choice of N € {N; ", Ni }, the convergence of P: to a translation invariant measure P on Li.
such that (1.49) holds.
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We next prove (1.50). We have seen in the subsections just above that the upper bound
condition implies F.(us, A1) < Chex|we n| or, blowing-up, F.'(u.,AL) < C|w.|. We may
write pu(ue, Ae) — pe,y = curlji - + o + 3, where

a=curl A1 —pen, = plus, Ac) —curl Ay o — curl jy .

From (6.12) we have [|a[|2, < C(F.'+|w|) < Chex|we,n|, hence ||ally -1, < CV/N. The same
bound holds for 8 from (5.33). Finally, from (6.12), we have [|j'|P < C(F.+ |w.|) < CN.
Rescaling this relation, we get

1

. i1 _1 1 1
13llze() < hex? 7|15 | r(r) < Chex? N7 < CN>2

where we have used the fact that N < he;‘f' < Chey. Therefore |[curl ji ¢|ly—1, < CVN,
which concludes the proof of (1.50).

It remains to prove the statement concerning minimizers {(us, Az)}e of G¢. In the case
of small applied fields hex < e=?, Corollary 7.1 gives Ge(ug, Ae) < minNe{N(;,NJ} Gév + CNy
hence Proposition 6.3 applies. Comparing the lower bound (6.46) to the upper bound (7.2)
in Theorem 7, we deduce that N minimizes the right-hand side and that

[wotiyarG) < min 1V

Since P is supported on A,,,, we obtain that P-a.e. j minimizes Wy over A,,,. Since
minimizers of Wy are independent of U, we have the result.
In the case of large applied fields [log e]* < E%, Corollary 7.2 yields

min G, <

hex .
(0| og | + [0 hes (%nw 5 +o<1>) ,

thus Proposition 6.6 applies and comparing the above to (6.47), we deduce that there is
equality and that

/ Wy (j)dP(j) < mm w.

We again deduce that P-almost every j minimizes W over 4;. From (5.26) in Proposition
5.6, we get that (1.49) holds.

Note that Theorem 5 implies Theorem 4 since, from (5.25) in Proposition 5.6, if hex =
Alog | with A > A then GY — GNo = O(1) as e — 0.

Remark 6.7. If we had chosen from the beginning N = N = 1 —v:(€L) as indicated in
footnote in the proof of Proposition 6.1, the we would obtain the lower bound (1.49) with that
N. Combining with the upper bound of Theorem 7 we may deduce that GN = minyen GY +

o(N) + o(Ng). A careful examination of the variation of GY with N, based on Lemma 5.4
should then allow to obtain that N = Ny or NO up to an error which is quantified by the
examination of the growth of GN = GNo (this is quite delicate, though). We expect this error
to be 0 for small enough applied fields, in particular for hex < He, + O(1/|log ).
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7 Upper bound

In this section, we use the notation of Section 5, in particular the definitions of A n,w: N ...
can be found there. We make here, and here only, the assumption that  is convex. This
guarantees the smoothness of the solutions to the obstacle problem (A.1), see below. We do
not believe this is a serious restriction, but the possible presence of cusps in the coincidence
set would certainly add technical difficulties to our construction.

We prove the upper bound matching the lower bound of Theorem 5 (recall the definition
of GY in (1.41)):

Theorem 7. Assume that Q2 is convex and that (1.48) holds. Then for any family of integers
{N?} depending on € and satisfying

Q) hex
(7.1) 1<<N§‘2|e7 ase—0
™

the following holds:

1. There exists (ue, Ac) such that, as € — 0,

2
(72) Gelues A < G 4 N (25 in W 44 +0(1)).

my Am,

where \ € [Aq,+00] is the limit of hex/|log €| as € — 0, where A, is as in Definition
1.1, and where €' = ev/hex.

2. Let 1 < p <2 be given. For any probability P on LfOC(RQ, R?) which is invariant under

the action of translations and concentrated on A, , there exists (ue, Ac) such that,
letting P be the push-forward of the normalized Lebesgue measure on w. n by the map

T — \/%j(us,As) (:E+ \/T§>’ we have as € — 0, P. — P weakly and

(73) Gelues 4 < GY 43 (22 [wics)apti) +9-+0t1)).

Corollary 7.1. Under the same assumptions, we have

minG, < min  GY + ONy < Chex|loge’|.
Ne{Ng N}

Proof. To obtain an upper bound, we apply the result above with N = Ny and N = Ngr
(recall that Ny is not necessarily an integer) and use (5.25) in Proposition 5.6. O

Corollary 7.2. Under the same assumptions, if |log 6\4 K hex K E%, we have

1
min Ge < = [Q|hex|loge’| + hex|| minW—i—l—i—o(l) .
2 Ax 27

Proof. This follows from (7.2) applied with N = N, (5.26) in Proposition 5.6, |we n| < |€2]
and A = +o0. O

We now prove Theorem 7.
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7.1 Properties of w.

The convexity of 2 guarantees that the coincidence sets {w,y, }, for the minimizers of (A.1) are
convex (Friedman-Phillips, [FP], see also [Ka], [DM]). Then the density criterion of Caffarelli
[Caf] and regularity improvement of Kinderlehrer-Nirenberg [KN] and Isakov [Is] imply that
it is in fact analytic for any m. We state a density estimate which is uniform with respect to
m € (hg, 1]. This is the only place where we use the assumption that 2 is convex.

Lemma 7.3. Assume §Q is convex (so that (1.31) is satisfied), and let Ly, be as in Proposi-
tion A.1. Then there exists a« > 0 and ro > 0 such that for any m € (hy,1], any r < rgy, and
any T € Wy,
|wm N B(x, L)
|B(@, L)

Q.

Proof. We call d(r) the density ratio above. Since wy, is convex, r — d(r) is decreasing.
But from Proposition A.1, the diameter of w,, is bounded by CL,, and |wy,| > cL?,, where

¢,C > 0 are independent of m € (hg,1]. Therefore d(C) > ¢/C?. Letting a = ¢/C? and
rog = C proves the lemma. O

Now assume the hypothesis of Theorem 7 are satisfied. Then Lemma 5.1 applies and
pe.N = —Ahe N +he N = me Nhex 1o, Where m. v satisfies (5.2) and me N hex|we n| = 27N

Let
1

(0= ———.
‘ \ Me,N Pex
We have (£.)72|w. n| € 27N.

Rescaling the previous lemma we find

Corollary 7.4. There exists o > 0 such that for any R > 0, any € small enough depending
on R, and x € w. n we have |we ny N B(z, RLL)| > a|B(x, REL)|.

Proof. From Proposition 5.6 we have . < L., where L. is the value of L,, corresponding
to m = mgn. Thus, if € is small enough, we have R¢. < roL., and the previous lemma
applies. ]

7.2 Definition of the test current

The construction follows similar lines as [SS4], Chapters 7 and 10, but the estimates must be
more precise as only an error of o(1) per vortex is allowed. From now on we assume (1.31),
(1.48) and (7.1). We write for simplicity w, instead of w, y and m,. instead of m. n.

Let R € 47N be given. We tile R? in the obvious way by a collection {K;}; of squares of
sidelength 2R¢.. We let

I = {Z,/CZ C we, dist (]Ci,awa) > ﬁf_:}, We = Uief K e = we \ We.

To prove the first item of the theorem, we apply Corollary 4.4 to a minimizer of W to find
jr in K such that jr - 7 on 0K where Kr = [~ R, R]?. To prove the second item, let P
concentrated on A,,, be given, and let us define P to be the push-forward of P under the

rescaling j — \/% 7 (VTT) . Then P is concentrated on A; and from (1.9), we have

(7.4 [ wiyapG) = o [ Wieq) apG) + logma,
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We then apply Corollary 4.5 to the probability P, it gives again a jg in K such that jp-7 = 0
on K. We continue the construction in the same way in either of these two cases.
We next extend jg by periodicity to R? and, denoting by cq the center of K;,, where ig € I

is arbitrary, we let
1. [z—c .-
— in @
Jelw) = £\ }

0 in R? \ @..

In particular, letting A= (co + lLAR) N &e, where Ap denotes the support of vg, and since
Je -7 =0 on d@., we have
curl j. = 271’2 0p — Mehexls,, in R2.
peX
We define a current j. as follows. First we note that since |K;|, |we| € ZWEQQN, we have
[BARS 27r€’EQN . Then, using Corollary 7.4 we may — we omit the cumbersome details — find

disjoint measurable sets Cy,...,C, and y; € C; such that, for some ¢, C' > 0 independent of
R? E?

(7.5) 1o, = Y ¢, |G| =2rl% By cll) € C; C By, CLL).

We let j; = —V1f;, where

(7.6) —Af; =2m6y, —mehexle, in B(y;, CLL)
’ O fi=0 on dB(y;, CLL),

and then, letting j; = 0 on R%\ B(y;, CL.), we let jo = >»  ji. We have, letting A=
{vi, -y}
curl j. =27 Z 0p — Mehexly, -
pEX

Finally we let jo = Jc + 7., A = AUA. We have

Proposition 7.5. The current j. satisfies

(17) { curl jo = 2737 p Op — hexmely, in R?

Je =0 on R2\ Q.

Moreover

(7.8) limsup ——— / l7c? + m#A logn | < —22R2 4o (1),
n—0 mehex‘wé" 2 Q\UpeaB(pnLL) : R? :

where lim._,g 0:(1) = 0.
Finally, there exists ng > 0 such that for any € small enough, any p € A and any q €
[1,4+00) we have

24

(7.9) e — V- log | =plll aBpmeey) < Calls
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Proof. The fact that curlj. = 27 Epe A Op — hexme is obvious, and j. = 0 on Q¢ follows
from the definition of j. and the fact that d(w., Q) > CL. if € is small enough. This is a
consequence of the fact that on w. we have he y = m¢ nvhex while on €2 we have h. y = hex.
The difference is

1 1
A = hex(moe —me Ny +1—moe) =con + 5\ loge'| ~ 5\ log €'l

using (5.12). It follows using (5.20) that d(w., Q) > /|loge’|/hex > L.

We estimate j.. From (7.6), fi(y) = —logly — vi| + ¢i((y — vi)/L.), where g; solves
Agi(z) = 1¢,(yi + Lx) in B(0,C) and 9,9; = 0 on dB(0,C). Since 1¢, € L™, elliptic
regularity implies that [|[Vg;||r« < C, for every ¢ € [1,4+00). We easily deduce that

. 2 1
(7.10) i — V- 1og | - —yilll La(s,ceny < Cqlla™ .

Since j; = 0 outside B(y;, Ct.) we deduce

2_ —
(7.11) ljill a2\ By ety < Callr ™ (14 ¢*77)

. 1
(7.12) 1ill 2 Byt < C (1 +log ) |

Then we compute estimates for j.. Since jg is defined independently of e, there exists 19 > 0
(depending on R) which bounds from below the distances between the points in Ar and
between Ag and K. Since div jr = 0 in K we have that [|jg—V*1og | =yl La(B(ym)) < Cq
for any y € Ar and moreover jr € CP°(Kg \ Agr). It follows that Vy € A and Vq € [1,4+00)
we have

2_
(7.13) 17: = V4 og | - —yll oyt < Colls

Moreover, since jp is uniformly locally bounded in LY, for every ¢’ € [1,2), we have for every
r € R? and every M > 0

- 2 021
(7.14) HJeHLq’(B(m,Mz/E)) < CyMa L.

We are ready to derive estimates for jo = j. + > .., ji- First we note that from (7.5)
we have that |y; — y;| and d(y;,@;) are bounded below by cf., if i # j, therefore since
Suppj; C B(y;, CtL) and Suppj. C @, the overlap number of the supports of j. and the j;’s
is bounded by a constant C' independent of R, e. Moreover @, is included in the complement
of U; B(y;, cll).

We have f]R2 Je Je =2 fR2 Ji - Je, but the number of ¢’s for which the integrals above are

|Suppje NSuppje |
YA 2

nonzero is bounded by C since Suppj: N Suppj. C {d(z,ws) < CL.} and using

Proposition 5.6, item 4. Applyiﬁg Holder’s inequality to each of these nonzero integrals, and
using (7.11), (7.14), we deduce

S 7.NS 7 2_ 2
(7.15) / eg<c! R WPl s i % Cptl# ™ < Cmehenor (1),
R 5
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Note that still from Proposition 5.6, item 4, |@.| = 0-(1)|we| and, since #A = ¢ 72(27) ||
and from (7.10) applied with ¢ = 2 and (7.12), we deduce

/ < C#N < Cmichex|@e| = 02(1) hex|wel-
2 RA\U, 3 B(p:nte)

(7.16) ]jg|2 +7r#1/ilog77

Also, since by definition

. . 1 .

W(jr,1ky) = lim 2/ jrl* + 7#(Ar N Kg)logn |
n—0 Kpr\Upenp B(p,m)

we have, multiplying by the number of squares in @., which is |&J5\€"€_2 JR? = hexme|Q:|/ R2,

that

: 1 1 - % W(jir, 1xy)
7.17 lim ———— / 24 r#Alogn | = — KR
(7.17) e (2 G Bt |Je B gn) o2

PEA
and the limit is uniform in e since, despite the notation, the left-hand side only depends on
R. From (7.15), (7.16) and (7.17) we deduce

. 1 1 , W (iR, 1k5) @]
limsup ——— / Jel? + m#Alogn | < <R +o0:(1) ),
e C A Rl T

and this holds uniformly in €. Since |@.| = 0.(1)|we|, which implies that |@:| = (1 —0-(1))|we|,
we obtain (7.8). Then (7.9) follows from (7.10), (7.13). O

7.3 Definition of the test-configuration

We next find A; . such that curl Ay . = m:hexle,. = fte N, and set
Ac= A1+ V¥hen.

To define u., we start by defining its phase . by requiring

(7.18) Ve = A1 + je.

Indeed, denoting by © the phase of [] 5 ﬁ, we have by (7.7)
curl (A1 + je = VO) = pieny + 21 Y 8y — Mehex L, — 27 Y _ 5, =0,
pEA pEA

therefore A, + j. — VO is the gradient of a function v, we may then let 9. = © + ¢, this
function is well-defined modulo 27 in Q\A and satisfies (7.18). Hence ¥ is well-defined in
O\A and Vo, = A1 + je.

Fixing M > 1, we then define

ue(z) = =) in Q\ Upen B(p, Me)
we(a) = i/ (#52) ) in B(p. Me),

where f is the modulus of the unique radial degree-one vortex ug(r,6) = f(r)e’ (see [BBH,
Mi, HH]). f is increasing from 0 to M, so that in particular we deduce |u.| < 1 everywhere.

This construction is possible since, for fixed R, the distances between the points in A
are bounded below by nof. (for some 7y possibly smaller than the one used before) and
0= L__ > ¢ since we assume heyx < 8% The test-configuration (u., A¢) is now defined

VMmehex
and there remains to evaluate its energy and show that it satisfies (7.2), respectively (7.3).
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7.4 Splitting of the energy of (u., A.)

According to Proposition 5.3, we have the relation
Ge(ue, Ae) = GY + F(ue, A1) — /(1 — |ue|)|Vhe N %,
Q

where

(1 — fuel?)?

1
Fz—:(usaAl,s) = 5 / |vAl,gu|2 + (Cuﬂ ALE - ME,N)Q + 2:2
Q

+ / (hs,N — hex — CE,N)H(UE’AI,E) + Ce,N / (M(Uaa Al,a) - NE,N)-
Q Q
First we observe that [,(1 — |uz|*)|Vhe n|* = 0 since Vhey = 0 in w. and |u]

outside UpepaB(p, Me), which is included in w. if € is small enough. Thus Ge(u, A.)
Gév + F:(ue, A1¢). There remains to evaluate F.(u., A1 ). By definition

1

p(ue, Are) = curl (jue, Va, cue) + curl Ay o = curl (Jue|*(Vpe — A1) + pen
= curl (‘“s‘QjE) + [e,N-

Since j. = 0 on ¢, we have fQ p(ue, A1) = fQ te N = 2w N. Moreover, a direct computation
shows that p(u, A) = 0 where |u| = 1so p(ue, A1) is supported in we, where he y—hex—Ce N =
—2|loge’| (see (5.3)), so we deduce

/Q(ha,N — hex — Ce N )p(ue, A1) + ce N /Q(u(ua, Are) — pen) = —mN|log€'|.

On the other hand, by choice of ¢,

/ Vo uef? = / Ve 2 + / e 2IVie — Aref? = / Ve + / e 215 2.
Q Q Q Q Q

Recalling that curl A; . — pe v = 0, we are thus led to

N o 1 2012 o (1 —ucl?)?
(7.19) Ge(ue, A:) = G- —7I'N|10g5|—|—§ e || ge]* + [V ]uel| +T-
Q
It remains to estimate the terms on the right-hand side.
Lemma 7.6 (Energy in B(p, Me)). For every p € A, we have

1 ) 1 — |ugl?)?
(7.20) / |u€|2\j€|2 + |V\u5\|2 + w
B(p

= mlog M 1 1
5 e 522 mlog M + v+ opr(1) + 0:(1)

where opr(1) — 0 as M — oo and o.(1) — 0 as € — 0, and y is the constant of (1.52).

Proof. From (1.52), and since ug(r,0) = f(r)e?, we have
1My, 2 (1 )2
= i = e+ "2 —mlogM |.
K Migl&-oo<2/0 <f +7~2+ 2 ) mr dr = log )

97



On the other hand, from (7.9) in Proposition 7.5 and since |u.| < 1, we have for any p € A,
by Hoélder’s inequality

/ e[
B(p7M6)

2
je — Vilog| - —p|| <

Me 27%
= o0:(1),

_2 .
]B(p, ME)P qHJ& - VJ_ log‘ ) _p|H%CI(B(p,M€)) < ( W

£

choosing ¢ > 2 and since ¢, > e. Moreover, choosing ¢ > 2 and %—i—% = 1, we have by Holder
again

<

/‘ e 2V log | - —p] - (e — V" log| - —p])
B(p,Me)

. 1 29 2
lje — V> log| - _p|||Lq(B(p,Ma))HmHLq/(B(oﬁ)) < C(L)e ted

where we used (7.9) and the fact that ¢, > e by (1.48). Finally, since

2 2
J N e R e e~ s
B(p, M) Bp.Me) |7

we deduce that for each p € A,

/ Jue]*[je | _/ I{z1/e) + 0(1)
el |Jel” = =(1).
B(p, M) Bo,me)  |T]?

Following [SS4] p. 210, we deduce that (7.20) holds. O

Next, we consider the energy in the annuli B(p, ¢Ln) \ B(p, Me), which are disjoint when
n < 1o-

Lemma 7.7 (Energy in the annuli). For every p € A, we have

(1 — Jucl?) nt

1 < 7l
0
2¢2 =7 gME

(7.21) -

5 | e Pljel? 1V el ? +
B(p,ten)\B(p,Me)

+Cn.

Proof. Since |uz| = 1 on the annulus A = B(p, £.n) \ B(p, Me) only the first term in (7.21)
needs to be bounded. Using (7.9) in Proposition 7.5 we have for ¢ > 2

4

. -2, . 2—
/A\Js — Vtlog |- —pl* < |A]""4|ljc = V' log| - —plllFaga) < Con™ 1.

A similar argument yields, for any ¢’ € [1,2),

. 2 4
/A(‘]E — V¥log |- —p|) -V log |- —pl|| < Cyn .

We deduce, choosing for instance ¢ = 4, ¢ = 1 above,

1 .12 1 1 2 776'
- < Z V5ilog| - — +Cn=mnl £+ C
2/A|Ja| > 2/A‘ Og| pH n=m OgM& m,

proving (7.21). O
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From (7.19), (7.8), (7.20), (7.21), and letting M — +o0, n — 0, we deduce, since m. — my

as € — 0 and since 2N = mhex|we| and % = 771:,55' that for any R >0
W(jr, 1xy)
22 A)<GYN + N (1l 2N R N).
(7 ) Gs(usa 5) _G6 + <7T og T —|—fy> + 27 |KR| 4 s( )

We recall our choice of jr. To prove item 1 of the theorem jr was the result of applying
Corollary 4.4 to a minimizer of W, hence from (4.6) was such that

W(jgr, 1
lim sup M < min W,
R—o0 ‘KR’ Az

so that letting R — oo in (7.22) we find
1
Go(ue, A) < GN 4+ N (27r(rr}‘inW 1 logmy) + v + 0(1)) .
1

In view of (1.12), this proves (7.2). B
To prove item 2 of the theorem, we chose jr given by Corollary 4.5 applied to P, so that,
using (7.4),

. W(jr,1 N A 1 . . 1
imsup ) < [ wie()ap() = - [ Wieli) PG+ tog

By letting R — oo in (7.22), the result (7.3) follows.
To conclude the proof of the theorem, it remains to show that P. — P, where P. is the

push-forward of the normalized Lebesgue measure on w. y by x — \/%; Jlue, Ag) (:13 + \/TZ)

Equivalently it suffices to show that P. — P where P. is the push-forward of the normalized
Lebesgue measure on w, y by z — \/ﬁj(ua,AE)(az + \/ﬁ) Let ® be a continuous

function on LP (R? R?). By definition

loc

) da.
VmAhex] VmAhex)> v

N 1B (s 1 .
[ewaro-f o (e Ao +
We, N
For any n > 0, we also have
_ 1 :
(I)dej:][ <I><ju,A :c+>dat+01
/ ( ) E( ) {dist (z,00:>n)} Vmphex ( : E)( Vm)\hex) 77( )

where 0,(1) — 0 as 7 — 0. On the other hand by definition of (u., Ac), j(ue, Ac) = jo +
(Jue|? — 1)jc — |u€|2VLha7N. But h. n is constant in we y, and (|uz|* — 1)j. — 0 in LP so we

deduce that in {dist (z, 0w.) > n} we have ﬁj(us, AE)(z+m) — jrin LI (R? R?),
as € — 0. It follows that

/ B(j) dP.(j) = ]{( D(jn(z) dz + 0:(1) + 0y(1) = / (j) dPr(j) + 0-(1) + oy(L),

where we have used the periodicity of jr, and where Py is as in Corollary 4.5. But Pgp — P
as R — oo so letting € — 0, n — 0, and R — 400, we obtain the desired result.
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A Additional results on the obstacle problem

Here we gather a few results on the obstacle problem that we need at various places in the
paper. Although these results may be known to experts, we have not been able to find
them in the literature, so they may be of independent interest. We focus on the particular
type of obstacle problem we are concerned with, which is an obstacle problem with constant
obstacle. More precisely, letting Q be any smooth bounded domain in R?, for any m € (—oo, 1]
we denote by H,, the minimizer of

1
(A.1) min (1—m)/|—AH+H—|—/|VH|2+|H—1|2.
H—1€H}(Q) Q 2 Jo

By convex duality and the maximum principle (cf. [Br, BS]) it is equivalent to the obstacle
problem

1
(A.2) min / \VH|* + H>.
H-1eH(Q) 2 Jo
H>m

We also define the coincidence set
wm = {z € QH,u(x) = m}.

For general references on obstacle problems we refer for example to [KS]. (A.2) is a standard
obstacle problem where the obstacle is constant and equal to m, and we are interested in the
properties of the coincidence set w,, as m varies. It is known that

—-AH,, + H,, =ml,,,.

Note that the regularity of w, for fixed m is well-known (see [Caf, BK] or the survey [Mo]),
however this is not sufficient for our purposes, since we need estimates which are uniform in
m. More precisely let us define hy to be the minimizer of the unconstrained problem, i.e. the

solution of
—Ahg+hog=0 in Q
ho =1 on 89,

and set

Then the situation is as follows:

1. If m < hy then wy, = @ and H,, = hg. Thus

1
(A.3) hg=1- 3

where \q is as in Section 1.6.

2. If hg < m <1 then w,, # &. Moreover, as m /' 1, wy, — €, and as m \, hy, wn
reduces to the set of points where hg achieves its minimum hj. If we assume in addition
that hg is achieved at a unique point z¢ then as m \ hq, wy, is expected to shrink down
to xg in an ellipse shape.
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Our task here is to establish more precisely this behaviour, in particular obtain some uniform
estimates of convergence of wy, (after blow-up at a suitable scale) to an ellipse. We recall
that we make the assumption (1.31). It is standard (see [ST]) that there exists an ellipse Eg
of measure 1 and a nonnegative function Ug defined in R? such that

AQ

One may check that this Ug is unique and that

Q _AQ
Ug=Cst+ = — —logxlg,.
@ + 2 47 &% kg
This ellipse will be shown to be the limit of the coincidence sets w,, as m \ hy, rescaled at a
scale L,, which is not completely obvious to guess since it contains a logarithmic factor, more

precisely

m(m — hy)
(A.5) Ly, ~ \/h0| log(m — hy)| as m "\, hg.

Our main result is the following.
Proposition A.1. Let Hy, be as above the minimizer of (A.2). The following holds.

1. The coincidence set wy, is empty if m < hy and has positive measure if m > hy. Hp,
is increasing with m, the coincidence set wy, as well, and m +— m|wy,| is a continuous,
strictly increasing bijection from [hg, 1] to [0,]92]].

2. If K is any compact subset of (hg, 1) then, uniformly with respect to m € K,
- {m < Hp, < m + 60} _

o M Ll 00) <Y

0—0 |Wm| 6—0 ’wm|

0.

8. For any § > 0, if 1 —m is small enough then x € Q\ wy, implies that d(x,00)% <
(1 —=m)(2+9). In particular there ezists a constant C depending only on @ such that

(A.6) |Nwn| <CV1—m IV Hm | oo () < CV1—m.

4. Assuming (1.31), there is a length L,, such that
(A.7) L?|1og Ly| ~ 2m(m — hy) /by as m — hy
and such that for any M,6 > 0, if m is sufficiently close to hy then
{d(z,wqQ) > 0Ly} C wp C {d(z,wq) < 6Lm},

H, —m

m

(A.8)

H, —m

m

where wg = xo + LinEqg. In particular |wy,| ~ L% as m — hg.
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The main technique is the construction of barriers:
Lemma A.2. Let H,, be as above. Let h be a continuous function.

Interior barrier. If h > H,, on 09, if h > m in Q and if —Ah+ h >0 in €, then

h > Hy, in Q, in particular {h = m} C wp,.

Exterior barrier. If h < Hp, on 08, if h > m in Q and if —Ah +h < mlg_,,y in Q, then

h < Hy, in Q, in particular w,, C {h =m}.

Both assertions are easy and standard applications of the maximum principle.
We now turn to the proof of the proposition. First recall that from a well known result
of J. Frehse ([Ft]), H,, is C%! and, as a consequence, —AH,, + H,,, = m1,,,.

Proof of 1). If m < (3, then Hy,+(—m) is an interior barrier for hg, thus wy,, C ws (hence wy,
is increasing in m). If m < hg then hg is an exterior barrier for H,, hence wy,, = @. If m > hy
and wy, is negligible, then —AH,, +H,,, = m1,,,, = 0in Q and H,, = 1 on 02 hence H,, = ho,
which is impossible. By Lemma A.2 too, for m < m' we have H,,, < H,,y < H,,,+(m'—m), so
H,, is increasing in m, and also H,,,» — H,, uniformly in Q as m’ tends to m from above, and
then in the distributions sense too. Hence, using —A(Hpy — Hy,) + (Hiy — Hin) > mly, o,
we find that |wy, \ wm| tends to zero as m’ — m. It follows that m — m|wy,| is a continuous
strictly increasing function of m. For m = hy it is equal to 0, while for m = 1, it is immediate
that Hy, = 1 and w,, = Q, so m — m|wy,| maps [hy, 1] to [0, |Q|] bijectively. O

Proof of 2). Let wp, s = {z | d(z,0wy,) < 6}. Then it is true that lims_.g |wy, 5| = 0, indeed
N>0Wm,s = Owp, and |Owy,| = 0, see [BK]. From the previous step lims_.g |wpm4s \ wm—s| = 0.
Thus for any € > 0 and any m € K there exists § > m such that |wg \ wy,| < € and then
there exists ¢ > 0 such that |wgs| < € and |wy, 5| < e. Then for any m’ € [m, §], it holds that

Wit 5 C Wins U (wg \ wm) Uwgs

hence |wy, 5| < 3e. Then by the compactness of K, lims_.g |wy, 5| = 0 uniformly in m € K,
which is what we want since from 1) we have that inf,,cx |wm| > 0.

Similarly, we have Ng~o{m < H,, < m+ 4§} = & and, since m’ > m implies H,, < H,y <
H,, + (m' —m), we have

{m' < Hpy <m'+ 46} C {m < H,, <m' + §}.

Thus for any m € K and ¢ > 0, taking ¢ such that [{m < H,, < m + 2§}| < ¢ we find
{m' < Hpy <m/+ 6} < e for any m’ € [m, m+ 6] and it follows as above that lims_ [{m <
H,, <m+ 6} =0 uniformly in m € K. O

Proof of 3). We let d(x) = d(z,0) and

h(z) = (1—m)(d;7;7)2—|—m if d(z) <n
m if d(z) > n.
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We claim that if 5 is well-chosen and 1 — m is small enough, the function h is an interior
barrier for H,,. Indeed h(z) = f o d hence Ah = f"(d)|Vd|? + f'(d)Ad with

@ =22 sy, 1) =25 e,

In addition we have |Vd| = 1 and |Ad| < kq, where kg is the maximum of the curvature on
0. Thus —Ah + h is trivially positive on {d > n} while on the set {d < n} we have
1-m 1-m

—Ah+h> -2 5— — 2 KQ + m.
n n

Letting n? = (2+6)(1—m), the right-hand side is positive for m close enough to 1 (depending
on §). Then h is an interior barrier for H,, and we deduce that {d? > (2+ §)(1 —m)} C wp,.
The first result in (A.6), i.e. |Q\wpn| < CV/1—m, follows immediately, for some appropriate
C depending on 2. The second assertion is a consequence of the first one, together with the
estimate

[ Hmllori) < C,

with C independent of m (see [BK]). Indeed, either z € w,, and then VH,,(x) =0, or = ¢ wy,
and since there exists y € wy, such that |z — y| < Cv/1 —m, the CY! estimate implies that

\VH,,(z)| < |VHp(y)|+ CV1—m = CvV1—m.
O

Proof of 4). Let wg = xo + Ly EQ, for some Ly, to be specified below, and define h to be the
solution of —Ah +h =ml,, in @ and h =1 on Q). Then we may express h as

h(z) = m / G, y) L (4) dy + o),

where Gq(-,y) is the solution of —AGq + Gq = J, in @ and G = 0 on 9. We further split
Gq as

1
Ga(z,y) = —5-1og |z —y| + Sa(z,y),

where Sq(-,y) solves —ASq + Sq = (2m)"Llog| - —y| in €, thus is C! locally in Q.
Replacing accordingly in the expression of h and writing = x¢ + L;,,2’, we obtain (using
the fact that the volume of Eg is 1)

m

27

1
h(z) = hy — %LmQ log Ly, + LQOSQ(,IO, xo) + L2 <2Q(x’)

log *1p, (a:')) + R(z),
where

Rle) = (ho(o) = by = 5L,°Q") )+ m [ (Sotas) = Salan.20) Lug (4)
The first term in R(x) is the remainder of the Taylor expansion of order 2 of hg at xo. It is
therefore O(|z—z¢|?) and its derivatives are O(|z—w|?) since hy is analytic. Since [wg| = Ly,>

and since y € wg == |y — z9| < CLy,, the second term in R(x) is clearly O(L,,*|z — xo|)
and, since Sq is C'!, differentiating under the integral sign shows its derivatives are O(L,,?).
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Differentiating twice allows to bound its second derivatives by | D?Sq||za[| 1w, and using
the equation satisfied by Sq we have that || D?Sgl|Lqe for every ¢ < 400, while ||1,,|,+ =

Lm%. Thus the second derivatives of the second term are bounded by C,L,,,”, for every p < 2.
To sum up, for any p < 2 we have
(A.9)

R(z)=0 (Li’n + |z — 950]3) , VR(z) =0 (L?n + |z — xo\Q) , V2R(J:) =0 (L + |z — x0]) .

Then we note that %Q — %’; log *1p,, is equal to Ug + Cq,q where Cq q is a constant. Indeed,
note that since Q = D?hg(z¢) and —Ahg + ho = 0 we have %AQ = Aho(xo) = ho(xo) = hyg,
and the claim follows from (A.4). Thus, if we choose for L,, a solution of the following
equation

(A.10) m —hy = —%LmQ 10g Ly, + Lin? (hoSa(zo,0) + Ca0)
we have

(A.11) h(z) = m + Ly,*Ug(2)) + R (x),

where

1 1
R'(z) = R(z) + L2 (hg —m) (27r log ¥1 g, (z') + o log Ly, — SQ(ZIJ(),ZL'o)) .

Since |hg — m| < CLy,%log Ly,, we easily deduce that R’ satisfies the same properties as
R, ie. (A.9). Returning to (A.10), since the term L,,?log L,, dominates, we deduce that
Ly?10g Lyy| ~ 27(m — hy)/hy as m — hy and that (A.7) and (A.5) holds. From (A.11) and
(A.9) for R', we deduce that for any M,d > 0 and if m — hy, is small enough, then

h Ly,a') —
(A.12) {UQ<M—5}C{x’| (xO+L 2:6) m<M}C{UQ<M+5}.
Indeed (A.9), (A.11) imply local uniform convergence of Wﬂ to Ug as m — hy

decreases to 0, which implies that L,, decreases to 0 by (A.5). Thus it suffices to check that
h(zo + Lma') < m + ML,,? implies a uniform bound for 2/. This is the case because the
equation satisfied by h implies that ||h — hollcc — 0 as m \, hg. Thus h(z) < m + ML,,?
implies that x — z¢ is small as m \, hy. Then, |z —z¢|> = o(|z — z0|?) = o(Lm? + L *Ug(a"))
since Ug(z') ~ 2Q(2') as |2'| — +oo. Therefore R'(z) = o(Lp? + Ly,*Ug(a’)) and we
deduce from (A.11) a bound for Ug(z’), hence for ’. Note in particular that the minimum
of h(zg + Ly,2') is achieved in a fixed compact set of R, and then (A.9), (A.11) yield

(A.13) h:= innh = O(Lpy> +m).

Next, we use h to construct an exterior and an interior barrier for H,,. The exterior barrier
is defined by hoyt = max(h—éLmz, m). Where hoyy = m it is obvious that —Ahgyt +hous = m.
Then by definition hou(2) # m implies that h(x) — §L,;,? > m and then from (A.11)-(A.9) if
m — hg is small enough, we must have z ¢ wg (recall that Ug = 0 in Eg). Therefore where
hout > m we have

—Ahout + hout = —Ah + h — 5Lm2 = —5Lm2.
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Therefore —Ahout + hout < ml{hout:m}. The other properties of exterior barriers are trivially
verified by hoyt thus hoyt < H,, and then, using (A.12),

(A.14) Wi C {hows =m} = {h <m+6Ly2Y C {wo+ Ly | Ug(y) < 26}
{Hp, <m+ MLp% C {hous <m+ MLy € {h <m+ (M + 6) L%}
C{zo+ Ly | Ug(y) < M + 26},

For the interior barrier, let x : Ry — Ry be smooth and such that x = 1 in a neighborhood
of 0 and X|[1 4o0) = 0. Then let A = min(m, ming h) and

(o) =+ (0) = Dple),pta) =x (52,

We have —Ahin; + hiny = —Ah+m+h—h=m—h>0onwg®and hiyy =1+ (m—h) > 1
on 0. Moreover, hiny > m. It remains to check that —Ahin + hint > 0 in wg.
Since Ug = 0 on Eg and using (A.11),(A.9), we have on wg

L,? L}
Ahint :goAh—FQng'Vh—l-(h—ﬁ)AgD:O (Lm+(5+(52> .
Indeed, since Ug = 0 on wg, we have h — h = O(L,,?) and V(h — h) = O(Lp,?), A(h — h) =
O(Ly,) in wg. It follows that if m — hy is small enough depending on §, then —Ahing + hing >
m/2 in wq, finishing the proof that hiy is an interior barrier for H,,. Then hin > Hp, in
and it follows easily using (A.12) that

(A.15) {d(z,wq) > 0L} C {hint = m} C wy,
{Hpm > m+ MLy2} C {hing > m+ MLy*} = {h >m+ ML,*}
C{xo+ Ly | Ug(y) > M —6}.
The relation {hy > m + ML,%} = {h > m 4+ ML,,?} follows from the fact that hi,; = h
outside wg and that if m — hq is small, then both sets are disjoint from wq: Indeed if z € wg
then from (A.9), (A.11) we have h(z) —m = O(L,,*) and hini(x) —m = O(L,,3) from (A.13).
Then, (A.8) follows from (A.14), (A.15). The fact that |wp,| ~ L% as m — hg is an easy

consequence.

O
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