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ABSTRACT
Distributing long-tail content is an inherently difficult task
due to the low amortization of bandwidth transfer costs as
such content has limited number of views. Two recent trends
are making this problem harder. First, the increasing pop-
ularity of user-generated content (UGC) and online social
networks (OSNs) create and reinforce such popularity dis-
tributions. Second, the recent trend of geo-replicating con-
tent across multiple PoPs spread around the world, done for
improving quality of experience (QoE) for users and for re-
dundancy reasons, can lead to unnecessary bandwidth costs.

We build TailGate, a system that exploits social relation-
ships, regularities in read access patterns, and time-zone dif-
ferences to efficiently and selectively distribute long-tail con-
tent across PoPs. We evaluate TailGate using large traces
from an OSN and show that it can decrease WAN bandwidth
costs by as much as 80% as well as reduce latency, improv-
ing QoE. We deploy TailGate on PlanetLab and show that
even in the case when imprecise social information is avail-
able, TailGate can still decrease the latency for accessing
long-tail YouTube videos by a factor of 2.

Categories and Subject Descriptors
H.3.4 [Information Systems]: Systems and SoftwarePer-
formance evaluation (efficiency and effectiveness)

Keywords
Social networks, Content Distribution, Long-Tail, Geo-
Replication

1. INTRODUCTION
Online content distribution technologies have witnessed

many advancements over the last decade, from large CDNs
to P2P technologies, but most of these technologies are in-
adequate while handling unpopular or long-tailed content.
By long-tailed we refer to the popularity of the content, in
terms of accesses. CDNs find it economically infeasible to
deal with such content – the distribution costs for content
that will be consumed by very few people globally is higher
than the utility derived from delivering such content [2]. Un-
managed P2P systems suffer from peer/seeder shortage and
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meeting bandwidth and/or QoE constraints for such con-
tent.

The problem of delivering such content is further exac-
erbated by two recent trends: the increasing popularity of
user-generated content (UGC), and the rise of online so-
cial networks (OSNs) as a distribution mechanism that has
helped reinforce the long-tailed nature of content. For in-
stance, Facebook hosts more images than all other popular
photo hosting websites such as Flickr [35], and they now
host and serve a large proportion of videos as well [9]. Con-
tent created and shared on social networks is predominantly
long-tailed with a limited interest group, specially if one
considers notions like Dunbar’s number [7]. The increasing
adoption of smartphones, with advanced capabilities, will
further drive this trend.

In order to deliver content and handle a diverse user-
base [16, 23], most large distributed systems are relying on
geo-diversification, with storage in the network [32, 10, 33].
One can push or prestage content to geo-diversified PoPs
closest to the user, hence limiting the parts of the network
affected by a request and improving QoE for the user in
terms of reduced latency. However, it has been shown that
transferring content between such PoPs can be expensive
due to WAN bandwidth costs [21, 11]. For long-tailed con-
tent, the problem is more acute – one can push content to
PoPs, only to have it not consumed, wasting bandwidth.
Inversely one can resort to pull, and transfer content only
upon request, but leading to increased latencies and poten-
tially contributing to the peak load. Given the factors above,
along with the inability of current technologies to distribute
long-tail content [2, 18] while keeping bandwidth costs low,
it would appear that the problem of distributing long-tailed
content is and will be a difficult endeavor.

Our Contribution: In this paper, we present a system
called TailGate that can distribute long-tailed content while
lowering bandwidth costs and improving QoE. The key to
distribution is to know (i) where the content will likely be
consumed, and (ii) when. If we know the answers, we can
push content where-ever it is needed, at a time before it
is needed, and such that bandwidth costs are minimized
under peak based pricing schemes like 95th percentile pric-
ing [4]. Although in this paper we will focus on this pricing
scheme, it needs to be stressed that lowering the peak is ben-
eficial also under flat rate schemes or even with owned links
since network dimensioning in both cases depends on the
peak bandwidth consumption. Recent proposals like Net-
Sticher [21] have proposed systems to distribute content be-



tween geo-diversified centers, while minimizing bandwidth
costs. TailGate augments such solutions by relying on a
hitherto untapped resource – information readily available
from OSNs.

More specifically, TailGate relies on the rich and ubiq-
uitous information – friendship links, regularity of activity
and information dissemination via the social network. Tail-
Gate is built around the following notions that dictate con-
sumption patterns of users. First, users follow strong di-
urnal trends while accessing data [30]. Second, in a geo-
diverse system, there exist time-zone differences between
sites. Third, the social graph provides information on who
will likely consume the content. At the center of TailGate
is a scheduling mechanism that uses these notions. Tail-
Gate schedules content by exploiting time-zone differences
that exist, and trying to spread and flatten out the traffic
caused by moving content. The scheduling scheme enforces
an informed push scheme (described in Sec 3), reduces peaks
and hence the costs. In addition, the content is pushed to
the relevant sites before it is likely accessed – reducing the
latency for the end-users. We designed TailGate to be be
simple and adaptable to different deployment scenarios.

Results at a glance In order to first understand char-
acteristics of users that can be used by Tailgate and if these
characteristics are useful, we turn to a large dataset col-
lected from an OSN (Twitter), consisting of over 8M users
and over 100M content links shared. This data helps us un-
derstand where requests can come from as well as give us an
idea of when. Tailgate takes advantage of this information
and we compare Tailgate’s performance in terms of reduc-
tion in bandwidth costs (as given by a reduction in the 95th
percentile) and improving QoE for the user under different
scenarios and using real data. When compared against a
naive push, we see a reduction of 80% in some scenarios
and a reduction of ∼ 30% over a pull based solution that
is employed by most CDNs. For only long-tailed content,
the improvement is even more. We vary the quality of in-
formation available to Tailgate and find even when TailGate
has less precise information, TailGate still performs better
than push and is similar to pull in terms of bandwidth costs,
while lowering latency (improving QoE) for upto 10 times
of the requests over pull. We show that even in an extreme
setting where TailGate has lower access to information in a
live setting, TailGate can reduce latency for the end-user to
access long-tailed content by a factor of 2.

2. PRELIMINARIES
For the sake of exposition, we describe a generic dis-

tributed architecture that will provide the template for the
design and analysis of TailGate. In Sec. 6, we show how
this architecture can be used for different scenarios – OSN
providers and CDNs. After describing the architecture, we
provide a simple motivating example. At the end of the
section we list the requirements that a system like TailGate
needs to fulfill.

2.1 Architecture
We consider an online service having users distributed

across the world. In order to cater to these users, the ser-
vice is operated on a geo-diverse system comprising multiple
points-of-presence (PoPs) distributed globally. These PoPs
are connected to each other by links. These links can be
owned by the entity owning the PoPs (for instance, online

Figure 1: Generic distributed architecture: Servers or PoPs
geo-distributed, handling content for geographically close
users. Content created is first uploaded to geographically
closest PoP, then this content is distributed to other PoPs

service providers like Google, Facebook or a Telco-operated
CDN) or the bandwidth on these links can be leased from
network providers.

Users are assigned and served out of their nearest (geo-
graphically) PoP, for all their requests. Placing data close
to the users is a maxim followed by most CDNs, replicated
services, as well as research proposals like Volley [1]. There-
fore all content uploaded by users is first uploaded to the
nearest respective PoP. When content is requested by users,
the nearest PoP is contacted and if the content is available
there, the request is served. The content can be present
at the same PoP if content was first uploaded there or was
brought there by some other request. If the content is not
available, then a pull request is made and the content is
brought to the PoP and served. This is the defacto mecha-
nism (also known as a cold-miss) used by most CDNs [37].
We use this ‘serve-if-available’ else ‘pull-when-not available’
mechanism for this paper as the baseline and we shall show
that this scheme can lead to high bandwidth costs. An ex-
ample of this architecture is shown in Fig. 1 where there are
multiple interconnected PoPs around the world each serving
a local user group.

2.2 Why is TailGate necessary: Toy Example
Consider user Bob living in Boston and assigned to the

Boston PoP in Fig. 1. Bob likes to generate and share con-
tent (videos, photos) with his friends and family. Most of
Bob’s social contacts are geographically close to him, but he
has a few friends on the West Coast US, Europe and Asia.
These geographically distributed set of friends are assigned
to the nearest PoP respectively. Bob logs in to the appli-
cation at 6PM local time (peak time) and uploads a family
video shot in HD that he wants to share. Like Bob, many
users perform similar operations. A naive way to ensure this
content to be as close as possible to all users before any ac-
cesses happen would be to push the updates/content to other
PoPs immediately, at 6PM. Aggregated over all users, this
process of pushing immediately can lead to a traffic spike
in the upload link. Worse still, this content may not be
consumed at all thus having contributed to the spike unnec-
essarily. Alternatively, instead of pushing data immediately,
we can wait till the first friend of Bob in each PoP accesses
the content. For instance Alice, a friend of Bob’s in London
logs in at 12PM local time and requests the content, and the
system triggers a pull request, pulling it from Boston. How-



ever, user activity follow strong diurnal trends with peaks
(12PM London local), hence multiple requests by different
users will lead to multiple pulls, leading to yet another traffic
spike. The ineffectiveness of caching long-tailed content is
well documented [2], and this problem is further exacerbated
when Alice is the only friend of Bob’s in London interested
in that content and there are many such Alices. Hence all
these “Alices” will experience a low QoE (as they have to
wait for the content to be downloaded) and the provider
experiences higher bandwidth costs – a loss for all.

TailGate’s Approach: Instead of pushing content as
soon as Bob uploads, wait till 2AM Boston local time, which
is off-peak for the uplink, to push the content to London
where it will be 7AM local time, again off-peak for downlink
in London, and 7AM is still earlier that 12PM when Alice
is likely to log in. Therefore Alice can access Bob’s content
quickly, hence experience relatively high QoE. The provider
has transferred the content during off-peak hours, decreasing
costs – a win-win scenario for all. TailGate is built upon this
intuition where such time differences between content being
uploaded and content being accessed is exploited. In a geo-
diverse system, such time differences exist anyway. In order
to exploit these time differences, TailGate needs information
about the social graph (Alice is a friend of Bob), where these
contacts reside (Alice lives in London) and the likely access
patterns of Alice (she will likely access it at 12PM).

2.3 System Requirements
TailGate needs to address and balance the following re-

quirements:
Reduce bandwidth costs: Despite the dropping price

of leased WAN bandwidth and networking equipment, the
growth rate of UGC combined with the incorporation of me-
dia rich long tail content (e.g. images and HD videos) makes
WAN traffic costs a big concern [14, 11]. For instance, the
traffic volume produced by photos on Facebook can be in
thousands of GB from just one region, e.g. NYC [36].

Decrease latency: The latency in the architecture de-
scribed is due to two factors: one is the latency component
in the access link between the user to the nearest PoP. The
other component lies in getting that content from the source
PoP, if the content is not available in the nearest PoP. Since
the former is beyond our reach we focus on getting the con-
tent to the closest PoPs.

Online and reactive: The scale of UGC systems [15]
can lead to thousands of transactions per second as well as
a large volume of content being uploaded per second. In
order to handle such volume any solution has to be online,
simple and react quickly.

2.4 What TailGate does not do
TailGate optimizes for bandwidth costs and does not con-

sider storage constraints. It would be interesting to consider
storage as well but we believe the relatively lower costs of
storage puts the emphasis on reducing bandwidth costs [37].
TailGate does not deal with dynamic content like profile in-
formation etc. in OSNs as other systems do [27]. TailGate
deals with large static UGC that is long-tailed and hence
not amenable to existing distribution solutions.

3. TAILGATE
In this section, we first formulate the central problem that

TailGate deals with – scheduling content updates to differ-

ent PoPs in order to minimize bandwidth costs and latency,
which we capture by way of a metric called “penalty”. We
then describe the algorithm TailGate uses that satisfies the
requirements mentioned in Sec 2.3, along with existing so-
lutions.

3.1 Formulation
Let {u1, . . . , uN} be the set of users and {S1, . . . , SK} the

set of PoP sites, distributed at different locations around the
world. As already discussed in Sec. 2.1, we assume each user
is assigned to a site and the user’s content is uploaded to this
site. The friends of this user can be assigned to this site or
to the other sites, depending on their location. The social
network is captured by the set F (un), consisting of social
contacts of user un. We denote by S(un) the master(closest)
site of user un, un → Sk the fact that the user un needs to
send data to site Sk.
We model the evolution of the system at discrete time

bins t ∈ [0, T ] and we assume that bins are short enough
– typically less than a minute – so that a user performs at
most one read and at most one update during a time bin.
Updates and reads performed by user un during time bin t

are denoted respectively by w
[t]
n and r

[t]
n (binary matrices).

We denote by w
[t]
n the actual size of the updates sent by

user un during time bin t. We assume that upon a read
operation a user can access the content posted by the user’s
friends. Table 1 summarizes the terminology used in our
formulation.

The decision variable of the optimization problem latency
vs. bandwidth costs is the update schedule between sites,

denoted by t
[t]
n,k; the number of updates of user un sent to

site Sk during time bin t. We denote by t
[t]
n,k the size of

the updates of user un sent to site Sk during time bin t.
Transmission of updates of a given user to a given Sk follows
a FIFO policy to ensure temporal consistency. Hence the
missing updates are always the most recent ones.

Optimization metric: Bandwidth costs The incom-
ing and outgoing traffic volumes of each site Sk depends on
the upload strategy and updates:

v
↓[t]
k =

∑
k′ �=k

⎛
⎝ ∑

un→Sk′

t
[t]
n,k

⎞
⎠ (1)

v
↑[t]
k =

∑
k′ �=k

⎛
⎝ ∑

un→Sk

t
[t]

n,k′

⎞
⎠ (2)

In general, a peak-based pricing scheme is used as a cost
function (pk(·)). The most common is the 95th percentile
(q(·)) of the traffic volume (typically a stepwise concave func-
tion). Therefore the bandwidth costs incurred at site Sk is

ck = pk(max (q(v↓k), q(v
↑
k))) and the total bandwidth cost is

the sum of all the ck.
Constraint: Latency via Penalty metric In order to

capture the notion of latency, which is closely related to a
“cold-miss” at a site (as discussed in Sec. 2.1), for a user un

at site Sk is captured by the number d
[t]

n,k′ ; updates of un

that are missing at site Sk:

d
[t]
n,k =

{∑t′=t
t′=0 w

[t]
n − t

[t]
n,k if S(un) �= Sk

0 otherwise
(3)



which is representative of the number of times the con-
tent has to be fetched from the server where it is originally
hosted, increasing latency. To evaluate the perceived la-
tency, we define a penalty system: every time a user requests
one of her friends’ updates and it is not available, the to-
tal penalty is incremented by the number above. The total
penalty P is:

P (T ) =
∑

un∈U

⎛
⎝ ∑

um∈F (un)

d
[t]

n,S(um) · r[t]m

⎞
⎠ (4)

Handling real-world constraints: In the online case,
reads are not known in advance and the algorithm must

therefore be oblivious of the input read matrix r
[t]
n . More-

over, an OSN might be hesitant to release individual read
patterns and the social graph to the entity (CDN) oper-
ating TailGate. For these reasons, we replace the reads
in the above problem with estimated reads – a generic
diurnal pattern. Assuming that each user of the social
network has a regular read activity, captured by a prob-

ability ρ
[t]
n of user un performing a read operation dur-

ing time bin t, then the probability of an update posted
at time t by user un to be read at time t′ on server Sk:

ρ
[t]
n,k = 1 −∏

um→Fn∩Sk
(1− ρ

[t]
m) . We can therefore derive

an expression of the expected read, which is the deadline

δ
[t]
n,k (i.e., first read) on server Sk of an update posted by un

at time t and this replaces r
[t]
n :

δ
[t]
n,k =

+∞∑
t′=t

⎛
⎝t′ · ρ[t′]n,k ·

t′−1∏
t′′=t

(1− ρ
[t′]
n,k)

⎞
⎠ . (5)

T Number of time intervals in a charging period, t ∈ T .
F (un) Set of nodes in social network of user un .

w
[t]
n Update pattern of user un during interval t (binary).

w
[t]
n the update traffic volume.

r
[t]
n Read pattern of user un during interval t (binary).

t
[t]
n,k Schedule of un’s updates to site Sk during interval t.

t
[t]
n,k the update traffic volume.

v
↓[t]
k Incoming traffic volume at site Sk

v
↑[t]
k Outgoing traffic volume at site Sk

pk Pricing function at site Sk

Table 1: Notation for our formulation

Assuming, for the sake of simplicity, a pricing scheme
based on the maximum utilization of the link (instead of the
95th percentile), it can be shown that the decision versions
of optimization problem is NP-Complete. We can do a sim-
ple reduction from the partition problem to show this [12].

3.2 Heuristic
To keep TailGate simple, we resort to a greedy heuristic

to schedule content. At a high level, we consider load on
different links to be divided into discrete time bins (for in-
stance, 1 min bins). Then, the heuristic is simple – given an
upload (triggered by a write) at a given time at a given site
that needs to be distributed to different sites, find or esti-
mate the bin in the future in which this content will likely
be read, and then schedule this content in the least loaded

bin amongst the set of bins: (current bin, bin in which read
occurs). If more than one candidate bin is found, pick a bin
at random to schedule. Simultaneous uploads are handled
randomly; no special preference is given to one upload over
another.

We highlight the salient points of this approach: (i) This
is an online scheme in the sense that content is scheduled as
it is uploaded. (ii) This scheme optimizes for upload band-
width only; we tried a greedy variant where we optimized
for upload and download bandwidth, but did not see much
improvement (results omitted for space reasons), so we set-
tled for a simpler scheme. (iii) If we have perfect reads,
TailGate produces no penalties by design. However, this
won’t be case and we quantify the tradeoff in the next sec-
tion. (iv) In the presence of background traffic, one can use
available bandwidth estimation tools to measure and fore-
cast. (v) As the scheme relies on time difference between
the current bin and the bin in which the content is likely
to be read, the large the difference, the better the results.
(vi) Flash crowds are, by their very nature, unpredictable.
TailGate performs as as well as other schemes when there
is a flash-crowd. However, as TailGate predominantly deals
with UGC (being long-tailed content), flash crowds will be
rare, and in addition, UGC have very distinct (and slow)
request characteristics [5].

3.3 Existing solutions
We describe two solutions – push/FIFO and a pull based

approach that mimic various cache-based solutions (includ-
ing CDNs) that can be used to distribute long-tailed content.

For all the schemes we consider, we assume storage is
cheap and once content (for instance a video) is delivered to
a site, all future requests for that content originating from
users of that site will be served locally. In other words,
content is moved between sites only once. Flash-crowd ef-
fects etc. are therefore handled by the nearest PoP. The
key difference between the schemes we consider, is when the
content is delivered.

Immediate Push/FIFO: The content is distributed to
different PoPs as soon as it is uploaded. Assuming there are
no losses in the network, FIFO decreases latency for accesses
as content will always be served from the nearest PoP.

Pull: The content is distributed only when the first read
request is made for that content. This scheme therefore
depends on read patterns and we use the synthetic reads to
figure out the first read for each upload. Note that in this
scenario, the user who issues the first read will experience
higher latency.

4. DATA DETAILS
As TailGate uses social information, the obvious questions

to ask are (i) what type of information is useful and avail-
able, (ii) how can such information be used? For answering
these questions, we rely on data from Twitter.

We rely on a large dataset of 41.7M users with 1.47B edges
obtained through a massive crawl of Twitter between June
- Sept. 2009 [20]. For these users, we then collected loca-
tion information by conducting our own crawl, processed the
data for junk, ambiguous information and translated every-
thing to latitude/longitude using Google Maps API. In the
end, we extracted location for 8,092,624 users from about
11M users that have actually entered location information.
We use this social graph, nodes and edges only between these



nodes for our analysis in this paper. With regards to the lo-
cation of the users in the dataset, we find that US has the
maximum number of users (55.7%), followed by UK (7.02%)
and Canada (3.9%). In terms of cities, New York has the
highest number of users (2.9%), followed by London (1.7%)
and LA (1.47%).

4.1 Upload Activity
For the users who have locations, we collected their tweets.

Twitter allows collection of the last 3200 tweets per user, but
in our dataset we found that the mean number of tweets was
42 per user. Not all users had tweet activity; the number
of active users (who tweeted at least once) was 6.3M users.
For these 6.3M users, we ended up collecting approximately
499M tweets, till Nov. 2010.

This dataset is valuable in characterizing activity pat-
terns of users. From these tweets, we extracted those tweets
that contain hyperlinks pertaining to pictures (plixi, Twit-
pic etc.) and videos (Youtube, Dailymotion, etc.) which
we consider as UGC, that resulted in 101,079,568 links. We
focus our analysis on two time periods extracted from this
long trace. The first one we call day is the set of activities
on 20th May, 2010 the day we noted the maximum number
of tweets in our dataset and the second one we call week
consists of a week of activity extracted from 15th Mar, 2010
to 21st March, 2010 that is a generic week.

We recorded the size of each piece of content that is
shared, resolving URL shorteners as the case may be. The
largest file happened to be of a cricket match on Youtube,
with a size 1.3G on 480p (medium quality). We collected
the number of views for each link, wherever available and
the closest (Kullback-Leibler(KL) distance) fit was the log-
normal distribution (parameters: (10.29,3.50)) and we found
around 30% of the content to be viewed less than 500 times.
The most popular was a music video by Lady Gaga on
Youtube, viewed more than 300M times.

4.2 Geo-distributed PoPs
To study the effects of geo-diversity on bandwidth costs,

we use location data and assign users to PoPs distributed
around the world. We assume the distributed architecture
described in Sec. 2.1 and assume there exist datacenters in
these four locations: Boston, London, LA and Tokyo1. We
choose these locations to cover the globe. We assign users
to locations using a simple method: compute the distance
of a user to a location, and assign the user to the nearest
location. For computing the distances we use the Haversine
distance [31]. For the four locations, we get the following dis-
tribution of users: (Boston: 3,476,676, London: 1,684,101,
LA: 2,045,274, Tokyo: 886,573). The east-coast of US dom-
inates in our datasets. The relatively low number of users
in Asia is because most users in Asia prefer a local ver-
sion of an OSN. However, we choose Tokyo precisely for this
point – users in Asia comprise social contacts of users from
around the world, sharing and requesting content, adding to
bandwidth costs. We find that on average, a user has 19.72
followers in her own cluster and 8.91 followers in each of the
other clusters. It is well known that contacts or “friends”
in social networks are located close together with respect to
geographical distance [26, 22].

1Note that datacenter operators such as Equinix [34] already
have data centers in several of these locations

4.3 Read Activity
TailGate relies on information about accesses; reads. The

ideal information will be who requests the content, and
when. We could not obtain direct read patterns from Twit-
ter/FB as they are not available. So we proceed as follows.

To get an idea on who requests, we collected packet traces
via TCPDump from an outgoing link connecting a university
in northern Italy (9th Mar, 2011) to the rest of the Inter-
net. The collection was carried out for two distinct periods:
from 11H to 16H, the second from 10H to 18H. We extracted
HTTP-POST, HTTP-GET requests corresponding to the Face-
book domain. We further collected all links corresponding
to pictures and videos that show up on users’ wall feed. The
clicks on these icons lead to new HTTP-GET requests, which
are counted as requests for the content. We found that on
average 9.8% of the posted links were clicked on. It was hard
for us to obtain a per-user metric as the users were behind a
NAT device. We looked at smaller set of 200 users that were
not behind a NAT device, and observed a similar 10% click
rate. We use this as the probability of a friend requesting
content (p) for our evaluation, when needed.
Note that future reads are impossible to know, but due to

strong regularity in user behavior [13], an OSN like Facebook
or Twitter can predict future accesses with high accuracy.
For the purposes of this work – we make the assumption that
read patterns follow a diurnal trend similar to write/upload
patterns, as observed by others [3, 30]. In order to gen-
erate read patterns at a fine time scale (seconds), we use
SONG [8], which we also describe in the Appendix.

We are interested in evaluating different scenarios that
Tailgate can be effective under, as well as study the affect of
quality of information on performance gains from Tailgate.
In order to do this, we generate two different types of read
patterns – the first type is when social information is avail-
able at a fine scale, for instance when Facebook is operating
Tailgate and the second when little or no social information
is available, for instance when a CDN is operating Tailgate.

Reads with fine grained information: Each user is
assigned reads. For this, we make the assumption that dis-
tribution of the number of reads per user follows the same
distribution as the number of uploads per user; a log-normal
distribution.

Reads with no social information: We assume we
do not have enough information to predict reads accurately,
but rather general trends like diurnal trends are known. For
this, once we generate reads over time bins, we normalize all
bins with the total number of reads found across all bins. In
other words, we create a diurnal trend for reads. In Fig. 2,
we plot the update patterns given by the data and synthetic
reads generated by us for the day dataset for all the four
centers we consider. Note that the updates follow a diurnal
trend and the synthetic reads follow a similar pattern.

Limitations and Assumptions: We note here that
Twitter now has around 2̃00M users2 and our dataset is
a relatively small sample. Hence all numbers presented in
this paper should be interpreted in that context. An ideal
dataset for evaluation would be the UGC that is uploaded
and shared on an OSN like FB, but such data is not available
to us. Instead, we use the links collected above as proxy for
the media that can be shared over social networks, while rec-
ognizing that activity patterns with regards to posting and

2http://en.wikipedia.org/wiki/Twitter
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Figure 2: Writes along with synthetic reads (a) London (b) Tokyo (c) LA (d) Boston

sharing media (and large) content should follow similar diur-
nal patterns [30]. We assume read patterns follow a diurnal
trend similar to write patterns [3, 30]. Note that we are
more interested in time-of-day effects; more sophisticated
read patterns where we assume content interest, quality of
content etc. can be used but as we do not have sufficient in-
formation to calibrate these effects, we leave that for future
work.

5. EVALUATION
In this section, we evaluate TailGate using the datasets of

day and week described in Sec. 4.1 and the setup described
in Sec. 4.2. We evaluate against existing schemes, namely
Push and Pull (Sec. 3.3) under different models and compare
bandwidth costs and the penalty metric.

5.1 Data driven evaluation

5.1.1 Metrics
The main metric we use for comparison is the 95th per-

centile of traffic time series for the given period under study.
For the day and the week dataset, we calculate the 95th per-
centile over 5 min bins. Reducing the 95th percentile reduces
bandwidth costs. We also look at penalties(P from Sec. 3),
which is the number of requests pulled from the source, and
indicates higher latencies for users.

5.1.2 Scenarios Examined
We describe the scenarios we study that are designed to

explore the impact of different types of information on per-
formance metrics, and to study where the benefits, if any,
come from. The key inputs are the knowledge of reads and
where do these reads come from. Based on these two inputs,
we have the following scenarios:

Full Information, Perfect reads (FI, PR): In this
model, we assume TailGate has access to the social graph.
This helps in deciding where to distribute content to – only
those PoPs that host friends of a user. In addition, we as-
sume that TailGate also has access to read patterns of users
at a fine scale. Pull gets perfect reads as the transfer hap-
pens when a read request is made. In order to simulate the
notion of perfect reads, we use reads that have been assigned
to individual users as described in Sec. 4.3. If we assume the
probability of a friend of a user requesting the content is p,
then at a site the probability of requesting the content as
a function of friends is 1 − (1 − p)F (u,k) where F (u, k) is
the number of friends of user u at site k. We use p = 0.1
from Sec. 4.3. In order to calculate penalties, we first note

that for FIFO and TailGate there are no penalties, while for
PULL, penalties is simply the number of uploads that get
transmitted to different PoPs, as all of these uploads will
face higher latency.

Full Information, Imperfect reads (FI, IR): In this
model, we assume TailGate has access to the social graph,
but has imperfect knowledge of read patterns; TailGate has
access to generic read trends; diurnal patterns. In order to
simulate the notion of imperfect reads, we use generic reads
described in Sec. 4.3. As generic reads are based on a prob-
ability distribution which in turn is based on the time of the
day, we carry out simulations by assigning a success prob-
ability for writes drawn from this distribution using inverse
sampling [6]. We note here that this is conservative and
stacking the odds against TailGate – we transfer more data
close to the peak time, and as the read probability is higher
towards the peak, the set of bins that TailGate works with is
lower. As there is inaccuracy in read information, TailGate
can schedule data after the actual read request happens –
in effect leading to a Pull request to get data to serve that
read request (Sec. 2.1). In other words, TailGate suffers from
penalties. In order to quantify this, we first extract the time
when an upload is scheduled by TailGate under inaccurate
information. Then we compare this against the schedule
under accurate information (as given above). For all trans-
missions scheduled after the actual read request, there is a
penalty, and we log the penalty.

No Information, Imperfect reads (NI, IR): In this
model, we assume TailGate has no access to the social graph
and has imperfect knowledge of read patterns. In this case,
content will be distributed to all PoPs; bandwidth costs will
consequently increase, since we pay the price of using limited
and inaccurate read information.

No Information, Perfect reads (NI, PR): Clearly,
this case cannot happen.

5.1.3 Results
We assume the links are empty before we start the sim-

ulations. The results of our trace driven simulations are
presented in Table 2. We report the 95th percentile of
the uplink bandwidth. We present results from our week

dataset for space considerations, and all the results pre-
sented here assumes each PoP has one uplink and one down-
link. We also studied the case where each PoP has seper-
ate uplinks/downlinks to other PoPs (for instance servcie
providers like Google, Facebook, Yahoo etc. and their geo-
diverse datacenter system). The results for this and our day
dataset are qualitatively similar. The results are presented



Week, All (FI, PR)

POPs PUSH PULL TailGate
Boston 803.83 228.6(4.38) 164.26(4.41)
LA 562.87 187.32(1.2) 142.50(5.0)
Lon 637.85 176.78(5,66) 134(2.28)
Tokyo 273.41 95.8(3.04) 72.94(0.38)
(FI, IR)
Boston 803.83 257.22(6.8)
LA 562.87 181.18(1.8)
Lon 637.85 210(12.9)
Tokyo 273.41 94.3(2.64)
(NI, IR)
Boston 985.47 372.65(18.33)
LA 655.7 249.72(0.65)
Lon 850.98 354.08(0.7)
Tokyo 337.90 133.33(6.6)

Week, LT (FI, PR)

POPs PUSH PULL TailGate
Boston 419.62 70.63(2.11) 49.46(1.07)
LA 282.04 65.95(1.3) 50.83(0.46)
Lon 361.64 51.53(1.53) 39.54(0.22)
Tokyo 114.8 36.36(1.05) 32.07(0.93)
(FI, IR)
Boston 419.62 78.17(1.39)
LA 282.04 60.29(2.4)
Lon 361.64 55.02(0.75)
Tokyo 114.8 37.8(1.45)
(NI, IR)
Boston 498.7 119.55(4.05)
LA 324.5 97.17(2.3)
Lon 476.7 77.40(0.5)
Tokyo 141.07 38.31(1.96)

Table 2: 95th Percentiles (in MB) for all PoPs, first for all,
then only long-tailed (LT). Values in brackets correspond to
standard deviations

first, for all content and then only for long-tailed content
(defined as objects with views < 1100). As PULL and Tail-
Gate rely on synthetic reads, we simulate multiple instances
and report means, along with the standard deviations. We
make the following observations:

Performance of TailGate Tailgate always outperforms
PUSH in terms of decrease in the 95th percentile across all
PoPs in all scenarios. When we consider the case of full
information and perfect reads; TailGate reduces the 95th
percentile of PUSH upto 75% and upto 28% of PULL. For
specifically long-tailed (LT) content, this number goes up –
upto 88% decrease over PUSH and 30% decrease over PULL.

Effect of information quality There are two types of
inaccuracies – one in read patterns when we go from per
user reads to generic reads. The other is when we do not
know the fraction of friends who will request content (the
parameter p in Sec. 4.3). When we look at the former, we
note that while TailGate still performs better than PUSH
(when we consider (FI,IR)), by upto 40%, however TailGate
has similar bandwidth costs as PULL (that has accurate in-
formation, hence is reported once). We then looked into
the penalties. For PULL, the aggregated penalty is 126846,
while for TailGate under (FI,IR), it is 12044. In other words,
while the effect of inaccurate reads is comparable bandwidth
costs, the penalties is still 10 times lower than PULL. Simi-
lar results for LT datasets (PULL: 95087 vs TailGate: 9162).
Taken together with the conservative nature of the evalua-
tion (Sec.5.1.2), we believe TailGate is highly competitive to
PULL, in terms of bandwidth costs and increased QoE.

When we consider the inaccuracy in parameter p, we see

that we have to get to p = 0.4 to surpass PULL in terms of
bandwidth costs. In other words, TailGate seems to handle
the inaccuracy in the click-rates much better than inaccu-
racy in read patterns.

Where do improvements come from? Under the
scenario we have (4 PoPs around the world), we find that
knowledge of the social graph provides modest improvement
– when we consider (FI,IR) and (NI,IR), the only extra in-
formation used is the social network and we find a modest
increase in the bandwidth costs as data is being uploaded to
all PoPs as opposed to only PoPs that have friends. How-
ever, this will change if we consider more PoPs. If we con-
sider the accuracy of reads, they seem to play a stronger role
in reducing costs.

5.2 Case Study: Long-tailed videos on
Youtube

In this section, we study the case where TailGate has lit-
tle access to social information (NIIR), but can help with
QoE in the case of long-tailed Youtube videos [15, 32, 37].
The entity controlling TailGate (eg. CDN) can rely on pub-
licly available information (; Tweets) as we do here and use
TailGate to request or“pull” content to intelligently prefetch
content before the real requests for the content – thereby de-
creasing latency for their customers. Towards this end, we
develop a simple prototype of Tailgate based on the design
deploy it on four PlanetLab nodes at the same four locations
– Boston, London, LA and Tokyo.

We proceed as follows: we rely on the dataset we describe
in Sec. 4.2 where we assign the four sets of users to differ-
ent “PoPs” as given by Planetlab nodes. We extract the set
of links that correspond to Youtube videos from the dataset
described in Sec. 4.1, along with the times they were posted.
Note that this information is public – anyone can collect this
information. We then provide this set of writes as input to
TailGate, assuming no social information (; graph structure
not used) and assuming the expected reads in various loca-
tions follow a diurnal pattern. We get a schedule as output
of TailGate, that effectively schedules transfers between the
four locations. We take this schedule and instead directly re-
quest the Youtube videos from various sites, at a time given
by Tailgate, in effect “emulating” transfers.

After that we request the videos at the time of the “read”,
that is, we “emulate” users from each location issuing read
requests for each video by sampling from the diurnal trend.
Therefore each video gets requested twice – first time for em-
ulating the transfer using a schedule given by TailGate, and
the second time, emulating a legitimate request by a user to
quantify the benefit. Note that the first request would also
be emulating a PULL, as we emulate a cold-miss. Hence
any improvements we notice would be an improvement over
PULL. We use wget with the -no-cache option for all our
operations, to avoid caching effects as much as possible.

We focus on the Quality of experience (QoE) for the end-
user. In order to measure that, we first look at the propor-
tion of a file that is downloaded during the initial buffer-
ing stage, after which the playout of the video is smooth.
We say the playout is smooth if the download rate for a file
drops by 70% of what was the original rate. We tested other
values and had similar results. We found that on average,
the playback is smooth after 15% of a file is downloaded.
Therefore we noted the delay in terms of time it takes for
the first 15% of a file to be downloaded. As we download
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Figure 3: Performance figures for Youtube videos, improvements for download times for buffering stage

each video twice, once at a time given by TailGate and the
second as representing the actual read request, we measure
both and plot the cdfs of ratios (dload time1/dload time2)
in Fig. 3. We plot for three different cases: “all” is the entire
dataset, “pop” stands for only those videos that are popular
(≥ 500K views) and“LT”which stands for long-tailed videos
(≤ 1100 views). First, we note that there is an improvement
of a factor of 2 and higher for at least 30% of the videos for
all locations. Second, this improvement is even more pro-
nounced for “LT” videos – highlighting that TailGate aids
long-tailed content. For some videos, we see a decrease in
performance (dload time1/dload time2 < 1). This could be
due to load-balancing. In fact for Tokyo, we found that
the closest PoP for Youtube seems to be relatively far away
(Korea) in the first place.

If we consider the results in this section taken together
with reduction in bandwidth costs as reported in Sec. 5.1.3,
we can conclude that a lightweight solution like TailGate can
deliver long-tailed content more efficiently, while increasing
performance for the end-user.

6. DEPLOYMENT SCENARIOS
OSN running TailGate: An OSN provider like Face-

book can run TailGate. In this case, all the necessary in-
formation can be provided and as shown, TailGate provides
the maximum benefit. The distributed architecture we have
considered throughout is different from that employed cur-
rently by Facebook that operates three datacenters, two on
the west coast (CA) and one on the eastern side (VA) and
leases space at other centers [19]. The VA datacenter op-
erates as a slave to the CA datacenters and handles traffic
from east coast US as well as Europe. All writes are handled
by a datacenter in CA. However, we believe that large OSNs
will eventually gravitate to the distributed architecture we
described in Sec. 2.1, for the reasons of performance and
reliability mentioned in Sec. 1 as well as recent work that
has shown that handling reads/writes out of one geographi-
cal site can be detrimental to performance for an OSN [36],
pointing to an architecture that relies on distributed state. If
the OSN provider leases bandwidth from external providers,
Tailgate decreases costs. If the provider owns the links, then
Tailgate makes optimal use of the link capacity – delaying
equipment upgrades as networks are normally provisioned
for the peak.

CDNs with social information: Systems like CDNs
are in general highly distributed (for instance Akamai), but
the architecture we used in this paper captures fundamen-
tal characteristics like users being served out of the nearest
PoP [16]. Existing CDN providers may not get access to so-
cial information, yet may be used by existing OSN providers

to handle content (this is changing [18]). We have shown
that even with limited access, the CDN provider can still op-
timize for bandwidth costs after making assumptions about
the access patterns.

CDNs without social information: Even without ac-
cess to OSN information, a CDN can access publicly avail-
able information (like Tweets) and use that to improve per-
formance for its own customers.

7. RELATED WORK
Distribution of long-tailed content has been addressed by

several works, but most of the work has been confined to
distribution of such content on P2P networks [25, 24]. How-
ever, such swarm systems need extra resources (by way of
replicates), and as such do not address transit bandwidth
costs or latency constraints explicitly – requirements that
Tailgate addresses.

The popularity of OSNs has led to work that exploits so-
cial networking information to better inform system design.
TailGate is, in part, motivated by findings presented by Wit-
tie et al [36] where the authors analyze the current Facebook
architecture and uncover network performance problems the
architecture introduces, including high bandwidth utiliza-
tion and large delays. The notion of distributing state to
improve performance (latency) based on geography or via
clustering users on a social graph has been explored by oth-
ers as well [26, 17]. Tailgate can be seen complimentary to
these solutions as the underlying goals – reduce bandwidth
costs, and reduce end-user latency are similar.

A related work is Buzztraq that proposes to use ‘social-
cascades’ to trigger content distribution [28]. TailGate is
similar to Buzztraq, in that it relies on social informa-
tion, however, TailGate does not need ‘cascades’ to occur
to inform content distribution. In that sense TailGate is
much simpler and yet effective. There has been recent work
that combines information from OSNs to improve CDN
service [29], and hence is similar in motivation with Tail-
Gate. The authors propose a similar mechanism to Buzztraq
wherein social cascades can be used to place content close
to users. TailGate also aims to place content close to users,
however our focus is when to distribute such content to min-
imize bandwidth costs. TailGate can be used along with the
approach proposed in [29] that answers where. Work by
Laoutaris et al [21] describes a system called NetStitcher
that aims to do bulk transfers between datacenters, by ex-
ploiting off-peak hours and storage in the network to send
bulk data. NetSticher operates at the network layer, and
TailGate relies on information about diurnal access patterns
at the application layer. Hence TailGate and NetSticher are
complimentary.



8. CONCLUSIONS
Handling delivery of long-tail content is a difficult task

made harder – with the wide-scale proliferation of OSNs
and geo-diversification of the underlying architecture.

In this paper, we propose a lightweight solution called
TailGate that exploits information available from social net-
works like the social graph, and regularity of activity pat-
terns to distribute long-tailed content while decreasing band-
width costs. Using large traces gleaned from an OSN, we
show that TailGate can reduce costs by as much as 80% over
a naive FIFO based mechanism and as much as 30% over a
pull based approach that is employed by CDNs. Even in lim-
ited information scenarios, TailGate performs as well as Pull
but reduces latency by 10X over Pull. In addition, we de-
velop and deploy a simple prototype of TailGate on Planet-
lab and show that Tailgate can help reduce end-user latency
for long-tailed content. Taken together with bandwidth cost
savings, and the fact that TailGate is a very lightweight and
simple system, we envision TailGate as complementary to
existing CDN technologies.
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APPENDIX
We briefly review the model we use for generating synthetic
reads. Let Xi(t) denote the number of reads produced by
user i, 1 ≤ i ≤ N with N the total number of users at a
time instant t, where X(t) =

∑
∀i Xi(t). The time can vary

from seconds to weeks. The description X(t), ∀t gives the
time series aggregated over all users. We need to account for
two different time-scales - the first time scale spans multiple
hours or days and we note the presence of diurnal trends.
The second time scale spans seconds to a couple of hours
where the mean and the variance are fairly stable. For the
first time scale, we can have a model for the mean mt of the
time series that varies with time in a predictable way. For
the second time scale, we can have a stochastic component.
The model then is

X(t) = mt +
√
amtWt (6)

wheremt is function of time andWt is a stochastic compo-
nent which can be a zero-mean, finite variance process and
a is a parameter called ‘peakedness’ (with the units:reads-
secs) that accounts for magnitude of fluctuations.

The main method for generating synthetic reads is as fol-
lows: first generatemt using Fourier series by first extracting
the largest Fourier coefficients of the write time-series, then
add appropriately scaled noise, by estimating a, to the di-
urnal trend at each time bin (in our case, seconds). For our
day and week datasets, we used the top 5 Fourier coeffi-
cients to generate the diurnal pattern and used WGN with
an appropriate scale parameter to generate reads. The gen-
erated time series contains the number of reads in a given
time bin.


