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Abstract— Rollover is the principal cause of serious accidents
for All-Terrain Vehicles (ATV), especially for light vehicles (e.g.
quad bikes). In order to reduce this risk, the development
of active devices, contributes a promising solution. With this
aim, this paper proposes an algorithm allowing to predict the
rollover risk, by means of an on-line estimation of a stability
criterion. Among several rollover indicators, the Lateral Load
Transfer (LLT) has been chosen because its estimation needs
only low cost sensing equipment compared to the price of a
light ATV. An adapted backstepping observer associated to a
bicycle model is first developed, allowing the estimation of the
grip conditions. In addition, the lateral slope is estimated thanks
to a classical Kalman filter relying on measured acceleration
and roll rate. Then, an expression of the LLT is derived
from a roll model taking into account the grip conditions
and the slope. Finally, the LLT value is anticipated by means
of a prediction algorithm. The capabilities of this system are
investigated thanks to full scale experiments with a quad bike.

I. INTRODUCTION

Quad bikes are more and more popular, for both leisure
activities and work. For example in the agricultural context,
quad bikes are frequently used because of their conception
and the consequential off-road capabilities. Nevertheless
their geometric characteristics increase the risk of unsafe
or unstable situations. In addition, most ATV users do not
have necessarily the required qualification to drive their
vehicle under off-road conditions. Consequently, the number
of accidents is rising. Among serious accidents, the rollover
situation is preponderant as it has been confirmed in many
studies (almost 50% of ATV crashes as mentioned in [1]
and [2]). Therefore the design of security systems to ensure
the stability of ATV is a relevant topic.

Such devices have already been developed for on-road
vehicles, such as the Electronic Stability Program (ESP) [3]
or steering and braking control [4] which improve the control
of the trajectory. In the same way, in order to improve
the vehicle stability, algorithms which estimate the sliding
parameters (slip angle, tire cornering stiffnesses) and roll
angle (preponderant variables for the risk of rollover) have
been designed ([5], [6] and [7]). These algorithms use
linear tire-ground models, which are well adapted since grip
conditions do not exhibit large variations. Nevertheless those
devices are not transposable to rough terrain applications due
to the highly variable environment conditions.

For the off-road context, some stability systems have been
designed, mainly dedicated to mobile robots. The principal
aim is to ensure their integrity. A first case is to consider only
geometric stability conditions ([8] and [9]). This is suitable
in a low speed context, as dynamic effects are neglected.
At high speed, other revelant researches have been achieved
like [10] and [11]. The main limitation to transpose above
systems to an ATV in order to prevent the risk of rollover,
is the expensive necessary sensing equipment, compared to
the vehicle price. Therefore, highly accurate INS, RTK GPS
etc, employed by most of the previously cited systems, are
not adapted in this application. Moreover, the accessibility
of GPS data can not be ensured when the ATV moves in
natural environment (trees, mountains, building etc).

In previous work [12], a rollover risk prevention system
dedicated to high speed ATVs has been proposed, based
on a low cost sensing equipment. It estimates on-line the
tire-ground friction and is thus adaptive to changing grip
conditions. Among several rollover indicators [13], the Lat-
eral Load Transfer (LLT) has been chosen as a revelant
stability criterion. It will be used in this paper as well.
Although the algorithm efficiency has already been proved,
two main limitations have been left. First, the grip conditions
can not be updated in straight line due to a singularity in
the algorithm. Secondly, a flat ground has been assumed,
which constitutes an important limitation with respect to
off-road applications. Consequently, in order to improve
the reliability of this approach, we propose an extension
in modeling and in grip condition estimation. Using a 3-
axes accelerometer/gyrometer, a Doppler radar and a steering
angle sensor, the LLT can be predicted whatever the grip
conditions and the slope are. More precisely, a bicycle model
is associated to an adapted backstepping observer, allowing
to access the sliding parameters, while the slope is estimated
using a classical Kalman filter relying on the lateral-vertical
accelerations and the roll rate. These estimations are then
fed into a prediction algorithm using a roll model, allowing
the LLT anticipation. The efficiency of this system has been
tested through full scale experiments.

The paper is organized as follows: first, the vehicle model-
ing (yaw and roll projection) associated with the tire-ground
contact model are depicted, allowing the rollover metric
computation. As the LLT expression (derived from the roll
model) requires the knowledge of the sliding parameters,
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a new adapted backstepping observer is developed in the
second part. In the same part, a prediction algorithm allow-
ing LLT value anticipation is described. Finally, full scale
experiments (with a commercial quad bike) are presented to
discuss the applicability of the proposed approach.

II. ROLLOVER METRIC COMPUTATION

A. Dynamic model

In order to achieve on-line LLT computation when the
ground is uneven, the global vehicle modeling depicted on
Fig.1 is considered. The dynamical model of vehicle is
split into two models. The first model represents a yaw
2D projection (shown on Fig.1(a)) assuming a flat ground.
Nevertheless, a lateral force (P1) is added to take into
account the effect of slope on yaw dynamics. Relying on the
state observer described in section III, this model enables the
estimation of the sliding parameters (sideslip angles β, αf ,
αr and lateral forces Ff and Fr), which influence the risk
of rollover. These sliding conditions are then injected into
the second model: a roll 2D projection (shown on Fig.1(b))
used to estimate the LLT.
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Fig. 1. Dynamic bicycle model with sliding parameters.

The variables used in the sequel, reported on Fig.1(a) and
Fig.1(b), are listed below:

• ψ is the vehicle yaw angle,
• θ is the bank angle of the terrain in the roll projection,
• δ is the steering angle,
• v is the linear velocity at the center of the rear axle,
• u is the linear velocity at the roll center O′,
• a and b are the front and rear vehicle half-wheelbases,
• c is the vehicle track,
• h is the distance between the roll center and the vehicle

center of gravity G,
• Ix, Iy , Iz are the roll, pitch and yaw moments of inertia,
• P = mg is the gravity force on the suspended mass m,

with g denoting the gravity acceleration,
• P1 = mg sin(θ) is the influence of the gravity force on

the lateral dynamics,
• Fn1 and Fn2 are the normal component of the tire-

ground contact forces on the vehicle left and right sides,

• Fa(ϕ) is a restoring-force parametrized by kr and br,
the roll stiffness and damping coefficients:

→
Fa=

1

h
(krϕ+ brϕ̇)

→
y2 (1)

where ϕ is the roll angle of the suspended mass associ-
ated to the roll dynamics, depicted on Fig.1. In section
II-D, a way to calculate ϕ is given.

B. Contact model

The forces Fr and Ff acting on lateral dynamics widely
depend on grip conditions. As a result, a tire-ground model
is mandatory. Among several models describing the sliding
phenomena (such as Pacejka or LuGre model [14], [15]), the
linear model (2) is considered:

Ff = Cf (.)αf

Fr = Cr(.)αr

(2)

Its main advantage lies in the few numbers of parameters to
be known. Nevertheless in order to take into account the non-
linearity of the contact and the variations of grip conditions,
cornering stiffnesses (Cf (.) and Cr(.)) are considered as
varying. They are on-line adapted thanks to the observer
detailed in section III.

C. Motion equations in yaw frame

Based on both the linear tire model and the bicycle
model representation depicted on Fig.1(a), the equations of
motion can be derived using the fundamental principle of
the dynamic. In the yaw frame, longitudinal forces as well
as roll and pitch motions are neglected. Moreover, sideslip
angles are assumed to be small, and the influence of the
bank angle is accounted via the addition of a gravity force
in acceleration equations. Motion equations are then finally
given by:

ψ̈ =
−aCfαf + bCrαr

Iz

β̇ = −Cfαf + Crαr +mg sin(θ)

um
− ψ̇

αr = β − bψ̇

u

αf = β +
aψ̇

u
− δ

u ≈ v

(3)

As this paper deals with dynamic LLT estimation, the veloc-
ity is assumed to be always strictly positive. As a result the
condition u 6= 0 is always met.

D. Roll motion and LLT computation

The Lateral Load Transfer (LLT) represents the unbal-
anced repartition of the normal components of the tire-
ground contact forces. It is mathematically defined as:

LLT =
Fn1 − Fn2

Fn1 + Fn2
(4)

According to definition (4), the LLT reaches ±1 when two
wheels on a vehicle’s side lift off, which is representative of
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a rollover risk. In practice a threshold can be chosen above
which the vehicle is considered in a hazardous situation.
This threshold is chosen as 80% (classical value used in
the literature) in order to define a safety margin.

Thanks to the fundamental principle of the dynamic ap-
plied to the roll model depicted Fig.1(b), and still assuming
that the angles are small and moreover that θ̈ << ϕ̈,
dynamics equation for the roll angle ϕ and for the normal
forces are respectively given by (5), (6) and (7):

ϕ̈ =
1

h
[hγ̇2ϕ+ hψ̇2γ + uψ̇ + u̇β

+ uβ̇ − krϕ+ brϕ̇

mh
+ g sin(θ)]

(5)

Fn1 + Fn2 =m[−hϕ̈ϕ− hγ̇2 + g − uψ̇θ

− krϕ+ brϕ̇

mh
ϕ− ψ̇2γθ + uθ̇β]

(6)

Fn1 − Fn2 =
2

c
[Ixϕ̈+ (Iz − Iy)ψ̇2 sin(2γ)

2
− h sin(ϕ)(Fn1 + Fn2)]

(7)

where γ = θ + ϕ.
The LLT can then be inferred by reporting (6) and (7) into

definition (4). Consequently, as soon as the roll angle ϕ can
be calculated using (5), the LLT can be evaluated thanks to
the normal force expressions (6), and (7).

In view of (5), the calculation of ϕ requires the knowledge
of sideslip angle (β) whose value depends on cornering stiff-
nesses Cf and Cr in view of (3). As quad bikes are expected
to move on a natural and slippery ground, grip conditions
have an important influence and are moreover varying. Since
these variables can not be measured, their on-line adaptation
is then required in order to obtain relevant estimation and
prediction of the LLT. Therefore a backstepping observer
has been designed to supply on-line their values. Moreover
a prediction algorithm is mandatory, if the LLT has to be
anticipate in order to prevent the hazardous situations.

III. ROLLOVER PREVENTION

A. System overview

The developed system aiming at ATV rollover prevention
is summarized on Fig.2.

ATV

LLT Prediction

Observer
Steering angle

Speed
3 axes Acc.

K. F. θ

ψ̇ , v , δ

˙̂ψ
β̂

v
δ
C e

Driver Roll rate

Fig. 2. Algorithm overview.

1) ATV box: The ATV is manually controlled , i.e. the
driver specifies the vehicle speed v and steering angle δ.
As described in the introduction, the measured data are the
roll/yaw rate, the accelerations, the speed and the steering
angle. The bank angle θ is indirectly estimated via a classical
Kalman filter relying on the roll rate and lateral/vertical
accelerations.

2) Observer box: Contact conditions are then on-line esti-
mated, however for observability reasons, the two cornering
stiffnesses can not be estimated separately, and are therefore
considered to be equal to a global virtual cornering stiffness
Ce. An estimation of the sideslip angle β̂ and yaw rate ˙̂

ψ is
also supplied.

3) LLT prediction box: Relying on the measured and
observed variables (v, δ, Ce, ˙̂

ψ and β̂), future LLT values can
be predicted on-line, in order to prevent the risk of rollover.

The observer and LLT prediction algorithms are more
precisely described in the following sections.

B. Observer design

1) Observability : Using Cf = Cr = Ce, the motion
equations (3) can be turned into the state space linear system
(8).

Ẋ =

[
a11 a12
a21 a22

]
×X +

[
b1 0
b2 b3

]
× U

Y = CX

(8)

where X = [ψ̇, β]T , U = [δ, sin(θ)]T , C = [1, 0] and with:
a11 = −(a2+b2)Ce

vIz
, a12 = (b−a)Ce

Iz
, a21 = (b−a)Ce

mv2 − 1,
a22 = −2Ce

mv , b1 = aCe

Iz
, b2 = Ce

mv , b3 = − g
v

Kalman observability matrix Oobs for system (8) is:

Oobs =

[
C
CA

]
=

[
1 0

− (a2+b2)Ce

vIz

(b−a)Ce

Iz

]
(9)

It can be checked that Oobs is a full rank matrix as soon as
a 6= b (which is always met on actual quad bikes) and v 6= 0.
Under these assumptions, system (8) is observable and ψ̇ as
well as β can be on-line estimated.

2) Backstepping approach: The observer equations asso-
ciated with system (8) can be written as:

¨̂
ψ = a11

˙̂
ψ + a12β̂ + b1δ

˙̂
β = a21

˙̂
ψ + a22β̂ + b2δ + b3 sin(θ)

(10)

where ˙̂
ψ and β̂ are respectively the observed yaw rate and

sideslip angle. In order to compute the LLT, β and Ce have
to be estimated from (10). With this aim, a backstepping
approach composed of 3 steps is proposed. An overview is
depicted on Fig.3.

a) First step: “Sideslip angle estimation”
The first step consists in treating β̂ as a control input (denoted
β), to be designed in order to impose the following dynamic
on the observed yaw rate error ˙̃

ψ:

¨̃
ψ = ψ̈ − ¨̂

ψ = K
˙̃
ψ, K < 0 (11)
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Fig. 3. Observer overview.

where ψ̈ is derived from the measured yaw rate. Injecting
(11) into the first equation in (10) leads to the following
expression for control variable β:

β =
ψ̈ −K ˙̃

ψ − a11(Ce)
˙̂
ψ − b1(Ce)δ

a12(Ce)
(12)

Since β ensures that ˙̂
ψ converges to the actual value ψ̇

supplied by the gyrometer, β can be considered as a relevant
estimation of the actual global sideslip angle.

b) Second step: “Lateral force reconstruction”
Referring to initial equations (3), the second equation in (10)
can be rewritten in order to introduce a global lateral force
F defined as:

F = Ce(αf + αr) (13)

It follows that:

˙̂
β = −Ce(αf + αr) +mg sin(θ)

vm
− ˙̂
ψ

= −F +mg sin(θ)

vm
− ˙̂
ψ

(14)

Just as in the first step, F is treated as a control input
(denoted F ) to be designed to impose that β̃ = β − β̂
converges to 0 with the following dynamic:

˙̃
β = β̇ − ˙̂

β = Gβ̃, G < 0 (15)

where β̇ is derived from β. Injecting (15) into equation (14)
leads to the following expression for control variable F :

F = −mv( ˙̂ψ +
g

v
sin(θ)−Gβ̃ + β̇) (16)

Since F ensures that β̂ converges to the actual value β, F
can be considered as an estimation of the actual lateral force.

c) Third step: “Cornering stiffness adaptation”
The last step consists in adapting Ce in order to ensure the
convergence of F to F as defined by equation (13). In view
of (13), the adaptation of Ce can not be achieved when
(αf+αr = 0), which occurs especially when moving straight
ahead. In order to avoid an adaptation interruption in such
a case, a MIT rule adaptation [16] is proposed to obtain the
convergence:

Ċe = −R(F − F )
∂F

∂Ce

= −R(F − F )(αf + αr)

(17)

with R a strictly positive gain.

As it can be seen on (17), the expression of Ċe is never
singular: when moving in straight line on an even ground,
equation (17) just leads to Ċe = 0. As a result the cornering
stiffness adaptation is just frozen and starts again, as soon
as the robot turns. Adaptation law (17), contrarily to the
one proposed in [12], does not require to monitor some
singularity during straight line motion.

C. LLT prediction

The previous observer on-line supplies a realist estimation
of Ce and β describing the grip conditions. All variables in
model equations (3) and (5) are therefore available, and the
LLT can then be predicted by integrating these equations
over some temporal horizon H . If this prediction reaches a
value superior than the threshold (i.e LLTpredicted > 0.8),
the driver is warned of a rollover risk.

More precisely, to perform the integration , the slow-
varying variables, i.e the cornering stiffness Ce and the bank
angle θ, are supposed constant over the horizon H . On the
contrary, the driver’s inputs (i.e the steering angle δ and
the speed v) have an important influence on the short term
evolution of the LLT. Therefore, it is proposed to extrapolate
them using a linear function if v and/or δ present an evolution
rising the instability. Otherwise they are kept constant over
the horizon H . In this way, the values of the LLT predicted
from equations (3) and (5) are at worst overestimated, as it
suits for a security device. Precisely, the extrapolation law
that has been chosen is:

v(tp) =

{
v(t) + dt · v̇(t), if (v(t), v̇(t)) > (0, 0)
v(t) otherwise

δ(tp) =

 δ(t) + dt · δ̇(t), if (δ(t), δ̇(t)) > (0, 0)

δ(t) + dt · δ̇(t), if (δ(t), δ̇(t)) < (0, 0)
δ(t) otherwise

(18)

with tp = t+ dt and 0 < dt < H

IV. RESULTS

A. Setup testbed

Fig. 4. MF400H, Massey Fergusson quad bike used for experiments.

In order to validate the observer and the relevance of the
LLT prediction proposed in section III, experimental results
are presented. They have been performed with a quad bike
MF400H, manufactured by Massey Fergusson and depicted
on Fig.4. Its dynamic parameters m, Iz , kr, br, h, a and b
have been preliminary calibrated, and it is equipped with the
following sensors:
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• a Xsens MTI IMU providing accelerations and angular
velocities.

• a Doppler radar supplying the linear speed
• an angular sensor providing the steering angle

This set of sensors constitutes a low cost perception system
(compared to the ATV cost) enabling LLT estimation without
requiring for expensive sensors. In addition, dynamometric
sensors supplying tire/ground forces have been set up at each
wheel. They provide a ground truth, but are not used in the
algorithm.

B. Experimental results

1) ATV experimental path: The path described on Fig.5
has been performed on a mixed flat and sloping wet grass
ground, at a speed between 3m s−1 and 5m s−1. It is
composed of a straight line part executed on a −15◦ sloping
ground, a U-turn on an even area and a second straight line
on the same sloping ground.

Fig. 5. ATV experiment path.

2) Estimated bank angle: On Fig.6, the bank angle profile
estimated during experiments is depicted. It corresponds to
actual slope values recorded (±15) previously by an operator.
It then constitutes a sufficient estimation. The estimation
inaccuracies in bank angle are indeed not critical since they
will be compensated by the cornering stiffness adaptation.
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Fig. 6. Estimated bank angle.

3) Observer dynamics: Three experiments have been
achieved with different initial conditions for the tire corner-
ing stiffness: 60 000N rad−1, 20 000N rad−1, 2000N rad−1.
The estimated tire cornering stiffnesses are then represented
on Fig.7.

First, the estimated cornering stiffnesses converge all to the
same value, this demonstrates that the choice of the initial
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Fig. 7. Tire stiffness adaptation.

condition, which is uneasy, is satisfactorily not crucial. More-
over, the order of magnitude (4000N rad−1) is representative
of the value for wet grass terrain considering a quad bike.

Secondly, the cornering stiffnesses are convergent despite
of the straight line (17 s to 36 s) due to the small slope.
It generates sufficiently sideslip (see (14)) to adapt the
cornering stiffness.

Finally Ce suddenly decreases at 42 s (corresponding to an
inversion of the steering angle sign), which is representative
of non linear tire behavior when slip angle changes quickly.

4) Slope influence on the LLT estimation: On Fig.8 the
LLTs estimated at the current instant (i.e. when H=0s) with
and without the bank angle are depicted (respectively in solid
and dashed line) and they are compared to the LLT measured
thanks to dynamometric sensors. The quad bike enters the
slope at 17 s, then the U-turn occurs between 36 s and 46 s,
and finally the vehicle comes back on the slope part.
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Fig. 8. Experiment results of the LLT estimation.

First, the LLT estimated without accounting for the bank
angle stays around 0◦ in straight line parts, as expected.
In this case, θ is indeed mainly responsible of the LLT.
Secondly, an overshoot can be observed from 48 s to 49 s
due to the neglected slope too. On the contrary, the LLT
accounting for the bank angle is almost superposed on
the actual LLT, especially during the passage on the slope
(17 s to 36 s). And both the estimated LLT (with and without
bank angle) are superposed as soon as ATV is on flat ground.

Nevertheless it can be observed some local inaccuracies,
which are mainly due to the driver’s behavior, neglected in
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the approach. Since quad bikes are light vehicles, the driver
mass is important (for this experiment the driver’s mass
represents 25% of the total mass), and his behavior has a
significant influence. As demonstrated in [17], the position
of the driver may change significantly the location of the
center of gravity of the overall system and consequently
impacts the LLT values. This explains the slight errors in the
LLT estimation in the turn-about (44 s to 46 s) and during the
movement back toward the start point (46 s to 54 s).

This experiment shows the importance of taking into
account the slope to estimate accurately the LLT. But the
driver has to be informed of the risk before it appears,
therefore a prediction algorithm is mandatory. The next
section discusses the efficiency of the prediction algorithm
developed in III-C.

5) Rollover risk indicator: The LLT estimated with the
bank angle and the measured LLT are plotted again on Fig.9,
respectively in blue and black lines, and compared to the LLT
predicted with H = 1s (shown in red line) .
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Fig. 9. Experiment results of the LLT prediction.

First, it can noticed that the three curves are almost
superposed in steady state conditions: during the initial
straight line part (up to 36 s) and during the constant curve
from 37 s to 40 s. As expected since the ATV motion is then
stationary: the predicted LLT is identical to the current value.

In contrast, during the transient phase (40 s to 46 s) where
rollover may occur, the predicted LLT satisfactorily precedes
and overestimates the actual LLT.

Consequently, this rollover indicator is able to prevent the
lift-off risk for the ATVs on natural ground.

V. CONCLUSION AND FUTURE WORK

This paper proposes an algorithm able to estimate and
predict a rollover risk indicator for ATVs motion on nat-
ural ground. An adapted backstepping observer, based on a
bicycle model, has been designed in order to estimate the dy-
namic variables (sideslip angle, cornering stiffness) allowing
to adapt to varying conditions. Then, relying on a roll model,
the LLT is on-line anticipated. The main contributions lie in
the consideration of the terrain slope and in the grip condition
adaptation. As demonstrated in the experiments, the LLT
can be predicted accurately whatever the terrain conditions
are (sliding, slope). Moreover the sensing equipment is
limited to low cost sensors excluding expensive INS or

GPS. Nevertheless the driver’s behavior, which influences
the estimated LLT, is not taken into account. Therefore, in
order to avoid unnecessary warnings, current developments
aim at incorporating unused accelerometer/gyrometer data to
account also for the driver’s behavior.
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