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Abstract

This work is devoted to the well-posedness issue for the low-Mach number limit system
obtained from the full compressible Navier-Stokes system, in the whole space R? with d > 2.

In the case where the initial temperature (or density) is close to a positive constant, we
establish the local existence and uniqueness of a solution in critical homogeneous Besov spaces
of type B;l. If, in addition, the initial velocity is small then we show that the solution exists
for all positive time. In the fully nonhomogeneous case, we establish the local well-posedness
in nonhomogeneous Besov spaces B, ; (still with critical regularity) for arbitrarily large data
with positive initial temperature.

Our analysis strongly relies on the use of a modified divergence-free velocity which allows to
reduce the system to a nonlinear coupling between a parabolic equation and some evolutionary
Stokes system. As in the recent work by Abidi-Paicu [1] concerning the density dependent
incompressible Navier-Stokes equations, the Lebesgue exponents of the Besov spaces for the
temperature and the (modified) velocity, need not be the same. This enables us to consider
initial data in Besov spaces with a negative index of regularity.

1 Introduction

The full Navier-Stokes system

O¢p + div (pv) = 0,
¢ (pv) + div (pv @ v) —dive + Vp = 0, (1.1)
O(pe) + div (pve) — div (kVY) + pdive = o - Do,

governs the free evolution of a viscous and heat conducting compressible Newtonian fluid.

In the above system, p = p(t,z) stands for the mass density, v = v(t,z), for the velocity
field and e = e(t,x), for the internal energy per unit mass. The time variable ¢ belongs to R
or to [0,7] and the space variable x is in R? with d > 2. The scalar functions p = p(¢,z) and
¥ = 9(t,z) denote the pressure and temperature respectively, and o is the viscous strain tensor,
given by

o =2¢Sv+ndivvld,

where Id is the d x d identity matrix, Sv := %(Vv + Dwv), the so-called deformation tensor!. The
heat conductivity k and the Lamé (or viscosity) coefficients ¢ and 1 may depend smoothly on p

and on . The above system has to be supplemented with two state equations involving p, p, e
and 9.

*Université Paris-Est Créteil, LAMA, UMR 8050, 61 Avenue de Général de Gaulle, 94010 Créteil Cedex, France
!In all the paper, we agree that for v = (vl,--- ,v%) a vector field, (Dv);; := 8;v° and (Vv);; := 9;v7.
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In the present paper, we want to consider the low Mach number limit of the full Navier-Stokes
System (1.1). From an heuristic viewpoint, this amounts to neglecting the compression due to
pressure variations, a common assumption when describing highly subsonic flows. Following the
introduction of P.-L. Lions’s book [24] (see also the physics book by Zeytounian [30]), we here
explain how the low Mach number limit system may be derived formally from (1.1). For simplicity
we restrict ourselves to the case of an ideal gas, namely we assume that

p=Rpd, e=C,0, (1.2)

where R, C, denote the ideal gas constant and the specific heat constant, respectively.

Let us define the (dimensionless) Mach number € as the ratio of the reference velocity over the
reference sound speed of the fluid, then suppose that (p,v,®) is some given classical solution of
System (1.1) corresponding to the small e. Then the rescaled triplet

(ps(t,:c) = p(é,z), ve(t, x) = %v(é,z), Ve (t,x) = ﬁ(é,z))

satisfies
drpe + div (peve) = 0,
Ot (peve) + div (peve @ ve) — divo. + V;;E = 0, (1.3)
ﬁ(atps +div (peve)) — div (k. VY.) + pedive. = &2o. - Do,
with

O = QCESUE + UadiV veld, Pe = R/)aﬂaa vy=1+ R/Cva
1 /t 1 /t 1./t
CEZ_C(_VT)) 778:_77(_3:1") and kE:_k(_aw)'
e’ \e € \e € \e
By letting the Mach number € go to 0, the momentum equation of (1.3) implies that
pe = P(t) + I1(t, 2)e? + o(e?).

Plugging this formula into the energy equation of (1.3) entails that P(t) is independent of ¢,
provided v, and V¥, vanish at infinity. From now on, we shall denote this constant by Fy.

Bearing in mind the equation of state given in (1.2), we deduce that p = Py/(RY). Therefore,
denoting C, = vC, = vR/(y — 1), the low Mach number limit system reads

pCp (09 +v - V) —div(kVY) = 0,
p(Opw+v-Vv)—dive+VII = 0, (1.4)
yPydive — (v — 1)div (kVY) = 0.

A number of mathematical results concerning the low Mach number limit from (1.3) to (1.4)
have been obtained in the past three decades, most of them being dedicated to the isentropic or
to the barotropic isothermal cases (that is ¥ = const and p = p(p)) under the assumption that
the viscosity coefficients are independent of p. From a technical viewpoint, those latter cases are
easier to deal with inasmuch as only the first two equations of System (1.3) have to be considered.
As a consequence, the expected limit system is the standard incompressible Navier-Stokes or Euler
system. In the inviscid case, the first mathematical results concerning the incompressible limit
go back to the eighties with the works by Klainerman and Majda [22], Isozaki [20, 21] and Ukai
[29]. In the viscous case, the justification of the incompressible Navier-Stokes equation as the
zero-Mach limit of the compressible Navier-Stokes equation, has been done in different contexts
by e.g. Danchin [9, 10], Desjardins and Grenier [14], Hagstrom and Lorentz [18], Hoff [19], Lions
[25], and Lions and Masmoudi [26]. In contrast, there are quite a few results for the full system.
The inviscid case — the non-isentropic Fuler, has been considered in the whole space and periodic
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settings by Métivier and Schochet [27, 28]. Recently Alazard performed a rigorous analysis for the
full Navier-Stokes equations with large temperature variations in the Sobolev spaces H® with s
large enough, see [3]. In the framework of variational solutions with finite energy, this asymptotics
has been justified in the somewhat different regime of Oberbeck-Boussinesq approximation (see
the book [17] by Feireisl-Novotny).

To our knowledge, the only work dedicated to the limit system (1.4) in the general case where ¢
is not a constant or the conductivity & is not zero (note that if & = 0 then the system reduces to the
nonhomogeneous incompressible Navier-Stokes equations studied in e.g. [1, 11]) is the paper [15]
by P. Embid. There, local-in-time existence of smooth solutions (in Sobolev spaces) is established
not only for (1.4) but also for a more complicated system of reacting flows.

The present paper is to study the well-posedness issue for the full low Mach number limit
system (1.4) in the critical Besov spaces, locally and globally. We expect our work to be the first
step of justifying rigorously the limit process in the critical Besov spaces, a study that we plan to
do in the future.

In what follows, we assume that the coefficients ((,n,k) in (1.4) are C*° functions of the
temperature ¥, and we consider only the viscous and heat-conducting case, namely

kW) >0, (W) >0 and  n®)—+2¢0) > 0.

At first sight, this assumption ensures that System (1.4) is of parabolic type, up to the pressure
term that may be seen as the Lagrange multiplier corresponding to the constraint given in the last
equation. Handling this relation between divv and the temperature is the first difficulty that has
to be faced. In order to reduce the study to a system which looks more like the incompressible
Navier-Stokes equations, it is natural to perform the following change of velocity:

y—1 R 1

u=v—akVy with «:= = = .
,YPO CpPO Cppﬂ

(1.5)

We claim that (J,v) satisfies (1.4) (for some VII) if and only there exists some function @ so
that (¢, ) fulfills

oY+ u - VI — div (kVY) = f(9),
Ou+u - Vu —div (pVu) +9VQ = h(d,u), (1.6)
divu = 0,

with k(9) = akd, u(9) = aCpCd, f(I¥) = —2ak|VI> and
h(9,u) = A1 |VIPVI + A2 AYVY + A3VY - V29 + AyVu - VI + AsDu - V9,
where the coefficients A; (i =1,---5) are functions of ¥ the value of which is given in (1.8) below.

In order to derive (1.6), we first notice that

O(pv) +div(pv @v) = O(pu) + div (pv ® u) + Ot (pakV) + div (pakv @ V),
= p(Bru+v-Vu)+ 9(C 97 kVY) + div (C; 19 ko @ V).

Hence, given that k is a function of ¥ we deduce that there exists some function @; so that
A (pv) + div (pv ® v) = p(dpu + u - Vu) + pakDu - VY + div (C, 0™ kv ®@ V) + VQi.
Next, using the fact that
Sv = %(Vu — Du) + Du,
we may write that
—dive = —div((Vu)+ div(¢Du) — 2div ((Dv) — V(ndivv),
—div ((Vu) + Vu - V¢ + 2div (v ® V() — V(ndiv v + 2div (¢v)).



R. DANCHIN and X. LIAO

Therefore, (p,v) satisfies (1.4) (for some suitable II) if and only if there exists some Q2 so that

Op + u - Vp —div (pakV9) =0,
p(Owu + u - Vu) — div ((Vu) + pakDu - VI + Vu - V( + div (v @ VI) + VQ2 = 0,

divu = 0,

with
Bi=Crl ok +2¢. (1.7)
Finally, using that divu =0 we get (denoting by B a primitive of )
div (v @ VY) = div(fu® VI) + div (fakVI @ V),
= —pBVu- Vi + Vdiv (B(9)u) + div (BakVY @ V).
So after multiplying the equation for u by p~! = aCyY and using the fact that
—aCpidiv ((Vu) = —div (uVu) + aCp¢Du - VI  with p(9) := aCpid((¥),
we get (1.6) with one new @ and
Ay = —a2CI(Bk), Ay = Az = —a?BkCyY, (1.8)
Ay =—p '+ p7 1B =ka+aCi(, As=—aCy(— ak.

Motivated by prior works on incompressible or compressible Navier-Stokes equations with vari-
able density (see in particular [6, 7, 8, 11]), we shall use scaling arguments so as to determine the
optimal functional framework for solving the above system.

Here we notice that if (9, u, V@) is a solution of (1.6), then so does

(D(0%t, L), bu (%t bx), L3V Q(L?t, Lx)) for all £ > 0. (1.9)
Therefore, critical spaces for the initial data (9o, uo) must be norm invariant by the transform

(9o, up)(z) = (99(€x), lug(fx)) for all £ > 0. (1.10)

Let us first consider the easier case where the initial temperature 9 is close to a constant
(say 1 to simplify the presentation). Then, setting 6§ = — 1, System (1.6) recasts in

00 +u-VO —RAO = a(h),
ou+u-Vu—pgAu+VQ = c(0,u,VQ), (1.11)
divu = 0,

where & = k(1), 5= p(1) and

a(f) =div ((k(1+6) —r)VO) + f(1+0),
Let us notice that the following functional space?:

d d
. . 4/ - e 4/
(Lo @ By 0 LR B 2)) e (L= (R By ™) L (R Bl ) (LU (R By )
satisfies the scaling condition (1.9) for any 1 < py, pa, ps, r1,72,73 < 00.
However, as a L control over 6 is needed in order to keep the ellipticity of the second order
operators of the system and since B{f,/f — L if and only if r = 1, we shall assume that r; = 1.

2The reader is referred to Definition 2.3 for the definition of homogeneous Besov spaces.
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In addition, in many places, having Vu € L([0,T]; L>°) will be needed. This will induce us to
choose 1, =1 and r3 =1 as well. So finally, we plan to solve System (1.11) in the space

p1 p1,1 p2,1 p2,1 p2,1

. ~ . . ~ . . d . d
FJI:11P2 — (CT(Bd/ﬁl) mL%(Bd/lerQ)) % (CT(Bd/szl) OL%(Bd/Pfrl)) % (L%(Bd/szl))

where E'T(Bgﬁl) is a (large) subspace of C([0,T7; 35,1) (see Definition 2.2).

In what follows, we shall denote
Hell)'(m(T) = HGHZ%O(le/,pll) + HHHLIT(B;’{T*Q)’
lelacry = Tl sy + el gormars,
19l 22 ry = 9@ 1501
and we will drop T in XP'(T), Y?*(T), ZP*(T) if T = +oo0.

Let us now state our main result for (1.11) in the slightly nonhomogeneous case (that is under
a smallness condition for 6p).

Theorem 1.1. Let 0y € le/ﬁl and ug € Bzz/ﬁrl with divug = 0. Assume that

1 1 1 1 1 1 1 1 1
1<pi1<2d, 1<py<oo, p1<2ps, —+—>-=, —+4+=>— and —+-=>—- (1.12)
p1 p2 d p2 dT pr p1 d T po

There exist two constants T and K depending only on the coefficients of System (1.11) and on
d,p1,p2, and satisfying the following properties:

o If
160l ga/ny <7, (1.13)

then there exists T' € (0,+oc] such that System (1.11) has a unique solution (6,u,VQ) in
FPVP2 Cwhich satisfies

161101 () < KllO0]l garn andullys () + 1VQl 202 () < K(||9o||Bg{p11 + HUOHB;;;:JIZ—I)-
o If
16oll garmy + lluoll gasa-—r < 7, (1.14)
then T = 400 and the unique global solution satisfies

101 o0 + llullyes + VR 26, < K(||9o||3;g/p11 + HUOHBg/vlz—l)- (1.15)

In addition, the flow map (0o, ug) — (0,4, VQ) is Lipschitz continuous from B
F£1 P2

d/p1 % Bd/prl "

p1,1 p2,1 0

Remark 1.1. A similar statement for the nonhomogeneous incompressible Navier-Stokes equations
has been obtained by Abidi-Paicu in [1]. There, the conditions over p; and p2 (which stem from
the structure of the nonlinearities) are not exactly the same as ours for there is no gain of regularity
over the density and the right-hand side of the momentum equation in (1.11) is simpler.

Let us stress that in the above statement, the homogeneous Besov spaces for the velocity are
almost the same as for the standard incompressible Navier-Stokes equation (except that in this
latter case, one may take any space B%ﬂrl with 1 < ps < 00 and 1 < r < o0). In particular,
here one may take po as large as we want hence the regularity exponent d/ps — 1 may be negative
and our result ensures that suitably oscillating large velocities give rise to a global solution.
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The important observation for solving (1.11) is that all the “source terms” (that is the terms
on the right-hand side) are at least quadratic. In a suitable functional framework —the one given
by our scaling considerations, we thus expect them to be negligible if the initial data are small.
Hence, appropriate a priori estimates for the linearized system pertaining to (1.11) and suitable
product estimates suffice to control the solution for all time if the data are small. This will enable
us to prove the global existence. In addition, a classical argument borrowed from the one that is
used in the constant density case will enable us to consider large ug.

Let us now turn to the fully nonhomogeneous case. Then, in order to ensure the ellipticity of
the second order operators in the left-hand side of (1.6), we have to assume that ¢ is bounded
by below by some positive constant. Proving a priori estimates for the heat or Stokes equations
with variable time-dependent rough coefficients will be the key to our local existence statement.
Bounding the gradient of the pressure (namely V@) is the main difficulty. To achieve it, we will
have to consider the elliptic equation

div(9VQ) =divL with L:=—u-Vu+ Du-Vu+ h. (1.16)

In the energy framework (that is in Sobolev spaces H*® or in Besov spaces BZIQ/ 3912 with py = 2),

this is quite standard. At the same time, if ps # 2, estimating V@ in B;i/ ﬁZ_l requires some

low order information in LP? over V@Q. Thanks to suitable functional embedding, we shall see
that if ps > 2 then it suffices to bound VQ in L?, an information which readily stems from the
standard L? elliptic theory. As a consequence, we will have to restrict our attention to a functional
framework which ensures that L belongs to L2. This will induce us to make further assumptions
on p; and py (compared to (1.12) in Theorem 1.1) so as to ensure in particular that V@ is in L2.
Consequently, the homogeneous critical framework is no longer appropriate since some additional
control will be required over the low frequencies of the solution.

More precisely, we shall prove the existence of a solution in the following nonhomogeneous
space 7P

~ ~ d d
(Cr(By/m) N LE(BYR ) x (Cr(Bym ) N Ly (By% ) x (Lh(B 1)

p1,1 p1,1 p2,1 p2,1 p2,1

which are critical in terms of regularity but more demanding concerning the behavior at infinity.

In what follows, we denote
HGHXPI(T) = ||9HZ,1°,°(B§1/?11) + ||9HL,}(B§{§DII+2)’
lullyracry =l g (gosvay + 1l oy gy,
IV@lzrs 2y = IV Ly a2
Let us state our main local-in-time existence result for the fully nonhomogeneous case.

Theorem 1.2. Let (p1,p2) satisfy

1 1 1
l<p <4, 2<py<4, —+4->— (1.17)
p2 d p1
with in addition ) . )
pp<4 if d=2, and —+->— if d>3.
p1 d  p2

For any initial temperature 99 = 1+ 0y and velocity field ug which satisfy

0<m<dy, divup=0 and ||90||Baz/p11 + HUOHBd/plTl <M, (1.18)
Pl P2,
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or some positive constants m, M, there exists a positive time epending only on m, M, p,
it tant M, th st itive time T d di I M

p2, d, and on the parameters of the system such that (1.6) has a unique solution (9,u,VQ) with

(0,u,VQ) in FR"P*. Furthermore, for some constant C = C(d,p1,p2), we have

m S ¥ and ||9HXP1(T) + Htupz(T) + HVQ||ZP2(T) S CM, (119)
and the flow map (0o, uo) — (0,u,VQ) is Lipschitz continuous.

Remark 1.2. The above theorems 1.1 1.2 and the transformation (1.5) ensure that the original
system (1.4) is well-posed. More precisely, in the case 1 < p; = pa < 2d for the initial data

(90, v0) satisfying the third equation, and (99 — 1,vg) in le/ﬁl X B;ll/,plﬁl with (1.13), we get a
local solution (9,v,VIT) of (1.4) such that (0,u,VQ) € FX'P' and the solution is global if (1.14)
holds. Under the same regularity assumptions with in addition 2 < p1 < 4 then if g is just
bounded from below, we get a local solution in FR"P'. In the case py # p2, a similar result holds

true. It is more complicated to state, though.

Let us end this section with a few comments and a short list of open questions that we plan to
address in the future.

e To simplify the presentation, we restricted to the free evolution of a solution to (1.6). As
in e.g. [8, 11], our methods enable us to treat the case where the fluid is subject to some
external body force.

e We expect similar results for equations of state such as those that have been considered by
Alazard in the Appendix of [2] or, more generally, for reacting flows as in [15] (as it only
introduces coupling with parabolic equations involving reactants, the scaling of which is the
same as that of ¢). We here restricted our analysis to ideal gases for simplicity only.

e In the two-dimensional case, unless k = n = 0 and ( is a positive constant (that is for the
incompressible Navier-Stokes equations), the question of global existence for large data is
widely open. Note however that our derivation of (1.4) highlights the important role of the
parameter S defined in (1.7). As a matter of fact, it has been discovered very recently by
the second author in [23] that global existence holds true in dimensional two (even for large
data) if 8 =0.

e As for the classical incompressible Euler equations, working in a critical functional framework
is no longer relevant in the inviscid case. However,the approach proposed in [13] carries out
to our system (see the forthcoming paper [16]).

e Granted with the above results, it is natural to study the asymptotics € going to 0 in the
above functional framework. This would extend some of the results of Alazard in [3] to the
case of rough data.

The rest of the paper unfolds as follows. In the next section, we introduce the main tool for the
proof —the Littlewood-Paley decomposition— and define Besov spaces and some related functional
spaces. In passing, we state product laws in those spaces and commutator estimates. In Section
3, we focus on the proof of our first well-posedness result (pertaining to the case where the initial
temperature is close to a constant) whereas our second well-posedness result is proved in Section
4. The proof of a commutator estimate in postponed in Appendix.

Acknowledgments: The authors are indebted to the anonymous referee for his relevant remarks
on the first version of the paper.
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2 Tools

Let us first fix some notation.

e Throughout this paper, C' represents some “harmless” constant, which can be understood
from the context. In some places, we shall alternately use the notation A < B instead of
A< CB,and A~ B means A S B and B < A.

e If p € [1,+00] then we denote by p’ the conjugated exponent of p defined by 1/p+1/p' = 1.

e If X is a Banach space, T'> 0 and p € [1,+o0] then LZ.(X) stands for the set of Lebesgue
measurable functions f from [0,7) to X such that ¢ — || f(¢)||x belongs to LP([0,T)). If
T = 400, then the space is merely denoted by LP(X). Finally, if I is some interval of R
then the notation C(I; X) stands for the set of continuous functions from I to X.

e We shall keep the same notation X to designate vector-fields with components in X.

2.1 Basic results on Besov spaces

First of all we recall briefly the definition of the so-called nonhomogeneous Littlewood-Paley de-
composition: a dyadic partition of unity with respect to the Fourier variable. More precisely, fix
a smooth nonincreasing radial function x, which is supported in the ball B(0, %) and equals to 1

in a neighborhood of B(0,1). Set ¢(&) = x(5) — x(&), then we have
XE)+> (2778 =1.
Jj=0
Let ;(€) = p(279€), hj = F'p;, and h = F~'x. The dyadic blocks (A;);ez are defined by
Aju=0 if j<-2
Avu=x(Dyu= [ hyyule v dy
R

Aju= @j(D)u = /d hi(y)u(x —y)dy if 5 >0,
R

and we also introduce the low-frequency cut-off:
Sju = Z Aku.
k<j—1
Note that Sju = x(277D)u if j > 0.
As shown in e.g. [4], the above dyadic decomposition satisfies
In addition, for any tempered distribution u, one may write
u = Z Aju,
jez
and, owing to Bersntein’s inequalities (see e.g. [4], Chap. 2),
< od(E—2) .
[Ajullzes S 2772 " P | AjullLee if p1 2> po,
ID*(Aju)llLe S 29| AjullLe, Vi > —1,
ID*(Aju)llLe ~ 2| AjullLe, V5 > 0.

S

5. as follows:

We can now define the nonhomogeneous Besov spaces B
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Definition 2.1. For s € R, (p,r) € [1,+c]?, and u € S'(R?), we set
1/r
lullBs, = Z 2957 Ajul|7 if r<oo, and |lulps_ = sup {2js|\AjuHLp}.
: : j>—1

j=—1

We then define
By, = By (RY) = {u e SR, Jull;, < oo}.

Throughout, we shall use freely the following classical properties for Besov spaces.
Proposition 2.1. The following properties hold true:
(i) Action of derivatives: ||VUHBg;1 S llullss,, -

1 1

_ d
(i) Embedding: B, . — B;Z,m“ " if p1r <pa, 11 <12, and B}, — L for all p € [1, c].

(i1i) Real interpolation: (B2, ,B32. g, = B 0sitos

P, T p,T2 p,r’

When dealing with product of functions in Besov spaces, it is often convenient to use paradiffer-
ential calculus, a tool that has been introduced by J.-M. Bony in [5]. Recall that the paraproduct
between u and v is defined by

Tu’U = Z Sj,1U A]"U,

J

and that the remainder of v and v is defined by

R(U,’U) = Z Aju Kjv with ,Avj’U = (Aj—l + Aj + Aj+1)1}.

J

Then we have the following so-called Bony’s decomposition for the product between u and v:
w =Tyv + R(u,v) + Tyu = Tiv + Tyu. (2.1)

We shall often use the following estimates in Besov spaces for the paraproduct and remainder
operators.

Proposition 2.2. Let 1 < r,r1,r9,p,p1,p2 < 00 with % < min{1, % + L} and % o p%-

o If p < psy then we have:

Tl o S Vil ol s <dGr+k=d). (22)
ITuvll sz, S llullcesllvllpsz, if 55 =5 — 55 (2.3)
o If 51 + s +dmin{0,1 — pll — p%} > 0, then
VRGO vy xS g, Iollsis (2.0
p,r
° ifsl+52+dmin{0,1—p%—p%}:0 and %Jr% > 1 then
IR0 orimras s xS gy, Nollgss (25)

p,o0
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Proof. Most of these results are classical (see e.g. [4]). We just prove (2.2) and (2.3). which is a
slight generalization of Prop. 2.3 in [1]. We write that

Ty = ZTj(u,v) with Tj(u,v) = S;—1uljv.
i>1

Since A (Sj_1uljv) =0 for |57 —j| > 4, it suffices to show that, for some sequence (¢;);jen such
that ||(c;)|ler = 1, we have
175 (w, ) 2o S €277 Jull g

~

lvllgsz ~ if s1 <d/p1+d/pa—d/p,

P1:T1 P2,:72

175 (w, )l 2o S €277 [l Los [[0]] 332 if s1=d/p1+d/pz—dp,

P2,72

: d d d
with s = s S 4_ e o
1+2+P P1 p2

According to Holder’s inequality, we have

. 1 1 1
1Tj(u,v)[|Lr < ISj—1ullLes |Ajvllee  with — = - — — (2.6)
p3 p p2

Hence, using the deﬁnition of S;_1 and Bernstein’s inequality (here we notice that p; < p3, a

consequence of 1 g pll + )

_d
1Ty, 0)lle $ 30 27 G058 A o | A0 o

j'<j—2
whence

. i (s d _ d ’/81 iso
2| Ty(u, o)l e < 29D (2751 | Al o ) (2752|120 o )

J'<i—2

Therefore, if s1 +d/ps — d/p1 < 0 then the result stems from convolution and Holder inequalities
for series. In the case where s1 +d/ps—d/p1 = 0, we just have to use that ||S;_1u|/zrs < C|lul/rs
n (2.6).

The proof of (2.4) goes from similar arguments and is thus left to the reader (see also [1]). O

From the above proposition and (2.1), one may deduce a number of estimates in Besov spaces
for the product of two functions. We shall use the following result:

Proposition 2.3. The following estimates hold true:

(1) llwlls;, S llullz<llvlsy, + llullsg ,l[vllz= if s> 0.

(ii) Ifsl<pi1,52<dm1n{p ' oo L1 51+ 52+ dmin{0, 1——— 1}>0 and L <m1n{1 %}
then
ol s xS g, 0l 27)

P2,T
(i) We also have the following limit cases:

e if s =d/p1, s2 <min(d/p1,d/p2) and s3 + dmin(1/p1,1/ph) > 0 then

luvllgsz . < llull pf,an lvllpsz 3 (2.8)
e if sy = min(d/p1,d/p2), s1 <d/p1 and s; + sa +dmin{0,1 - L — L } > 0 then
[woll oivpme S llullpg Nollss2 5
p2,T

10
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o if 1/ri+1/ra>1, s1< 1%, 59 < dmin{p%, p%} and s1+ s +dmin(0,1 — pil — p%) =0
then

[[uv] o S llullgs, vligsz,. -
sitsa—r Bpi.r1 Bp3.ro
P2,

The following commutator estimates (see the proof in Appendix) will be also needed:
Proposition 2.4. Let % = min{l1, % + %} and (s,v) € R x R satisfying
1 1 1 1 11
fdmin{—/, —} <s<v+ dmin{—, —} and — dmin{—, —} <v<l (2.9)
b1 P2 p1 P2 p1 D2
For j > —1, denote R;(u,v) := [u,Aj]Jv. We have

@18 (o)) gy e S U0 ol (210)

pP2,7T2

The following limit cases also hold true:

o if s=v+dmin{X, L} 7 =1 and ro =1 then we have

P17’ p2
127 Ry (u0) o) js g ller < IIVUHB§T+V71||U| BiYS (2.11)
e ifyv=1, r =r and ro = co then we have
IRl o Lo SVl s gy (2.12)

Finally, if in addition to (2.9), we have v > 1 —dmin(1/p1,1/ps2) then
12710k R (w, 0) | L)

ler S 190l asyoalo]

P2,T2

BiY, forall ke{l,---,d}, (2.13)

j=-1

with the above changes in the limit cases.
We shall also use the following result for the action of smooth functions (see e.g. [4]):
Proposition 2.5. Let (p,r) € [1,4+00]? and s > 0. Let f be a smooth function from R to R.
o If f(0) =0 then for all w € B, . N L> we have

1foullss, < CUf's ullLe)lullss,, - (2.14)
e If f'(0) =0 then for all u and v in By, N L>, we have
1 ov— fouls;. < CU", fullzmns . lolzwns; Mo —uls; . (215)

When solving evolutionary PDEs, it is natural to use spaces of type L4.(X) = L?(0,T; X) with
X denoting some Banach space. In our case, X will be a Besov space so that we will have to
localize the equations through Littlewood-Paley decomposition. This will provide us with estimates
of the Lebesgue norm of each dyadic block before performing integration in time. This leads to
the following definition:

Definition 2.2. For s € R, (p,p,r) € [1,+00]® and T € [0, +o00], we set

1
7‘

T
llzg = | 22 27" (/O ||AjU(t)||’£pdt> :

j>—1

I3

with the usual change if 1 = +00 or p = +oc.

We also set Cr(B5,) = Lg*(B,) N C([0,T]; BS,.).

11



R. DANCHIN and X. LIAO

Let us remark that, by virtue of Minkowski’s inequality, we have
H“HLP(BS ) S H“HL”(BS Hifp <,
HUHL’}(B;T) < Hqung(Bfm) if p>r,

and hence in particular [jul7, (B ) = lullzy(ps ) holds.
7Py P,

Let 6 € [0, 1],
holds true:

% 1_29 ,and s = 0s1+(1—0)sa, then the following interpolation inequality
T SR M

In this framework, one may get product or composition estimates similar to those that have
been stated above. The general rule is that the Lebesgue exponents pertaining to the time variable
behave according to Holder’s inequality. For instance, one has:

HUUHZ?(BRT) S HUHL?(L“’)HUHZQ‘*(Bgm) + HUHZ;Z(B;T)HU”L;?»(Loo), (2.16)
whenever s > 0, %:p_ller_lz;:p%er%, and
luvll, poreeamg) S Tllzgr sy 1ol iz (2.17)
Li(Bpr ~ ")

1_1 .1,
p’ 4 P1 P2

As pointed out in the introduction, scaling invariant spaces have to be homogeneous. As a
consequence, the optimal framework for proving our first well-posedness result (namely Theorem
1.1) turns to be homogeneous Besov spaces. For completeness, we here define those spaces. We
first need to introduce homogeneous dyadic blocks

if s1 4 s2 + dmin{0, 172}>0 81,89 <

Aju = /]Rd hij(y)u(z —y)dy, VYjeZ
and the homogeneous low-frequency truncation operator
S;:=x(277D), VjeZ (2.18)
We then define homogeneous semi-norms:
lull s, = 1214,

Note that, for u € §’'(R9), the equality

ufZAu

holds true modulo polynomials only. Hence, the functional spaces related to the above semi-norm
cannot be defined without care. Following [4], we shall define homogeneous Besov spaces as follows:

Definition 2.3. The homogeneous Besov space B';T s the set of tempered distributions u such
that .
HUHBS < oo and hm HSjuHLoo = 0.
P j——o0

The above definition ensures that B;T(Rd) is a Banach space provided that

s<d/p or s<d/p if r=1. (2.19)

All the above estimates remain true in homogeneous spaces. In addition, if u = 3 ]eZ
and ||u||BS is finite for some (s,p,r) satisfying (2.19) then u belongs to BP,T(]Rd), owing to the

aforementioned Bernstein’s inequalities. This fact will be used repeatedly.

12
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3 The proof of Theorem 1.1

This section is devoted to the well-posedness issue for System (1.11) in the slightly nonhomogeneous
case. The proof strongly relies on a priori estimates for the linearized equations about 0 which will
be recalled in the first part of this section. The proof of existence and uniqueness will be carried
out in the second part.

3.1 The linearized equations

In the case of a given velocity field w, the linearized temperature equation about 0 reads

{at9+w-ve—m9=f, 51)

9|t:0 = 90.

Obviously, the convection term w - VO is of lower order so that it may be included in the
“source terms” if it is only a matter of solving (1.11). However, considering the above convection-
diffusion equation (3.1) rather than the standard heat equation will enable us to get more accurate
estimates. The same remark holds for the linearized momentum equation (3.2):

diu+w-Vu—pAu+VQ = h,
divu =0, (3.2)

’u,‘t:O = UuqQ-.
The reader is referred to [12] for the proof of the following two results.
Proposition 3.1. Let 1 <p<p; <oo and 1 <r <oco. Let s € R satisfy
d d
s<l4+—, or s<1+— if r=1,
1 p1
11 1 1y (3.3)
S>—dm1n{—,—/}, or s>—1—dm1n{—,—/} if divw =0.
p1 p b1 p

There exists a constant C depending only on d, r, s and s —1 — z% such that for any smooth
solution 0 of (3.1) with £ >0, and p € [1,00], we have the following a priori estimate:

o 1 geCWm(T’(l@oIIB;,T+|f|le<B;,T>)

L’;“(BP,TP)
T
Wo D)= [ IVl 4 d i s,
1 0 B;?l,ocﬁL"o pP1
with T 1
Wpl(T):/ [Vw(t)| o dt if s=44 1.
0 BP1 P1

P11

Proposition 3.2. Let p, p1, r, s and W), be as in Proposition 3.1. There exists a constant C
depending only on d, r, s and s—1— pil such that for any smooth solution (u, V@) of (3.2) with
>0, and p € [1,00], we have the following a priori estimate:

_1
Arllul, yee <€D (”“O”Bﬁm * ”7””%(3;,»)’
T\ Bp,r

19Q = @iy ., < €@ —1) (luallsy  + 1Pz, )

Above, P and Q stand for the orthogonal projectors over divergence-free and potential vector-
fields, respectively.

13
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3.2 The well-posedness issue in the slightly nonhomogeneous case

For proving existence, we will follow a standard procedure, first we construct a sequence of approx-
imate solutions, second, we prove uniform bounds for them, and finally we show the convergence to
some solution of the system. In the case of large initial velocity, we will have to split the constructed
velocity into the free solution of the Stokes system with initial data wug, and the discrepancy to this
free velocity. Stability estimates and uniqueness will be obtained afterward by the same argument
as the convergence of the sequence.

Step 1. Approximate solutions

Solving System (1.11) will be based on an iterative scheme: first we set (6°,u% VQY) = 0 then,
once (6™, u", VQ") has been defined over Rt x R?, we define (§"+1, u"*+1 VQ"*!) as the solution
to the following linear system? :

aten—i-l + oy v9n+1 _ RAen—i-l — an’
atun—i-l + - vun-i-l _ ﬁAu"'H + VQn-H — Cn’
div unt! = 0, (3-4)
(0" w2 = (Sut160, Sni1uo),

with S, defined in (2.18) and, denoting 9™ := 1+ 6™,
a” = a"(0") = div ((k(9") — R)VO") — &' (9™)|VO"|?,
"= (O™, u™, VQ™) = div (u(9™) — p)Vu™) — 0"VQ™ + ATV PV
+AZAO"VO™ + ALV VO + AFVu™ - VO™ + AZDu™ - VO™
Above, it is understood that A} := A;(¥") with A; defined by (1.8).

Step 2. Uniform bounds

In order to bound (671, v+, VQ"*1), one may take advantage of Proposition 3.1 with s = d/p;
and Lebesgue exponents (pi,p2) (here comes the assumption that 1/py < 1/d + 1/p2), and of
Proposition 3.2 with s = d/ps — 1 and exponents (p2,p2). Concerning 6", if py < p; then we

. SRR R
use the embedding Bj?, < B!

b1 - We eventually get

u™ .
Il HL%(BZ£?12+1)(

107" | sm oy S e H5n+190|\351/31 + HCL"HL%(B;{T))a (3.5)

u™ .
Il ”L%(Bzé?Jrl) (

1 sy + IV Q™ sy S Sntrtoll gums + 1"y ooy ). (3:6)

Let us now bound a” and ™. Using Propositions 2.3 and 2.5, we easily get

™l o < L+ 00"] o (o™l o 107, 4y +IVO"]* o). (3.7)
BPL BP1 BP1 BP1 P1

P11 P11 P11 P11 P1,1

.4 q
As regards ¢, it is mostly a matter of bounding the following terms in Ly (B,?; ) (keeping in
mind that 1/ps <1/d+1/p1):

V20" . Ver, VO PVeT,  div(0"Vu"), V0" ®Vu" and 0"VQ".

Indeed, on any interval [0, T, taking the 9™ dependency of the coefficients into account will only

multiply the estimates by some continuous function of ||6™|| . In what follows, this function
LE(B,L)

will be denoted by Cpyn.

3Note that the existence of solution for this system may be deduced from the case with no convection. Indeed,
considering the convection terms as source terms, it is not difficult to construct an iterative scheme the convergence
of which is based on the estimates of the previous subsection.
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-1
Now, if p; < 2d then Proposition 2.3 ensures that the usual product maps Bpl1 1 X B o 11 in
d

L4
B!, . Therefore, if p; < ps, then functional embedding implies that
[v2gr - VOl g S HV%’"H 2 [[VO"l 2 (3.8)
P2 1 p1,1 pl 1
To deal with the more complicated case where p; > p2, we use the following Bony’s decompo-
sition:
V20" - VO™ = Tg29n VO™ + R(VZ0™,VO™) + Tygn V20",

Finally, Proposition 2.2 enables to conclude that under conditions

1 1 1
p1<2d, p1<2py and — < —+
p2~ p1 d
we have
v20m - v19”||B%7 V26" o e[|V o+ V26" o o VO] o (3.9)

Bounding |V"|?V0" stems from similar arguments. Under the above conditions, it is found that

VO *Ver || o SVl o [IVO"| o (3.10)
BPQ BPl 5 P1
p2,1 P11 p1,1
We also easily get
[div (0" Vu)| oy SO o [Va™[| o +[10"] apn[[Vu"] o, (3.11)
Bm,l Bm,l BP‘Zvl Bm,l Bmwl

Finally, according to Inequality (2.8),

HVU"®V9”||B%4 < ||V9”H HVU"H
p2,1
10"VQ" || o S oot « ||VQ"||
Bzfzzwl le PZ 1
provided that
1 1 1 1 1 1
—+—>- and —+->—- 3.12
P p2 d p1 d T p2 (3.12)
So, plugging all the above inequalities in (3.5),(3.6) finally implies that
Wl g,
T 1 n
16" o Se A (1ol a o+ Con 0" r)): (3.13)
el gy,
n n 1
[ yma gy +19Q ™ may S %30 (Jluoll o s
p2 1
JFC@"HQHHXM()&)(||9n||XP1(t) + Hun”i/m(t) + Hin”Zm(t)))' (3.14)

Note that the right-hand sides involves only initial data and at least quadratic combinations
of the norms of (6™, u™, VQ"). From a standard induction argument, it is thus easy to find some
small constant 7 such that if

10oll &+ lluoll 2, <7 (3.15)
BPI P2
p1,1 P21
then, for all n € N and ¢t € R, we have for some K > 0 depending only on the parameters of the
system and on d, p1, ps,

1671 501 2y + 1™ g2 ) + IVQ™ 1 o2 ey < K (1001, 2 + o]l 2 ). (3.16)
Bpl BP2

P11 p2,1

This completes the proof of uniform estimates in the case where both 6y and wug are small.
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Let us now concentrate on the case where only 6y is small. Assuming that 7" has been chosen
so that

T
eXp(C/ . dt) <9, (3.17)
0 3522,1
and that 6y is small enough, Inequality (3.13) still implies that
10" | o () < K160l (3.18)
Bpllyl
if (1.13) is satisfied and if 6™ also satisfies (3.18).

However, if ug is large then Inequality (3.14) is not enough to bound u"*!. Therefore we
introduce the “free” solution uy to the heat equation

Our, — ﬂAuL = 0, (3 19)
urli=o = o, -
and define u} := SnuL. Of course that divug = 0 implies that divur = 1. Now, @"t! :=
u Tt — utt satisfies
uu™t + - Va't — pAu" Tt vt = e,
divant! = 0,
’an+1|t:0 = 05

with ¢" = ¢" —u" - Vu} .

.
Note that u"™ - Vu’L’H =div(u" ® uzﬂ). Hence, as B!?, is an algebra for ps < oo, we have

p2,1
[ Py T PR 17 PR (PR (3.20)
p2,1 P21 BP‘Zvl p2,1

Hence, bounding ¢ as above but splitting «™ into 4" +u} when dealing with the terms Vu™-Vo"
or Du™ - V6™, we get under hypothesis (3.17), for all ¢t € [0,T],

||ﬁn+1||)'/172(t) + Hin-H”Zm(t) < C(HonHXm(t)(||9n||XP1(t) + ”ﬁnHYm(t) + HinHz'Pz(t))

IV ).
BPll)

Hlucll o (el o + VO o )+ 67 .
L?(BY L2(B? L2(BMt L Li(B2))

2
t P2y1) t p2,1 t p1,1 t P1s

Therefore, if we assume in addition that 7" has been chosen so that

fJucll o o HIVQLl a4, <7 (3.21)
L3(BP2 )NLL(BP? Ly(By2, )
and if
@™ lye2 () + IVQ™ | o2y < 7 (3.22)

then we have also (taking 7 smaller if needed) (3.17) and
1T gy + 19Q™ N ooy < 7

Now, an elementary induction argument enables us to conclude that both (3.17) and (3.22) are
satisfied (for all n € N) if T" has been chosen so that (3.21) holds.
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Step 3. Convergence of the scheme

Let us just treat the case where only local existence is expected (that is ug may be large). We fix
some time T such that (3.21) is fulfilled. Let (&",u"™,dQ") = ("F1 — o untt —yn, Q" — Q™).
We have

Q™ + u - V" — RAD" = —aunl VO 4 et — gn,

Opdu™ +u™ - Vou™ — GAdu™ + V" —u" v 4 et — e
(59”, 5u")|t:0 = (Aneo, Anuo)

By arguing exactly as in the proof of the stability estimates below, it is not difficult to establish
that if 7 has been chosen small enough in (3.21) then for all n > 1,

n n n n-d n(4 —1 .
18™ | s ¢y + 180" [0 ¢y + 182" o oy < C(2775 [Anboll o + 252 V]| Ao r2)

1 n— n— n—
+§(H59 1||Xm(T) + | du 1”1’/@2(T)+ VR 1”z'pz(T))-

Hence (0", u™, VQ™)nen is a Cauchy sequence in F2'P2. The limit (6, u, VQ) belongs to FR 72
and obviously satisfies System (1.11).

Step 4. Uniqueness and stability estimates

Let us consider two solutions (01, u!, VQ!) and (62%,u?, VQ?) of System (1.11), in the space F1211P2
with (p1,p2) satisfying (1.12). The difference (#,du, Q) = (6% — 01, u? — u', Q% — Q') between
these two solutions satisfies
0 +ut - VO — RAY = —du - VO? + a(0?) — a(0Y),
Opdu +ul - Vou — iAdu + ViQ = —du - Vu? + c¢(0?,u?, VQ?) — c(0',u, VQL),
div du = 0.

Therefore, according to Propositions 3.1 and 3.2, we have for all ¢ € [0,T],

flut

d
1.5 P2
10l oy S e o (ol o +law- VO + (@) —al@)l] ),
Bpl,l Lt(Bpl,l) Lt,(Bpl,l)
[
1pP2
18l gns oy + 190 sy S e 1O (ouoll a oy + lw- Va2l
B 2 Ll(BP2 )
p1,1 t pa,1
o0, w2, VQ?) — (0", QY| a ).
Li(B,21 )

The nonlinear terms in the right-hand side may be handled exactly as in the proof of the uniform
estimates (as the norms which are involved are the same, there are no further conditions on p;
and ps). For instance, we have for 10_11 <L+

- P2
Iou-VO| o Sleull o VO e el VO e
LBy L3(B,2 1) L¥(B,! Li(B,2, ) L (B,

and, because

a(6?) — a(0") = div ((H(qs@) — K(9") V02 + (k(0") — g)vae)
— (&' (9?) — &' (91))|VO? > — &' (9")(V (0" + %) - V&),

17
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we have, according to Propositions 2.3 and 2.5,

a(6?) ~ a8 s < Cono((IV6' s +IVE o )IVEI o

P11 P1 1 P1y1 P1,1

HIVOI? o + (V202 )||59H a 0N a2 AD]] )
pP1 pP1 BP1 BPL

p1,1 P1w1 p1,1 P11 r1,1
We may proceed similarly in order to bound the right-hand side of the inequality for du. We
eventually get for all ¢ € [0, T,

18]l %01 1y < Clor 62 2 (”690”3% 101 1 ) 10ull 7 ey + (16" 10 2y + H92HXm<t>)||59|\Xm<t>)a

P11

|0l a1y + VORI 202 r) SCel,eZ,ul(ll(?uoll 4 +Hu2H - (H&’IIXm 0+ l10ullyrz )
pz 1 t P2, 1
2 2 .
HIv e FIVQ, )@

t pa,1 t pa,1

(10 01 ¢ty + 107 03 (1)) (NN s 1) + 100l a0y + IIWQHz'pz(t)))-

In the case where (6%, u!, VQ') and (6%,u%, VQ?) are small enough on [0,7], all the terms
involving (&, du) in the right-hand side may be absorbed by the left-hand side. This yields stability
estimates on the whole interval [0,7T], and implies uniqueness.

The case where the velocity is large requires more care for it is not clear that the terms

corresponding to div (#-Vu?), Vu?-Vd, du-Vu? and HVQ? are small compared to H&’”Xm O

0ullyr2s (1) + [IVOQ 502 1) However, we notice that they may be bounded in Ll(B;Z2 1 ) by

L¥ (B, 1) Ly (B 5221) L3 (B2 ) L?"(Bm 1) LY(B;2 ) LiB2, )

(veol | o+l )HuQH a4+ (| (Ive?ll a0 +IVQ ).

Obviously the terms corresponding to u? and VQ? go to zero when t tends to 0. If both solutions
coincide initially, this implies uniqueness on a small enough time interval. Then uniqueness on the
whole interval [0, 7] follows from standard continuity arguments.

For proving stability estimates, one may further decompose u' and u? into

1

w=a'+u;, and u?

—2
=u” +ur,

where uy, stands for the free solution to the Stokes system that has been defined in (3.19). We
can thus write

lw?ll ayn < flurll e ap @ g TR
LRBEZ)ONLHBIZ, ) LRBE)NLHBIZ, ) L3BEZ)NLHBIZ, )

If T has been chosen so that (3.21) holds true and if (6%,u?, VQ?) is the solution that has been
constructed above then we conclude that the above terms may be bounded by 7. So they may be
absorbed by the left-hand side, and it is thus possible to get the continuity of the flow map on
[0,T] for T satistying (3.21). The details are left to the reader.

4 The proof of Theorem 1.2

In this section we establish local well-posedness results in the fully nonhomogeneous case: we just
assume that the initial temperature is positive and tends to some positive constant at infinity
(we take 1 for notational simplicity). In this framework, the estimates for the linear equations
considered in Section 3 are not sufficient to bound the solutions to (1.6) even at small time. The
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reason why is that some quadratic terms such as Vu - VO or 6V(Q may be of the same order as
the terms of the left-hand side hence cannot be absorbed any longer. In the fully nonhomogeneous
case, the appropriate linear equations that have to be considered have wvariable coefficients in their
main order terms.

The first part of this section is devoted to the presentation and the proof of new a priori
estimates for these linear equations. As we believe this type of estimates to be of interest in other
contexts, we provide the statements for a wider range of Lebesgue and regularity exponents than
those which will be needed to establish the well-posedness of (1.6) in our functional framework.
The second part of this section is devoted to the proof of Theorem 1.2.

4.1 The linearized equations

In order to bound the temperature, we shall establish a priori estimates in nonhomogeneous Besov
norms for the solutions to

{8t9+q-v9div(nv9) = f (4.1)

0)t=o = bp.
Our main result (which extends the corresponding one in [8]) reads:
Proposition 4.1. Let 0 satisfy (4.1) on [0,T] x R%. Let (p1,p2) € (1,00)% and s € R fulfill
1 1 1 1 1 1
—1—dmin{—,—,,—}<s§dmin{—,—+—}- (4.2)
P1 Py D2 p1 p2 d

Suppose that the conductivity function k, the divergence free vector-field q, the initial data 6q
and the source term f are smooth enough and decay at infinity, and that

m:= min k(t,x) > 0. (4.3)

 (t)€[0,T]xR?

Then there exist constants ci1 p, (d,p1,m), C1 p, (d,p1,p2,5,m), 614,1 (d,p1,s,m) such that the solu-
tion to (4.1) satisfies for all t € [0,T] :

Crp (IVally aspy +HIVEI? )
<e " RIEHAS S

||9||Z?°(B§1,1) + Cl,p1||9||Lt1(B;1+j) (4.4)
X ([10ollBs, , + Crp A0l Ly eny + I flLi (B, 1)-

Proof. As a warm up, we focus on the special case p; = p2 = 2 and s € (—d/2,d/2] which may
be achieved by classical energy arguments. Applying A; to (4.1) yields for all j > —1,

d0; + q - V0, —div (kV0;) = f; + R} — div R, (4.5)

where

0; =200, fi=A;f, Ri=[q,A;] V0 and R? = [k, A;]V0.
Taking the L? inner product of the above equation with ; and integrating by parts (recall
that divg =0), we get
ld 2 2 1 P2
3 g N0illze + [ &IVOIZ < 110312 (I fsll = + |1 Bjll = + [|div Bj|z2).

Notice that we have ||V, 12 ~ 27(|6;]||12 for j > 0. Hence, dividing formally both sides of the
inequality by [|0;||z2 and integrating with respect to the time variable, we get for some constant
c1 depending only on d,

10120 L2y + cxm22 10| L1 2y <N(00); 122 + 65 eam2® [ A1l 1y (12
+ HfjHL}(L?) + HRgl‘HLg(L?) + HdiVRfHL%(LQ)a
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where
o' =1ifj=—1 and 6;'=0ifj# -1

Applying Inequality (2.12) with regularity index s and Inequality (2.13) with regularity index
s+ 1 and v =1 yields
t
IRlsin S270%; | I9al ol V0 g bt it —dj2< s < dj2-+1,

t
[div B[ 11 (12 gz—jscj/ V&l gar2 VOB, dt’ if —d/2—1<s<d/2.
0 2,1 >

Now multiplying both sides by 27%, summing up over j and taking advantage of the interpo-

lation inequality |- || g2 S ||+ 15| ||}/ in Proposition 2.1 yields
) , 2,1

100z 55 ,) + 01l s g2y <NOollBs, + cxm|Abllzyzey + [ fllLyos )
t
+ Cl/o (”quB;/f + HVHH?BS/IZ)H@HB;l dt.

Then applying Gronwall’s inequality leads to Inequality (4.4).
To treat the general case 1 < p; < oo we multiply (4.5) by [0;P*~260;. We arrive at
1d

e / 10,7 d + (p1 — 1) / 516,17 2190 die <0527 (1l s + IR 2o + iy B2 1 ).

Next, we use (bearing in mind that 1 < p; < oo) the following Bernstein type inequality (see
Appendix B in [13]):
/|9J»|Pl—2|v9j|2 > 2% / 0;[Pr dz for j > 0. (4.6)

Hence we get

d 4 _ .
0315 + 227 ml0;11 55 < 10511750 (1 fsll e + 1B llees + ldiv B || on ).
Therefore dividing both sides by |67, and using that, according to (2.12) and (2.13),

. 1 1 1 1
R} <275¢ ||V VO| o1 if —dmin| —,— ) <s<1+dmin{ —, — |,
1R} 279194 e [0 5 (55 ) <o ()

. 11 d
HdiVR?HLm 52_JSC]‘||V:‘€HB.1/;31HV9|le1 if —dmin(—/—) <s4+1<14 —,
P11 ’

P11 D1 D1

integrating in time, multiplying both sides with 27%, summing up over j € Z and performing an
interpolation inequality, one arrives at

|‘9||Z;?°(B;1’1) + 01,p1m||9|\L§(B;1+§) <l|ollBs, , + 1., 27T m|| A 0| Ly 1) + Ifllzyces, )

t
2 /
+Cip, / (¥4l ga7ma + IVl 075 055,

which yields (4.4) by Gronwall inequality, except in the case where s is too negative.

To improve the condition over s for s negative, it suffices to use the fact that, owing to
divq = 0, one has
R} = div ([q, ,16).

Then one may apply Inequality (2.13) to div[g, A;]6 with s+ 1 instead of s. The details are left
to the reader. O
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Remark 4.1. Let us further remark that
div R} = [Vk,Aj] - VO + [k, Aj]A6.

This decomposition allows to improve the condition (4.2) for positive s: if we only assume that
s < 14+dmin(1/p1,1/p2) then Inequality (4.4) holds true with the additional term ||V2K||L1(Bd/pl)
t p1,1
in the exponential. As only the case s = d/p; is needed for proving Theorem 1.2, we do not provide

more details here.

Note also that, for s = d/p1, Condition (4.2) holds if and only if 1/p1 < 1/p2+1/d.

In the fully nonhomogeneous case, the appropriate linearized momentum equation turns out to
be

du+ q - Vu —div(pVu) + PVQ = h,
divu = 0, (4.7)
u|t:0 = o,

where ¢ is a given divergence free vector-field, and (u, P) are given positive functions. Let us first
consider the case p; = p2 = 2 which may be handled by standard energy arguments.

Proposition 4.2. Let P, p, q, h, ug be smooth and decay sufficiently at infinity with divg = 0.
Let (u,VQ) satisfy (4.7) on [0,T] xR%. Let s € [0,d/2]. Suppose that, for some positive constants
m and M, we have

||VP||L39(B;/1271) + HP”L‘X’([O,T]XRd) S M and min(P, ,LL) Z m. (48)

There exists a constant cp = cp(d, s) such that, if for some integer N, one has

IER;3£[07T} SnP(t,x) >m/2, ||P— SNPHL;?(BS’/IZ) < cpm, (4.9)

then there exist constants co(d,m), Ca(d,s,m, M, N), ég(d,s,m), Cs(d,s,m,M,N), such that
for all t € [0,T],

2
C2(IVall  parz, HIVHIZ ar2)

lullzee(ms ) + e2llull Ly gz <e (4.10)

X (luollsg, + CollA—vullLyr2y + CallhllLi(ss ),

2

t
IVQlsyco5, < o [ (Inllog, + IVallpgellull, + 10 gl Vg, ) d. (a1
Proof. Following the proof of Proposition 4.1, we apply A; to (4.7). This yields
Oy + q - Vuy — div (uVu;) = h; + R} — div R} — Aj(PVQ),

where

uj = Aju, hj:=Ajh, le- = [g, Aj] - Vu, RJQ- = [p, Aj] - Vu.

As above, we thus get if —d/2 < s < d/2,
[ullzee g ) + c2(dmllull pypgizy < lluollps, + Colez, s)IA-rullywe) + hllyss )

t
+C(d.sm) [ (194 pgolellng, + Va1Vl ) de + 1PV QUycng - (412
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We now have to bound V. Applying the divergence operator to the first equation, we then
arrive at the following elliptic equation with variable coefficients*:

div(PVQ) =divL with L:=—u-Vg+Vu-(Vu)T +h. (4.13)
First we take the L? inner product to the equation (4.13) with Q to get
mlVQl 2 < | L2 (4.14)
Next, applying A; to (4.13) yields (with obvious notation)
div (PVQ;) = div L; + div ([P, A;]VQ).
Hence, taking the L? inner product with @; and integrating by parts yields
mlIVQ, e < 1Lllze + P A1V Q) o
So using the commutator estimate (2.10), we easily get if —d/2 <v <1 and —d/2 < s <v+d/2,
IV Qlryng,y < WElcyss,) +Cald s WIVP e parere IVQl pypyzey (415)
Now we consider two cases:

e Case 0 < s < d/2. Let us first assume that VP has some extra regularity: suppose for

instance that it belongs to L%O(Bgf12+l’71) for some v such that v +d/2 > s> v > 0. As
[-llsg, = Il - [l= we arrive (by interpolation) at
v/s 1-v/s v/s 1-v/s
IVQl psrr S IVQITL VR S ILI IV 5" (4.16)
Hence (4.15) implies that
V@l Lyc5,) < O, vem)(A+ VP o)W lymy,y (417

Now, if P satisfies only Conditions (4.8) and (4.9) then we decompose it into
Note that VPy € H* and that the equation for @ recasts in

div (PyVQ) =div(L + Ex), where Ey = (Py—P)-VQ.

Therefore, following the procedure leading to (4.15) and bearing the first part of Condition
(4.9) in mind, yields

m
2V Qllnacss,) < 1L+ Bxllnicss,) +Cald: 5,0 IV Pl o sz IV QU Ly 50 (418)

We notice that for —d/2 < s <d/2,

IVPx vty < Co@2VITPY e g,
IENIiBs ) < Op(d )P = Pl g V@l i3 ,):

4Here we use that div (¢ Vu) = div (u - Vq) and div (div (uVu)) = div (Vu- Vi) owing to dive =divg = 0.
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hence the term pertaining to Ex may be absorbed by the left-hand side of (4.18) if cp is
small enough in (4.9). Then using the same interpolation argument as above, we end up with

v s/v
mlIVQlLys,) < Cald 5,2V (L VPl e garen)” Ilyees - (419)

Now, in order to complete the proof of Inequality (4.11), it is only a matter of using the
product estimates (ii) stated in Proposition 2.3 for bounding L, which implies that

ILllBs, S WVall g lullss, + Vel g [Vulss, +lhllsg, i —d/2<s<d/2

2, 2,

e Case s = 0: in this case, the interpolation inequality (4.16) fails, so that we have to modify
the proof accordingly. First we apply Inequality (4.15) for some 0 < v < 1, and Inequality
(2.10), to get (by virtue of (4.14)):

I[P, Aj]VQHL%(Bg,l) 5Cj|\VP|‘L30(B;1{12+”*1)HVQHL}(B;’;“)
SV Pl e garmve Iz,
hence
||VQHL§(B‘2{1) S ||LHL§(3371) + HVPHLtco(Bg’/f*V*l)HLHL,}(LZ)

(4.20)
< Cd,v,m)(L+ ||V P oo gaszsv—1) ) Ll L3 (B3 )5

which is quite similar as (4.17) and hence the same procedure implies also (4.19).

In order to prove (4.10), it suffices to plug the above estimate for the pressure in (4.12). The
main point is that, if —d/2 < s < d/2 then we have

1PVQIls;, < (1Pl + VP g

2,1 ~ -
2,1

DIVellss,

as may be easily seen by decomposing PVQ into A_1P VQ + (Id — A_;1)P VQ and using the
product estimates of Proposition 2.3. Then Gronwall lemma leads to Inequality (4.10). O

Remark 4.2. In Proposition 4.2 we need the assumption s > 0 to get the necessary L? estimate for
VQ. However, some negative indices may be achieved by duality arguments. As the corresponding
estimates are not needed in our paper, we here do not give more details on that issue.

We now want to extend Proposition 4.2 to more general Besov spaces which are not directly
related to the energy space. To simplify the presentation, we focus on the regularity exponent
s = d/p2 — 1 which is the only one that we will have to consider in the proof of Theorem 1.2. Our
main result reads:

Proposition 4.3. Let T > 0 and (u,VQ) be a solution to (4.7) on [0,T] x R, Suppose that the
gien functions P, u, that the divergence free vector-field q, the initial data ug and the source
term h are smooth and decay at infinity. Let p1 be in [1,00) and p2 € [2,4] satisfy

2p1 1 1

. 1 .
p— if p1>2, p—2§p—1+3, and (p1,p2) # (4,4) if d=2. (4.21)

Assume that there exist some constants 0 < m < M, cpyp, p,(d,p1,p2) small enough, and

N € N such that
min(p, P) > m,  ||P|pee(j0,r)xre) + ||VP||L%0(Bd/p11—1) <M, (122)
P1>
inface]Rﬂl,te[O,T] SnP(t,z) >m/2, |P— SNP||L39(B<1/P11) < CPpype M-
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Then there exist constants ca p,(d, p2,m), Cap, p,(d, p1,p2,m, M, N), 6’24,2 (d,p2,m),
C3.p1 po (A, D1, p2,m, M, N) such that the following a priori estimates hold:

HUHZgO(B;‘Z/ﬁTl) +C2,p, HUHL%(B%,’?“)

C2,p1.05 IV +Val*’3. +HIVu? V) ™
12Vl o IV s 1 HIV Sy i HIVHISGT 0

IN

(&

(ol aroa + CapllA-rtllyzray + Copl Il 3 parstinar))

(4.23)
with n = min(1/2,d/p1), and
t

VO a < O [ (lgraes + 19l il s+ -l

+(Fpoia (4.24)
+ HV,uHBd/pl HVUHBd/pQ—l + HVU . V,ulle) dr.
r1,1 p2,1
Proof. With the notation of Proposition 4.1, we have
12722~V R}|| o2 ) jezller S IVal arns llull garna-, (4.25)
1722~V div R || e2) ezl S IVHl garm [Vull garna-r, (4.26)
1BYQl gorsas S (1Pl + 1Pl gorna 1) [VQ g . (4.27)
P2, P1, P2,

Indeed® Inequality (4.25) follows from (2.10) with “p1” = “py” =po, V" =1, “s" =d/ps—1
(note that the condition ps < 2d is not required for divg = 0, a consequence of (2.13) with
“s” = d/py and “v” = 1) while (4.26) stems from (2.13) with “p” = pa, “p2” =p1, “V° =
1, “s” = d/p2 (here we need that 1/p2 < 1/p1 + 1/d); and (4.27) is a consequence of the
decomposition P = A_; P+ (Id—A_;)P and of (2.7) with “s1” =d/p1, “s2” =d/p2—1 (which

requires that 1/ps <1/p1+1/d and 1/p; 4+ 1/pa > 1/d).
Now, granted with the above inequalities, the same procedure as in Proposition 4.1 yields

9~ (/A1) | A _

||u||Z§°(Bﬁ£f’1271)+C2’p2HUHL%(BZQ/f)erl) < HUOHBZ;’?“ + c2,p, 1l L (zee)

t
4 Cldpripam) [ (19l g+ 9020l g (428)
0 P2, P1, P2,
1l g vy + (PPl ooy + IV Pl g IVl trrasy
NBE/PET m (L yBYr2Y

So bounding V@ is our next task. First of all, using the fact that @ satisfies the elliptic
equation (4.13), we still have

m||VQ| 2 < ||L||z with L=h+u-Vg+Vu-Vpu.

Hence, given that L? — B;Zgrdm (here comes that pa > 2), we deduce that

m| V@l gersp-arz S | Ll 2. (4.29)
Of course, this implies that

m||[VA_1Ql|Le2 S [|L] 12 (4.30)

5Here it is understood that the quote marks designate the indices in the original inequalities (2.7), (2.10) and
(2.13).
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In order to bound VQ in Bgﬁrl, we use again the fact that
div(PVQ;) =V -L; + V- [P,A;]VQ.
Therefore,
m [1QP9Qi P de £ [ 1072V ay - (L + (P89 Q)] do.
Taking advantage of (4.6), we get after a few computations:
I9Qsllzse S I sllums + P AIVQlir for j> 0.
Applying Inequality (2.10) with

“W =P, W =VQ, “‘p"=p2, ‘p=p, W =1/4, 4" =d/p2-1,

(which is possible provided 1/p1 +1/p2 > 1/d and 1/py < 1/p1 +5/(4d)), we get

I[P, A;]VQ Les < 27j<d/prl>cj||VP||Bd/p11,3/4||VQ||Bd/p275/4 with > ¢ =1. (4.31)
) P21 j

In the case d > 3, arguing by interpolation, we get

2d—5 1
I9Ql s S IVQIEE L IVQIZEE, (432)
P21 P21 p2,2
Therefore together with (4.29) and (4.30), this implies that
2d—4
MVl saes S Dl s+ (L4 IV Pl o)~ N (4.89

In the case d = 2, the interpolation inequality (4.32) fails. However, from (4.29) and (4.31) we
directly get for p1,pa satisfying (4.21),

m||VQ||B§éi271 S ||L||B§£irl + ||VP||B§{?1173/4||VQ||B§QI275/4

(4.34)
S Ll gerva=r + (L IV P gorma—s/a) | L] 22
Therefore, in any dimension d > 2, we have
max(1,2d—4)
mIVQl gorsa-1 12 < Catmnan (1 + VPl garey-o2) L N K )

In order to treat the case where VP is only in L%O(B;ll/ ,pf*l), we proceed exactly as in the
proof of Proposition 4.2, decomposing P into two parts, the smooth large part Sy P and the small

rough part P — Sy P. Under the same assumptions as in (4.27), we find that
HENHBd/’)Z*l < CPpips ”P - PNHBd/Pl HVQHBG’/P?*L
p2,1 p1,1 po,1

Therefore, if ¢pyp, p, is small enough in (4.22), we get

)max(l,Qd—4)

||VQ||L%(BZ/131271|’7L2) S CQ1d7p17p22N/4(1+||VP||L709(BZ/P11*1) ||L||L%(Bz/p1271ﬁL2)' (436)

In order to complete the proof of (4.24), we now have to bound L. First, we notice that,
applying (2.7) with “p1” = “pa” = pa, “s1” =d/pa and “sa” = d/ps — 1 yields, if ps < 2d,

I Vall garnams S IVl yarea il arnas. (437)
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If 2d < py < oo then, owing to divu = 0, the same inequality is true. Indeed applying Bony’s
decomposition, we discover that

u-Vqg=T,Vq+ Tyqu+ div R(u,q — A_1q) + R(u, A_1Vq).

The first two terms may be bounded as in (4.37). For the third one, one has (because F(q¢—A_1q)
is supported away from the origin)

ldiv R(u, g — A 1g)|yurmas S |R(wq~ A1) yorns
P2, P

S
2>
S Nullgrsale = A3l s S Nl s [Vl v

And finally, we have

Ru,A_1Vg) = Y AjAVq (Aj+Aj+Aj1)u,
~1<5<0

so it is clear that we have

1R(u, AV o) garva—s S 1R(us A1V ) [[Lo2 S [ Vallnoe [[S2ullpee S IVl garve [l garpa-1-
P2 P2, P2,

Next, just as in (4.27), under the conditions 1/ps < 1/p1 + 1/d and 1/p; + 1/ps > 1/d, we have

IV Vall s S VAl oy [Vl - (438)

This gives (4.24).
In order to complete the proof of the lemma, we still have to bound - Vq and Vu -V in L2.
To handle the former term, we just use the fact that

BIPTVR o i py <4

Hence, by virtue of Holder’s inequality,
||u : VqHLz 5 HUHBd/pzfl/Z quHBd/prl/z. (439)
p2,1 pa,1

Concerning the latter term, if both p; and ps are less than or equal to 4 then one may merely
use the embedding

d/p1—1/2 d/p2—1/2
BRIV 14 and BYRTV? o L1,

hence
1V Viallze < 90l gorm-sr2| Vull -
P11 p2,1

Now, if p; > 4 then we first write

2py

V- Valzs < [Vilon |Vull s with 71 = =L
—

Let n = min(1/2,d/p1). Then we notice that if p; < p; then

d - d -1 D
BY/RTT e [P and BY/RETMTT o P

Therefore
V- Vullze SNVull gare -Vl garps 140
p1,1 p2,1

Together with (4.28), interpolation inequalities and Gronwall lemma, this enables us to complete
the proof of (4.23). O
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Remark 4.3. The quantities 517p1||A719HL%(Lp1)’ 6’2||A,1U||L%(L2) and 621P2HA*1UHL%(LP2) m
the a priori estimates (4.4), (4.10) and (4.23) respectively can be absorbed if the time t is small.
Indeed, for instance, one has for any s € R,

1A16l 2oy S N6l2cme, ) < HOlLay, -

hence 517171 [A—10l L1 (L) can be absorbed by the left-hand side if t is small.
In the case of the linearized momentum equation, plugging (4.10) in (4.24), we thus deduce
that, for small enough time, one has for some constant C depending only on d,p1,p2, m, M, N,

d —1
LE(L2NBy 27

Ivell .., <]
LI(BF2, NL?)

E 4/3 2/(1—
C eVl yasmy IV, 1 jo HIVHIZ 4y HIVIZ G0 ) dr
r2,1 Bpa.i P11 Bpi —1.

" ('UOHBZQ,‘?+||h”L%<L?ﬂB§£f’f1>> <

Remark 4.4. Compared to the statement of Proposition 3.2 in the case s = d/pa — 1 one has
to assume in addition that ps < 4 and also that ps < 2p1/(p1 —2) (if p1 > 2). This is due to
the fact that bounding VQ, through the elliptic equation (4.13) requires a L? information over the
right-hand side, that is on h and on quadratic terms. The naive idea is just that, according to
Hélder’s inequality L* bounds over Vq, w, Vu and YV provides this L?> bound. This is the key
to go beyond the energy framework for (4.7). At the same time, we do not know how to treat the
case pa > 4.

4.2 The proof of the well-posedness in the fully nonhomogeneous case

We follow the same procedure as in the proof of Theorem 1.1: first we construct a sequence of
approximate solutions, then we prove uniform bounds for this sequence and finally, we show the
convergence to some solution of (1.6). Compared to the almost homogeneous case, the main
difference is that our estimates rely mostly on Propositions 4.1 and 4.3. Furthermore, in order to
handle large data, we will have to introduce the “free solution” (fr,uy) corresponding to data
(0o, u0), namely the solution to

00 — RAOL, = 0,
dwur, — pAuy, = 0, (4.40)
(Or,ur)li=0 = (6o, uo),

with & = k(1) and @ = u(l).

Step 1. Construction of a sequence of approximate solutions

As 0 is in Bdl/ﬁl and up, in Bgﬁrl, the above System (4.40) has a unique global solution
(0L, ur) with (see e.g. [4])

6 € Cr(BY") N LLA(BIRT?) and  up € Cr(BYP ™) N LL(BY M) for all T >0,

and we have (if T is small enough and with C' depending only on d, p1, p2)

_ e <
19Nz gy + FIOLN Ly (armavay < Clloll gy (4.41)
||UL||Z%0(B%§)1271)+N||UL||L1T(B§£§2+1) < C||U0||B§2/’vlzfl-

Note also that the divergence free property for the initial velocity is conserved during the

Bd/pl), we have, for any T > 0,

evolution. Another important feature is that, owing to 0y, € E%’( )

Glim 6 - SNQLHL?(B;’{T) =0. (4.42)
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Let us fix some small enough positive time T. Given (4.42), we see that for any positive constant c,
there exists some positive integer Ny so that

HHL *SNUHLH cm. (443)

a/pry <
L (B, 5

In addition, if the data satisfy (1.18) then one may assume that we have (changing Ny and C if
need be)

| 3

< Sptg < CM, HSnGOHBd/m + HSnUOHBd/pQ—l < CM forall n > Ny. (444)

In order to define our approximate solutions, we use the following iterative scheme: first we set
(0°,u°, VQ°) = (Sn,00, SNn,u0,0) (this is obviously a smooth stationary function with decay at
infinity) then, assuming that the approximate solution (6™, u", VQ™) has been constructed over
Rt x R?, we set 9" = 1+ 6" and define ("1, u"+1, VQ"*H!) to be the unique solution of the
system

0O 4y - VO — div (k"VOHL) = fm,
Ot 4™ - Vur Tt — div (p"Vun ) + 9V QT = h™,
div u™t! = 0,

(O™, w1 fi=o = (Sno+n+160, SNo+n+10),

where
K" = Xk(0™), wt=p¢0"), ff=f140"4") and A" =h(1+4+6",u").

Note that the existence and uniqueness of a global smooth solution for the above system
is ensured by the standard theory of parabolic equations (concerning 6"*1) and by (a slight
modification of) Theorem 2.10 in [3] (concerning u™!) whenever (6™, u") is suitably smooth and
the coefficients k™, u™ are bounded by above and by below. In fact, given (4.44), the maximum
principle ensures that

m/2 < 9" < CM. (4.45)

Hence ™ and p™ are bounded by above and from below independently of n.
Next, we notice that if we set

( zy uza VQE) = (SN(H‘nGLa SN0+nuL, 0)

then the equation for (9"+1, "+, vQntl) = (97+! — ) urtt — ot vQ ! — 0) reads

00" oy - VO — div (k" VOTT) = F7,

Opun Tt + - Vartl — div (uvartl) + (1 4+ 07)vQrtt = H™,
div g t! = 0,

(én—i-l’ ﬂn+1)|t:0 = (07 O)a

where

" — . vonrl + div ((,{n - R)V@erl) +
H' — oy Vu7£+1 o div ((,Un . ﬂ)vu’rLH-l) o éannJrl + A",

Let us point out that, given (4.43), we have (up to a harmless change of ¢)

107 — Sn, 07| a/pry < €M for all n € N. (4.46)

L;?(Bp
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Step 2. Uniform bounds

Bounding (07+!, "+, VQ™*!) in terms of the free solution (fr,ur) and of (97, a", VQ™) relies
on Propositions 4.1 and 4.3 with s = d/p; and s = d/ps — 1, respectively, and N = Ny (here
we have to take ¢ small enough in (4.46)). Using the fact that, as pointed out by Remark 4.3,

taking 7' smaller if needed allows to discard 61||A_19"+1||Lg(Lp1) and 5'2||A_112"+1HL,}(LP2) in
the estimates, we get, under the condition (1.17),

_ cr(Ivu| +HIvs" )
||9n+1||Xp1(T) < Ce 1 L (BAT2) L2.(BE/PL HFn“Ll (BY71)>
TY\"py,1
||1_Ln+1||yp2(T) + ||VQ"+1HZP2(T) < CHHH||L,}(BZ/131271HL2)

2>

ColIVu™ll . yarma IV 1Y 702
TPFpy 1

g ” ;:“'n” — )
— d d
L4/3(Bdgf)12 1/2) [2(5 1/3311) [4(5 1/?311 1/2

xXe ).

From Proposition 2.5 and elementary interpolation inequalities, we gather that all the terms in the
exponential may be bounded by [|0™(| xri (1) + ||u"|ly»2 () to some power. Therefore, if we assume
that

10" | xe1 (1) + "l yee (1) < 2CM (4.47)

then we haveS

107+ sy < Car (17 g gy H 1" VO gy iy H N —RITOL |y o) (4:49)

I8 ey + IVQ™ ey < Cor (10" ey + 1" T2 gy i)

. n _ n+1 nn Ant1
+ Hle((,U, _M)VU’L )||L%~(BS2/’p127lﬁL2) + ||9 VQ |‘L§‘(Bzé,1)127101‘2))-
(4.49)

So bounding the right-hand sides of (4.48) and of (4.49) is our next task. Given (4.47), we
easily get from Propositions 2.3 and 2.5:

n n |12

ey gy < OwlVE I
_ +1

||(Kn - K)ve’z ||L%“(le/,p11+l) S CM(HQHHL%O(Bgl/T)||VHLHL§,(B;i1/Ypll+1)

+HWLHL2T(BZ,’?>||9"||L2T(BZ{T“>)'
If po < p1, the space BZZ/ 71)12 is embedded in the Banach algebra le/ ﬁl. Hence
n n+1 n
||u ’ veL ||L%“(BS1/?11) < C”U HL%(B;Z,FE)HVGLHL%(B;Z{,FII)' (450)

If p1 < po then (4.50) is no longer true. However, from Bony’s decomposition and Proposition 2.2,
it is not difficult to get that

+1
|u™- Vo7 ”LlT(Bgl/T) < ”un”L?T(BZZ/f’f)”voL”LZT(BZl/,pf)JrHunHLZT/(H)(BZQ/iTE)HV@LHLZT/(HE)(BZ{TH)

whenever ¢ € [0,1] and d/p; <1 —e+d/ps.

6In all that follows, we denote by Cjs a suitable increasing function of M. To simplify the notation, we omit
the dependency with respect to d, N, pi1, p2, etc.
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Next, computations similar to those that enable us to bound A™ in the homogeneous framework
lead to

n n (|2 2gn n
||h ||L%(B§2/f312*1) S CM(HVG ||L’21“(B§1/,p11) + ||v 0 ||L%(Bz{f”11*1)||ve ||L§“(le/fjll)

IV 20 sy VO™l e garmy -1e) + ”W"”L%(B%?f)”V“n”L%(BSé?f“))’

provided

1 1 1
p1<2d, p1<2py, —+—>- and — <
P1

1 1+
p2 d P2 T P1

for some ¢ € [0, 1],

Q=
Ul ™

and for p; < 4,

11t ey < Cnr (190" g ) IV a1

2
HIVZO N sy gorm—r) VO Ly (garmaarey + ||V9n||L‘;<B${?f*”2>||V“"||L‘;/3<BZ§?’E*”2>)'
Under Condition (1.17), Holder inequality, Propositions 2.3 and 2.5 also give
n+1
||’LL"VUL HLIT(BZ,IQTIQLZ) 5 ||un||L%(B§2/f312) ||UL||L%"(B;Z£,I712) + ||Un||L%1(B§2/?1271/2) ||VUL||L;/3(BZ‘Z,1712*1/2)

. _ 1
||d1V ((:U’n_:u)vuz )||L1T(Bs£f’12710L2) 5 ||v9n||L%(Bs{?11) ||VUL||L’2P(B;12/’PI2*1)

+ ||9n||L§'9(Bz{,pll)||UL||L%(B52/?12+1) + ||V9"||L%1(le/il*1/2)||VUL||L;/3(BS2/?12*1/2)5
Y An+1 0 An+1
||9ann HL%(B;Z,PE*lmLz) < ”9"”[‘39(3;1/?11)HVQ” HL;(Bzg,pfflﬂLz)'

Let us fix some small positive constant 7); that we shall specify later on and let us assume
that T has been chosen so that

0 d d 1/2 d 2, + ||u d/pa—1/2 d 1, < Tpm. 4.51
I L”L’ZP/E(Bp{?11+s)mL%(Bp{?11+ I)nLL(BE7H) I L||L4T(B,,2/,pf Iy sty S TM (4.51)

Note that, in order that the above condition is satisfied for some positive T' even if 6y is large,
we have to rule out the case ¢ = 0. This accounts for the strict inequality in the conditions

d/pr <1+d/ps and d/p: <1+d/p1,

that we did not have in the statement of Theorem 1.2.

Now, plugging all the above estimates in (4.48) and (4.49) yields (up to a harmless change of
Cum)

107 xos 2y + @ lywz () + IVQ™ | 202 )
< CM(||9_n||xm(T)(||9_n||xp1(T) + @ lyez(ry + IVQ I 202 1))
+ 7 (107 | xon () + 115" yre ) + g + TM||9L||L%0(B§1/31))-
Using (4.41) so as to bound the last term, we see that if we assume that
10" | xp1 ¢y + @™ lyr2(ry + IVQ" | 202 (1) < KTas (4.52)
for some K = K (M) that we shall choose below, and take 7p; so that

CMTMK S 1/2
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then
||é"+1||xm (r) + ||’ﬁn+1||ypz(T) + ||VQ"+1||Zp2(T) < 20MmTMm (M + (K2 + K + 1)TM).

Hence (6nF1 antl, vQn+1!) satisfies (4.52) too if we take K = 2Cy/(1+ M) and assume that 7y
also satisfies
(1+K+K2)T]\/] S 1.

This completes the proof of a priori estimates on any interval [0, 7] such that (4.51) is fulfilled.

Step 3. Convergence

The equation for (#"*! "+l VQmH1) = (71 — oyt —yn, V™ — VQ") reads

O™ +un - VO — div (k" V") = I,
at(;un—i-l + . v&un—i-l —div (ané‘un-l-l) + (1 + eg)v@nﬁ-l — J"’
div qunt? = 0,

(@7, qum )]0 = (ANg+nbo; ANg4ntio),

where
I"=— & VO™ +div (k"VO") + f — L
Jt = — " - Vu" + div (" Vu") — §"VQ" — 0"Vt + A" — p" L
Let b, = 2(No+n)d/py ||AN0+n90||Lp1 and d,, = 2<N0+n)(d/p271)||ANO+n’U,0||Lp2. Since 0y € Bd/p1

p1,1
and uo € By/"2 ™", we have (b,) € ¢* and (d,) € ("

To simplify the presentation, we assume that p; > ps. Then, applying Propositions 4.1 and 4.3
and using the bounds of the previous step, we get (bearing in mind that if 757 is sufficiently small
in (4.52) then one may absorb §"V&Q"*1):

+1
1997 sy < Ot Cor (1715 gy 19" g o 107 g
n n n||2
+||$ HL&'?(BSI/T)(HQ ||L%“(Bs{,p11+2) + ||9 ||L’2F(B;ll/’1)11+1))

HIB" gy ) 107 g o)

186 ) + IV8Q" | znar) < Cd
0 (197 oy (10O iy + 10"y i, + IV Q22 )
8" g sy (10 07V g oy + 10" ooy g )
+||59"||L4T(Bgl/il+1/z)(||u"||L;/3(BZQ/iz+1/2) + ||9"_1||L;/3(Bgl/il+s/z))
I | s gy 1071 g armesrny 18 s g sa=ey 1071 e arme
+||&ﬂ||L2T(Bs2/?12) (HunHLZT(ngff) + ||9n_1||L2T(le/il+l))
I8y g 1" g gy + 1807 | s armarnsn) 197 g s

where C' = C(d, p1,p2).

Let us emphasize that, according to (4.51) and (4.52), the previous inequalities imply that, up
to a change of C);, we have

B"N(T) < Cyyry B™(T) + C(by, + dy).
with B™(T) = [|0" || x»1 () + |0 [|yr2 (1) + [[VQ™ || 202 (1)
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Therefore, taking 7); small enough, we end up with
1
B™(T) < 5B”(T) + C(by + dy).

As (b,) and (d,) are in ¢!, one may thus conclude that Y (B"(T)) < oo , which is to say
(0™, u™, VQ™)nen is a Cauchy sequence and converges to a solution (6, u, VQ) of the system (1.6)
in the space F2'P? which also satisfies the estimates (1.19) (that ¥ > m is a consequence of the
maximum principle for the parabolic equation satisfied by ¢).

Step 4. Stability estimates and uniqueness

To prove the stability, i.e. the continuity of the flow map, and the uniqueness, we consider two
solutions (61, u!, VQ?!) and (0%, u?, VQ?) of System (1.6) in FR"P? with initial data (63, u{) and
(02, u?), respectively. Let 9! =1+ 60! and 92 =1+ 6%, We assume in addition that

99?2 >m
and we fix some large enough integer N7 so that

m/2 <14 Sy, 0" and ||91—SN191HL%C(BZZ/;711)Scm

with ¢ given by Condition (4.22). Finally, we denote by M a common bound for the two solutions
in FP0P2,
T

The proof goes from arguments similar to those of the previous step: we notice that the
difference of the two solutions (#,du, ViQ) := (0' — 02, u! —u?, VQ! — VQ?) satisfies

0,09 +u' - V& — div (+(61) V) -
Oybu+ut - Véu — div (u(01)Vew) + 9'V6Q = .
div du = 0,

(69, 5”)|t:0 = ($0a &UO)’

where
I=—6u-VO0*+V-(kVO*) + f(1 40" — f(1+62),
J=—0u-Vu?+ V- (uVu?) — OVQ* + h(1+ 0 u') — h(1 + 6% u?).
Let B(t) = ||®| xv1 ) + || 0ullyr2 ¢) + | VAR zr2 (). Then arguing exactly as in the previous step,
we get for small enough ¢,
B(t) < CMJVl (”590“3;’1/?’11 + ||&LO||BZQ/TJ12*1 + (H(ela 92)||Lf(B;ll/il+1)mLf(Bgl/f)1l+1/2)
+||91||Lf/s(le/ﬁl+3/2)HL§(B;il/i1+1/2) + ||92||L%(le/f)11+2)mL?/E(B]d)l/,I)11+5)
+”“2”L%<B§£f’f>mLi‘/3<B;‘§i””2> + ”VQZHZ““))B“))'
If the initial data coincide then we have B(0) = 0. Given that the factors of B(t) in the right-
hand side go to 0 when ¢ goes to 0, we thus get B = 0 on a small enough time interval. Then, from
standard continuation arguments, we conclude to uniqueness on the whole time interval [0, 7.
In the more general case where the initial data do not coincide, then one may split both solutions

into
' =07 +60" and u'=u} +a’,

where (6%, u%) stands for the free solution of (4.40) pertaining to data (6§, ud).
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If |\<§90|\B§1/p11 + ||6uo||Bzgpl271 < §, then we have

162 — Gi”Xm(T) + |u? — ui”YPQ(T) < C9.

By arguing as in step two, one may also prove that if 7' is so small as to satisfy (4.51) for (say)
(0},ut) and 7py = & (with & small enough) then (9%, a!, VQ!) satisfies (4.52). Therefore, from
the above inequality, one may conclude that B(T) < 2C n,d. This completes the proof of the
continuity of the flow map.

A Appendix

For the sake of completeness, we here prove the commutator estimates stated in Proposition 2.4.
Throughout, it will be understood that ||(¢;)jezlle2 = ||(dj)jezllen = 1 and that

1 1 1
= :min{l,—+—}~ (A1)
r 1 )

Let R;(u,v) := [u,Aj]v and w=u — A_ju. Then we write the decomposition

R;(u,v) = le»(u, v) + R?(u, v) + R;’(u,v) + R;*(u, v) + R?(u, v)

with
le-(u,v) = [Tq, Ajlv, R?(u,v) = T’Ajvﬂ, R?(u,v) = —-A;T,u,

R}(u,v) == —A;R(u,v), R2(u,v) == [A_1u, Aj]v.

Let us first prove inequalities (2.10), (2.11) and (2.12). By virtue of the first-order Taylor’s
formula, we have

Ri(u,v) = Y [Sjra®, Aj]A v

li—j'1<4

1
= 2_j/ / / h(y)y . VSj/_la(ZC — 2_jtly)Aj/’U(£E — 2_jy) dt' dy,
R4 JO

hence
IR} (w, ) |er S 277V S| < | Ajv] Lo s
whence
@ 1R (w0l Yjenlle < 1@ DNV S a2 | Aol o)
So in the case v = 1, we readily get
1@ R 0) | )seniller S [Vl ol 551 (A2)

To handle the case v < 1, we use the fact that

2DV S; 1l PO Mgl < 3 20D (@ DA ) (Aol ).

J'<j=2

Thus from Hoélder and convolution inequalities for series and under assumption (A.1), one may
conclude that _
127 (| Rjllzer )jenller S N1V gy

oo, T

HU||B;;?1 if v <1. (A.3)

Concerning R? (u,v), we have

RS (w,v) [ <> A5 Sjri20]| L,
i'>j-3

and we consider the following two cases (still under Condition (A.1)):
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® p12>p2
2% || RS (u, 0) | o < 27° Y (| Aeii Lo [|Sjr s Ajv] e
i'>j-3
S0 Y 2| Al | A
j'>7-3
S S 2R al L dlll L,
j’>g 3 Bpp22,r2 Boo,'rl P1
® p1 < p2:
zﬂwgwmmmlngE:|m,wmw&+ﬂ¥w e
3'>j—3
SED DI AR [ P .
J'2j=3 pairs pg ppl "1
Hence for v > dmm{p ,p—2
1271 BF (u, v)l|en )jenller S TN oy [0l s - (A.4)

P1,7T1
P2 T2

In the case p; < pa, bounding R?(u,v) stems from (2.2), (2.3) (and an obvious embedding in
the limit case). We get

il s illollgr o s < v+ d/pa

275 || R3 o )ienller < _ Brsira . A5
|(27%| Ry (u, v) || ea ) jenler S Gl i llvllps—y,  if s =v+d/ps. (A.5)

p2,T

To deal with the case p; > p2, we just have to notice that, according to (2.2), (2.3), the paraproduct

_y—d a4 a4y,
operator maps Bzo,:l P1ox B;I{WU in By . provided that s <v+d/p; (and L™ x By, in By ,
if s=v+d/p1). So we still get (A.5) provided s < v+ d/p; and s < v+ d/p;, respectively.
As for the fourth term, it is only a matter of applying Inequality (2.4). We get

. - ) .11
17 N Bj (u, v) e )jenller SNl ayllollpss o if s > —dming =, — - (A.6)
P2 P1,71 p

p2,72 1 p2

The term Rg?(u, v) may be treated by arguing like in the proof of (A.2). One ends up with

1271 RS (u, v)l|er ) jenller S IVA—yul[ Lo o]

[ if v <1. (A.7)
P17
Given that for any (s,p,r), one has (owing to the low-frequency cut-off)
lalls; , < [IVullgsrs

putting together (A.2), (A.3), (A.4), (A.5), (A.6) and (A.7) completes the proof of (2.10), (2.11)
and (2.12).

In order to establish (2.13), we notice that the terms R’ (u,v) with i # 2 are spectrally localized
in balls of size 2/. Hence Bernstein inequality together with (A.2), (A.3), (A.5), (A.6) and (A.7)
ensures that they satisfy the desired inequality under Condition (2.9).

On the other hand R?(u, v) does not have this spectral localization property. Let us just treat
the case p1 > po to simplify the presentation. We have

10 R 0)lems < 3 (1l ons 1012850 e + 6By illies 1Sy 2850 e ). (A8)
Jj'2j—3
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According to Bernstein’s inequality, we have

D 1A Lo |0k 42 djvll e < C2 Y (1A Lo || 2 ]| Lo

Jj'25-3 J'25-3

Hence this term may be bounded as desired (just follow the previous computations).

In order to handle the second term of (A.8), we write that, according to Bersntein’s inequality,

18kl Lor [|Sjr 2 g0l e < C27 | AS | Lor || SjrsaAjl| oo

Hence
PN 0Byl Sy seBgullie < C Y 29T R e @) L dillo] L
j'>3-3 j'>5-3 p3,T2 o0,m1
which leads to the desired inequality provided that v + 1% —-1>0. O
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