S. Fazekas-de and B. Groth, The evolution of self-tolerance: a new cell arises to meet the challenge of self-reactivity, Immunology Today, vol.19, issue.10, pp.448-454, 1998.
DOI : 10.1016/S0167-5699(98)01328-0

M. F. Flajnik and M. Kasahara, Origin and evolution of the adaptive immune system: genetic events and selective pressures, Nature Reviews Genetics, vol.5, issue.1, pp.47-59, 2010.
DOI : 10.1038/nrg2703

U. Grohmann and V. Bronte, Control of immune response by amino acid metabolism, Immunological Reviews, vol.176, issue.Suppl., pp.243-264, 2010.
DOI : 10.1111/j.1600-065X.2010.00915.x

C. J. Jeffery, Moonlighting proteins???an update, Molecular BioSystems, vol.30, issue.9, pp.345-350, 2009.
DOI : 10.1039/b900658n

F. Forouhar, Molecular insights into substrate recognition and catalysis by tryptophan 2,3-dioxygenase, Proceedings of the National Academy of Sciences, vol.104, issue.2, pp.473-478, 2007.
DOI : 10.1073/pnas.0610007104

H. J. Ball, H. J. Yuasa, C. J. Austin, S. Weiser, and N. H. Hunt, Indoleamine 2,3-dioxygenase-2; a new enzyme in the kynurenine pathway, The International Journal of Biochemistry & Cell Biology, vol.41, issue.3, pp.467-471, 2009.
DOI : 10.1016/j.biocel.2008.01.005

R. Metz, Novel Tryptophan Catabolic Enzyme IDO2 Is the Preferred Biochemical Target of the Antitumor Indoleamine 2,3-Dioxygenase Inhibitory Compound D-1-Methyl-Tryptophan, Cancer Research, vol.67, issue.15, pp.7082-7087, 2007.
DOI : 10.1158/0008-5472.CAN-07-1872

A. L. Mellor and D. H. Munn, Ido expression by dendritic cells: tolerance and tryptophan catabolism, Nature Reviews Immunology, vol.467, issue.10, pp.762-774, 2004.
DOI : 10.1016/S0041-1345(00)02792-5

P. Puccetti and U. Grohmann, IDO and regulatory T cells: a role for reverse signalling and non-canonical NF-??B activation, Nature Reviews Immunology, vol.446, issue.10, pp.817-823, 2007.
DOI : 10.1038/nri2163

U. Grohmann, F. Fallarino, P. Puccetti, and . Tolerance, Tolerance, DCs and tryptophan: much ado about IDO, Trends in Immunology, vol.24, issue.5, pp.242-248, 2003.
DOI : 10.1016/S1471-4906(03)00072-3

L. Romani, Defective tryptophan catabolism underlies inflammation in mouse chronic granulomatous disease, Nature, vol.21, issue.7175, pp.211-215, 2008.
DOI : 10.1038/nature06471

M. L. Belladonna, Cutting Edge: Autocrine TGF-?? Sustains Default Tolerogenesis by IDO-Competent Dendritic Cells, The Journal of Immunology, vol.181, issue.8, pp.5194-5198, 2008.
DOI : 10.4049/jimmunol.181.8.5194

M. L. Belladonna, C. Orabona, U. Grohmann, and P. Puccetti, TGF-?? and kynurenines as the key to infectious tolerance, Trends in Molecular Medicine, vol.15, issue.2, pp.41-49, 2009.
DOI : 10.1016/j.molmed.2008.11.006

M. Irla, MHC class II???restricted antigen presentation by plasmacytoid dendritic cells inhibits T cell???mediated autoimmunity, The Journal of Experimental Medicine, vol.132, issue.9, pp.1891-1905, 2010.
DOI : 10.1038/ni.1665

B. M. Matta, A. Castellaneta, and A. W. Thomson, Tolerogenic plasmacytoid DC, European Journal of Immunology, vol.107, issue.10, pp.2667-2676, 2010.
DOI : 10.1002/eji.201040839

R. Lande and M. Gilliet, Plasmacytoid dendritic cells: key players in the initiation and regulation of immune responses, Annals of the New York Academy of Sciences, vol.204, issue.1, pp.89-103, 2010.
DOI : 10.1111/j.1749-6632.2009.05152.x

M. Swiecki and M. Colonna, Unraveling the functions of plasmacytoid dendritic cells during viral infections, autoimmunity, and tolerance, Immunological Reviews, vol.205, issue.Suppl 5, pp.142-162, 2010.
DOI : 10.1111/j.0105-2896.2009.00881.x

L. Huang, B. Baban, B. A. Johnson, and A. L. Mellor, Dendritic Cells, Indoleamine 2,3 Dioxygenase and Acquired Immune Privilege, International Reviews of Immunology, vol.106, issue.2, pp.133-155, 2010.
DOI : 10.4049/jimmunol.0900408

C. Orabona, CD28 induces immunostimulatory signals in dendritic cells via CD80 and CD86, Nature Immunology, vol.25, issue.11, pp.1134-1142, 2004.
DOI : 10.1016/S1074-7613(03)00327-3

U. Grohmann, Reverse signaling through GITR ligand enables dexamethasone to activate IDO in allergy The 'Shp'ing news: SH2 domain-containing tyrosine phosphatases in cell signaling, Nat. Med. Trends Biochem. Sci, vol.13, issue.28, pp.579-586, 2003.

D. D. Billadeau and P. J. Leibson, ITAMs versus ITIMs: striking a balance during cell regulation, Journal of Clinical Investigation, vol.109, issue.2, pp.161-168, 2002.
DOI : 10.1172/JCI14843DS1

J. V. Ravetch and L. L. Lanier, Immune Inhibitory Receptors, Science, vol.290, issue.5489, pp.84-89, 2000.
DOI : 10.1126/science.290.5489.84

S. J. Orr, CD33 responses are blocked by SOCS3 through accelerated proteasomal-mediated turnover, Blood, vol.109, issue.3, pp.1061-1068, 2007.
DOI : 10.1182/blood-2006-05-023556

S. J. Orr, SOCS3 Targets Siglec 7 for Proteasomal Degradation and Blocks Siglec 7-mediated Responses, Journal of Biological Chemistry, vol.282, issue.6, pp.3418-3422, 2007.
DOI : 10.1074/jbc.C600216200

C. Orabona, SOCS3 drives proteasomal degradation of indoleamine 2,3-dioxygenase (IDO) and antagonizes IDO-dependent tolerogenesis, Proceedings of the National Academy of Sciences, vol.105, issue.52, pp.20828-20833, 2008.
DOI : 10.1073/pnas.0810278105

J. C. Williams, R. K. Wierenga, and M. Saraste, Insights into Src kinase functions: structural comparisons, Trends in Biochemical Sciences, vol.23, issue.5, pp.179-184, 1998.
DOI : 10.1016/S0968-0004(98)01202-X

H. An, Phosphatase SHP-1 promotes TLR- and RIG-I-activated production of type I interferon by inhibiting the kinase IRAK1, Nature Immunology, vol.19, issue.5, pp.542-550, 2008.
DOI : 10.1038/ni1130

K. Hoshino, I??B kinase-?? is critical for interferon-?? production induced by Toll-like receptors 7 and 9, Nature, vol.300, issue.7086, pp.949-953, 2006.
DOI : 10.1038/nature04641

S. W. Tas, Noncanonical NF-??B signaling in dendritic cells is required for indoleamine 2,3-dioxygenase (IDO) induction and immune regulation, Blood, vol.110, issue.5, pp.1540-1549, 2007.
DOI : 10.1182/blood-2006-11-056010

C. Orabona, Toward the identification of a tolerogenic signature in IDO-competent dendritic cells, Blood, vol.107, issue.7, pp.2846-2854, 2006.
DOI : 10.1182/blood-2005-10-4077

P. Puccetti, On watching the watchers: IDO and type I/II IFN, European Journal of Immunology, vol.5, issue.4, pp.876-879, 2007.
DOI : 10.1002/eji.200737184

M. W. Taylor and G. S. Feng, Relationship between interferon-?, indoleamine 2,3-dioxygenase, and tryptophan catabolism, Faseb J, vol.5, pp.2516-2522, 1991.

D. H. Munn, Prevention of Allogeneic Fetal Rejection by Tryptophan Catabolism, Science, vol.281, issue.5380, pp.1191-1193, 1998.
DOI : 10.1126/science.281.5380.1191

U. Grohmann, CTLA-4???Ig regulates tryptophan catabolism in vivo, Nature Immunology, vol.3, issue.11, pp.1097-1101, 2002.
DOI : 10.1038/ni846

F. Fallarino, Modulation of tryptophan catabolism by regulatory T cells, Nature Immunology, vol.4, issue.12, pp.1206-1212, 2003.
DOI : 10.1038/ni1003

F. Fallarino, The Combined Effects of Tryptophan Starvation and Tryptophan Catabolites Down-Regulate T Cell Receptor ??-Chain and Induce a Regulatory Phenotype in Naive T Cells, The Journal of Immunology, vol.176, issue.11, pp.6752-6761, 2006.
DOI : 10.4049/jimmunol.176.11.6752

J. D. Mezrich, An Interaction between Kynurenine and the Aryl Hydrocarbon Receptor Can Generate Regulatory T Cells, The Journal of Immunology, vol.185, issue.6, pp.3190-3198, 2010.
DOI : 10.4049/jimmunol.0903670

I. Abu-dayyeh, Identification of key cytosolic kinases containing evolutionarily conserved kinase tyrosine-based inhibitory motifs (KTIMs), Developmental & Comparative Immunology, vol.34, issue.5
DOI : 10.1016/j.dci.2009.12.012

U. Grohmann, A Defect in Tryptophan Catabolism Impairs Tolerance in Nonobese Diabetic Mice, The Journal of Experimental Medicine, vol.8, issue.1, pp.153-160, 2003.
DOI : 10.1073/pnas.231606698

F. Fallarino, IDO Mediates TLR9-Driven Protection from Experimental Autoimmune Diabetes, The Journal of Immunology, vol.183, issue.10, pp.6303-6312, 2009.
DOI : 10.4049/jimmunol.0901577

F. Fallarino, Metabotropic glutamate receptor-4 modulates adaptive immunity and restrains neuroinflammation, Nature Medicine, vol.170, issue.8, pp.897-902, 2010.
DOI : 10.1038/nm.2183

C. Orabona, Cutting Edge: Silencing Suppressor of Cytokine Signaling 3 Expression in Dendritic Cells Turns CD28-Ig from Immune Adjuvant to Suppressant, The Journal of Immunology, vol.174, issue.11, pp.6582-6586, 2005.
DOI : 10.4049/jimmunol.174.11.6582

M. L. Belladonna, IL-23 neutralization protects mice from Gram-negative endotoxic shock, Cytokine, vol.34, issue.3-4, pp.161-169, 2006.
DOI : 10.1016/j.cyto.2006.04.011

M. L. Belladonna, IL-23 and IL-12 Have Overlapping, but Distinct, Effects on Murine Dendritic Cells, The Journal of Immunology, vol.168, issue.11, pp.5448-5454, 2002.
DOI : 10.4049/jimmunol.168.11.5448

A. Bisognin, A-MADMAN: Annotation-based microarray data meta-analysis tool, BMC Bioinformatics, vol.10, issue.1, pp.201-211, 2009.
DOI : 10.1186/1471-2105-10-201

A. J. Muller, J. B. Duhadaway, P. S. Donover, E. Sutanto-ward, and G. C. Prendergast, Inhibition of indoleamine 2,3-dioxygenase, an immunoregulatory target of the cancer suppression gene Bin1, potentiates cancer chemotherapy, Nature Medicine, vol.5, issue.3, pp.312-319, 2005.
DOI : 10.1038/nm1196

U. Grohmann, Functional Plasticity of Dendritic Cell Subsets as Mediated by CD40 Versus B7 Activation, The Journal of Immunology, vol.171, issue.5, pp.2581-2587, 2003.
DOI : 10.4049/jimmunol.171.5.2581