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Comparison of a one and two
parameter family of transmission
conditions for Maxwell’s equations
with damping

M. El Bouajaji1, V. Dolean2, M. J. Gander3 and S. Lanteri1

1 Introduction

Transmission conditions between subdomains have a substantial influence on
the convergence of iterative domain decomposition algorithms. For Maxwell’s
equations, transmission conditions which lead to rapidly converging algo-
rithms have been developed both for the curl-curl formulation of Maxwell’s
equation, see [2, 3, 1], and also for first order formulations, see [7, 6].
These methods have well found their way into applications, see for example
[9, 11, 10]. It turns out that good transmission conditions are approximations
of transparent boundary conditions. For each form of approximation chosen,
one can try to find the best remaining free parameters in the approxima-
tion by solving a min-max problem. Usually allowing more free parameters
leads to a substantially better solution of the min-max problem, and thus to a
much better algorithm. For a particular one parameter family of transmission
conditions analyzed in [4], we investigate in this paper a two parameter coun-
terpart. The analysis, which is substantially more complicated than in the one
parameter case, reveals that in one particular asymptotic regime there is only
negligible improvement possible using two parameters, compared to the one
parameter results. This analysis settles an important open question for this
family of transmission conditions, and also suggests a direction for system-
atically reducing the number of parameters in other optimized transmission
conditions.
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2 Schwarz Methods for Maxwell’s Equations

We consider in this paper a boundary value problem associated to three time-
harmonic Maxwell equations with an impedance condition on the boundary
of the computational domain Ω,

−iωεE+ curl H− σE = J, iωµH+ curl E = 0, Ω
Bn(E,H) := n× E

Z
+ n× (H× n) = s, ∂Ω.

(1)

with E,H being the unknown electric and magnetic fields and ε, µ, σ being
respectively the electric permittivity, magnetic permeability and the conduc-
tivity of the propagation medium and n the outward normal to ∂Ω.
A family of Schwarz methods for (1) with a possibly non-overlapping decom-
position of the domain Ω into Ω1 and Ω2, with interfaces Γ12 := ∂Ω1 ∩ Ω2

and Γ21 := ∂Ω2 ∩Ω1, is given by

−iωεE1,n+curl H1,n−σE1,n = J in Ω1,
iωµH1,n + curl E1,n = 0 in Ω1,

(Bn1
+S1Bn2

)(E1,n,H1,n) = (Bn1
+S1Bn2

)(E2,n−1,H2,n−1) on Γ12,
−iωεE2,n+curl H2,n−σE2,n = J in Ω2,

iωµH2,n + curl E2,n = 0 in Ω2,
(Bn2

+S2Bn1
)(E2,n,H2,n) = (Bn2

+S2Bn1
)(E1,n−1,H1,n−1) on Γ21,

(2)

where Sj , j = 1, 2 are tangential operators. For the case of constant co-
efficients and the domain Ω = R

2, with the Silver-Müller radiation condi-
tion limr→∞ r (H× n−E) = 0 and the two subdomains Ω1 = (0,∞) × R,
Ω2 = (−∞, L) × R, L ≥ 0, the following convergence result was obtained in
[4] using Fourier analysis:

Theorem 1. For σ > 0, if Sj, j = 1, 2 have the constant Fourier symbol

σj = F(Sj) = −s− iω̃

s+ iω̃
, ω̃ = ω

√
εµ, s ∈ C, (3)

then the optimized Schwarz method (2), has the convergence factor

ρ(k, ω̃, Z, σ, L, s) =

∣

∣

∣

∣

∣

(√
k2 − ω̃2 + iω̃σZ − s√
k2 − ω̃2 + iω̃σZ + s

)

e−
√
k2−ω̃2+iω̃σZL

∣

∣

∣

∣

∣

. (4)

In order to obtain the most efficient algorithm, we choose σj , j = 1, 2
such that ρ is minimal over the range of numerical frequencies k ∈ K =
[kmin, kmax], e.g. kmin = 0 and kmax = C

h
with h the mesh size and C a con-

stant. We look for s of the form s = p+ iq, such that (p, q) is solution of the
min-max problem

ρ∗ := min
p,q≥0

(

max
k∈K

ρ(k, ω̃, Z, σ, L, p+ iq))

)

. (5)
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In [4] we have solved this min-max problem for the case p = q without overlap,
and we have obtained the following result:

Theorem 2. For σ > 0 and L = 0, the solution of the min-max problem (5)
with p = q is for h small given by

p∗ =
(ωσµ)

1

4

√
C

2
1

4

√
h

and ρ∗1 = 1− 2
3

4 (ωσµ)
1

4

√
h√

C
+O(h). (6)

For the overlapping case, we obtained in [8]:

Theorem 3. For σ > 0 and L = h, a local minimum of the min-max problem
(5) with p = q is for h small given by

p∗ =
(2ωσµ)

1

3

2h
1

3

and ρ∗1L = 1− 2
7

6 (ωσµ)
1

6 h
1

3 +O(h
2

3 ). (7)

3 Analysis of the two parameter family of transmission

conditions

As before, we set kmin = 0, kmax = C
h
and denote by (p∗, q∗) a local minimum

of (5). We first consider the non-overlapping case.

Theorem 4. For σ > 0 and L = 0, a local minimum (p∗, q∗) of (5) is for h
small given by

p∗ =
3

3

8 (ωσµ)
1

4

√
C

2
3

4

√
h

, q∗ =
3

7

8 (2ωσµ)
1

4

√
C

6
√
h

, ρ∗2 = 1− 3
3

8 (2ωσµ)
1

4

√
h√

C
+O(h).

(8)

Proof. By solving the min-max problem (5) numerically for different param-
eter values and different mesh sizes h, we observe that the solution of (5)
equioscillates once, i.e. (p∗, q∗) is solution of

ρ(k̄, ω̃, σ, Z, 0, p∗ + iq∗) = ρ(kmax, ω̃, σ, Z, 0, p
∗ + iq∗), (9)

where k̄ is an interior local maximum of ρ. We also observe the asymptotic
behavior

k̄ ∼ C̄, p∗ ∼ Cph
− 1

2 , q∗ ∼ Cqh
− 1

2 .

In order to determine the constants C̄, Cp and Cq, it is necessary to have three
equations. The first is (9), the second describes the interior local maximum
of ρ in k,

∂ρ

∂k
(k̄, ω̃, σ, Z, 0, p∗ + iq∗)) = 0,

and the third is the necessary condition for a local minimum of the min-max
problem,
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dρ
dq
(kmax, ω̃, σ, Z, 0, p

∗ + iq∗) =
∂ρ
∂q
(kmax, ω̃, σ, Z, 0, p

∗ + iq∗) + ∂ρ
∂p

(kmax, ω̃, σ, Z, 0, p
∗ + iq∗)∂p

∂q
= 0.

Since dρ
dq
(kmax, ω̃, σ, Z, 0, p

∗+ iq∗) = dρ
dq
(k̄, ω̃, σ, Z, 0, p∗+ iq∗) a similar expan-

sion together with the previous one, gives

∂p

∂q
= −

∂ρ
∂q
(kmax, ω̃, σ, Z, 0, p

∗ + iq∗)− ∂ρ
∂q
(k̄, ω̃, σ, Z, 0, p∗ + iq∗)

∂ρ
∂p

(kmax, ω̃, σ, Z, 0, p∗ + iq∗)− ∂ρ
∂p

(k̄, ω̃, σ, Z, 0, p∗ + iq∗)
,

and thus asymptotically, the three equations lead to the system

(
√

A1 + C̄2 − ω̃2)(ACp +BCq)− 2
√

A1BCq = 0,

2Cp(C
2
p + C2

q )− C(BCp +ACq) = 0,

A(C2
q − C2

p) + 2CpCqB = 0,

where A =
√

2
√
A1 −A2, B =

√

2
√
A1 +A2, A1 = C̄4 − 2(C̄ω̃)2 + ω̃4 +

(ω̃σZ)2 and A2 = 2(C̄2 − ω̃2). The solution of this system is

C̄ =

√

ω̃
(

−Zσ
√
3 + 3ω̃

)

√
3

, Cp =
3

3

8 (ω̃σZ)
1

4

√
C

2
3

4

, Cq =
3

7

8 (2ω̃σZ)
1

4

√
C

6
,

from which (8) follows. It remains to show that (p∗, q∗) is a local minimum,
i.e. for any variation (δp, δq) and k ∈ {k̄, kmax}, we must have

ρ(k, ω̃, σ, Z, 0, p∗ + δp+ i(q∗ + δq)) ≥ ρ(k, ω̃, σ, Z, 0, p∗ + iq∗).

By the Taylor formula, it suffices to prove that there is no variation (δp, δq)
such that for k ∈ {k̄, kmax}

δp
∂ρ

∂p
(k, ω̃, σ, Z, 0, p∗ + iq∗) + δq

∂ρ

∂q
(k, ω̃, σ, Z, 0, p∗ + iq∗) < 0. (10)

We prove this by contradiction, and it is necessary to obtain the next higher
order terms in the expansions of p∗, q∗ and k̄. After a lengthy computation,
we find that asymptotically

k̄ ∼ C̄ + C̃h, p∗ ∼ Cph
− 1

2 + C̃ph
3

2 , q∗ ∼ Cqh
− 1

2 + C̃qh
1

2 .

The computation of these new three constants allows us to obtain the partial
derivatives of ρ

∂ρ
∂p

(k̄) ∼ 2
C
h, ∂ρ

∂q
(k̄) ∼ − 3

1

4 (2ωσµ)
1

2

C2 h2,

∂ρ
∂p

(kmax)∼− 2
C
h, ∂ρ

∂q
(kmax)∼ 3

1

4 (2ωσµ)
1

2

C2 h2.



Transmission conditions for Maxwell with damping 5

Introducing these results into (10), we get δp 2
C
h − δq 3

1

4 (2ωσµ)
1

2

C2 h2 < 0 and

-δp 2
C
h + δq 3

1

4 (2ωσµ)
1

2

C2 h2 < 0, clearly a contradiction, and thus (p∗, q∗) is a
local minimum.

We see that for h small, both the one parameter and two parameter trans-
mission conditions can be written as ρ∗1 = 1 − α1

√
h + O(h) and ρ∗2 =

1 − α2

√
h + O(h). The ratio α2

α1

is equal to 3
3

8 /
√
2 ≈ 1.067, which shows

that the convergence factors are almost equal. Hence the hypothesis p = q,
used in [4] to simplify the analysis, is justified.

We treat now the overlapping case of (5), with an overlap of one mesh size.

Theorem 5. For σ > 0 and L = h, a local minimum (p∗, q∗) of (5) is for h
small given by

p∗ =
3

1

2 (ωσµ)
1

3

2
4

3h
1

3

, q∗ =
(ωσµ)

1

3

2
4

3h
1

3

, ρ∗2L = 1−2
5

6 3
3

8 (ωσµ)
1

6h
1

3 +O(h
2

3 ). (11)

Proof. As in the proof of Theorem 4, we first observe numerically that the
solution of (5) equioscillates once, i.e. (p∗, q∗) is solution of

ρ(k̄1, ω̃, σ, Z, h, p
∗ + iq∗) = ρ(k̄2, ω̃, σ, Z, h, p

∗ + iq∗),

where k̄1 and k̄2 are interior local maxima of ρ, and we obtain asymptotically
for h small

k̄1 ∼ Cb1 , k̄2 ∼ Cb2h
− 2

3 , p∗ ∼ Cph
− 1

3 and q∗ ∼ Cqh
− 1

3 .

It remains to find Cb1 , Cb2 , Cp and Cq. Proceeding as before, we obtain four
equations from the necessary conditions of a minimum, with solution

Cp =
3

1

2 (2ωσµ)
1

2

2
, Cq =

Cp√
3
, Cb1 =

√

ω̃
(

−Zσ
√
3 + 3ω̃

)

√
3

, Cb2 =
√

2Cp,

which leads to (11). To prove that (p∗, q∗) is a local minimum, proceeding as
before, we obtain after a lengthy computation the higher order expansion

k̄1 ∼ Cb1+C̃b1h
2

3 , k̄2 ∼ Cb2h
− 2

3+C̃b2 , p
∗ ∼ Cph

− 1

3+C̃ph
1

3 , q∗ ∼ Cqh
− 1

3+C̃qh
1

3 .

The computation of these four new constants allows us then to obtain the
partial derivatives of ρ,

∂ρ
∂p

(k̄1) ∼ 8·2
1

6 h
2

3

3
1

4 (ωσµ)
1

6

, ∂ρ
∂q
(k̄1) ∼ − 2·2

5

6 (ωσµ)
1

6 h
4

3

3
1

4

,

∂ρ
∂p

(k̄2) ∼ − 4·2
1

6 h
2

3

3
1

4 (ωσµ)
1

6

, ∂ρ
∂q
(k̄2) ∼ 2

5

6 (ωσµ)
1

6 h
4

3

3
1

4

.
(12)
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In order to reach a contradiction, we assume again there exists, by the
Taylor theorem, a variation (δp, δq) such that δp∂ρ

∂p
(k, ω̃, σ, Z, h, p∗ + iq∗) +

δq ∂ρ
∂q
(k, ω̃, σ, Z, h, p∗ + iq∗) < 0, for k ∈ {k̄1, k2}. Using (12), we get

8 2
1

6 h
2

3

3
1

4 (ωσµ)
1

6

δp− 2 2
5

6 (ωσµ)
1

6 h
4

3

3
1

4

δq < 0 and −4 2
1

6 h
2

3

3
1

4 (ωσµ)
1

6

δp+ 2
5

6 (ωσµ)
1

6 h
4

3

3
1

4

δq < 0,

clearly a contradiction, and thus (p∗, q∗) is a local minimum.

We also observe in this case that for h small, both convergence factors can
be written as ρ∗1L = 1−α1L h

1

3 +O(h
2

3 ) and ρ∗2L = 1−α2Lh
1

3 +O(h
2

3 ), and

the ratio α2L

α1L

is equal to 3
1

4 /2
1

3 ≈ 1.044, hence both convergence factors are
almost equal. We show an example of these convergence factors in Figure 1.
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Fig. 1 Convergence factor comparison of algorithms with one and two parameters for
ω = 2π, σ = 2 and µ = ε = 1, for the non-overlapping case, L = 0, on the left, and the
overlapping case, L = h = 1

100
, on the right

4 Numerical results

We present now a numerical test in order to compare the performance of
both the one and two parameter algorithms. We compute the propagation of
a plane wave in a heterogeneous medium. The domain is Ω = (−1, 1)2. The
relative permittivity and the conductivity of the background media is ε1 = 1.0
and σ1 = 1.8, while that of the square material inclusion is ε2 = 8.0 and σ2 =
7.5, see the left picture of Fig. 2. The magnetic permeability µ is constant in
Ω and we impose on the boundary an incident field (Hinc

x , Hinc
y , Einc

z ). The
domain Ω is decomposed into two subdomains Ω1 = (−1, L) × (−1, 1) and
Ω2 = (0, 1)× (−1, 1); L is the overlapping size and is equal to the mesh size.
We use, in each subdomain, a discontinuous Galerkin method (DG) with a
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uniform polynomial approximation of order one, two and three, denoted by
DG-P1, DG-P2 and DG-P3, see [5]. The results are shown in Fig. 3, and
are in good agreement with our analytical results.

Y

X

 ( inc
,E Hinc)

(ε1, σ1)

(ε2, σ2)

Fig. 2 Configuration of our test problem on the left, and the numerical solution on the
right
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Fig. 3 Number of iterations against the mesh size h, to attain a relative residual reduction

of 10−8

5 Conclusion

We compared in this paper a one and a two parameter family of transmission
conditions for optimized Schwarz methods applied to Maxwell’s equations.
Our asymptotic analysis reveals that the addition of a second parameter
does not lead to a significant improvement of the algorithm, and it is there-
fore justified to consider only the simpler case of a one parameter family of
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transmission conditions. These results are also confirmed by our numerical
experiments.
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