
HAL Id: hal-00663722
https://hal.univ-brest.fr/hal-00663722

Submitted on 27 Jan 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Transforming Basic Robotic Platforms into Easily
Deployable and Web Remotely Controllable Robots

Yvon Autret, Jean Vareille, Philippe Le Parc

To cite this version:
Yvon Autret, Jean Vareille, Philippe Le Parc. Transforming Basic Robotic Platforms into Easily
Deployable and Web Remotely Controllable Robots. UBICOMM 2011, The Fifth International Con-
ference on Mobile Ubiquitous Computing, Systems, Services and Technologies, Nov 2011, Lisbonne,
Portugal. pp.123-127. �hal-00663722�

https://hal.univ-brest.fr/hal-00663722
https://hal.archives-ouvertes.fr

Transforming basic robotic platforms into easily deployable and Web
remotely controllable robots

Yvon Autret, Jean Vareille and Philippe Le Parc
Université Européenne de Bretagne, France

Université de Brest - EA3883 LISyC
Laboratoire d'Informatique des Systèmes Complexes

20 av. Victor Le Gorgeu, BP 809, F-29285 Brest
E-mail: yvon.autret@univ-brest.fr

Abstract—This paper describes a way to transform basic
robotic platforms into Web remotely controllable robots. Our
goal is to achieve robot deployment anywhere at anytime at
low-cost. As soon as full or even restricted Internet access is
available (WIFI or 3G), the robot can be deployed and Web-
controlled. The distant user can send commands to the robot
and monitor the state of the robot. For example the distant
user can make the robot move and get snapshots taken by the
robot.

Keywords-Ubiquitous robot; Web control; service robotics;

I. INTRODUCTION

The use of network technologies inside robots is
nowadays classical [1, 2]. A WIFI network can be used and
an on-board Web server may allow control of the robot from
anywhere in the world. This solution can be easily
implemented. It is used in the commercial Rovio WowWee
robot [3]. Unfortunately, it has some disadvantages. First, a
moving robot evolves in a limited WIFI area and may get out
of control. That is a major problem for outdoor robots.
Second, a robot including an on-board server cannot use any
WIFI router without configuration. This means that
deploying a remote controlled robot is not a "plug-and-play"
operation.

Current 3G coverage is now so wide that it provides
almost universal Internet access. Unfortunately, 3G networks
are not perfect for remote control of robots. Many 3G
providers block all ports except some outgoing ports (HTTP
port 80, HTTPS port 443, ...). This means that an on-board
web server cannot work on a remote controlled robot. This
restriction can be overcome by using HTTP tunnelling [7]. A
distant server is used and all communications performed are
encapsulated using the HTTP protocol. The main problem of
this solution is often the lack of performance due to the
overhead of communications in the distant server.

In this paper we propose to use distant servers for only
one purpose: ensuring efficient robot control in a restricted
Internet environment. We will adapt HTTP tunneling to
remote robot control in order to guarantee correct
performances and simple configuration. The remote user has
no direct access to the robot and sends commands to a distant
server which will transmit them to the robot (Fig. 1). On the
other side, the robot can send its state to the distant server,

making it available to the user (internal state of the robot,
snapshots of the environment, ...).

The distant server can control several robots which can
be in various locations. The only thing required is the ability
of the robot to send HTTP requests to the distant server.
Either WIFI or restricted 3G networks can be used. Installing
a robot at anytime and anywhere in the world is possible as
soon as basic Internet access is available (for example, only
an outgoing port 80).

In this paper we first present a basic robotic platform.
The basic robot is very simple, just moving/turning forward
or backward on tracks when powered. It is used with a
computer which has the ability to control the robotic
platform and get an Internet access. We then show how to
transform it into a communicating robot which can be easily
deployed anywhere. This ubiquitous robot [4, 5, 6] is
designed to be integrated in an ubiquitous environment.

 Figure 1: the proposed architecture.

II. THE BASIC ROBOTIC PLATFORM

Many commercial Web-controllable robots such as
Miabot [8] or WoWee Rovio [3] are available. They can be
used in an ubiquitous environment to monitor a house. The
Miabot robot is rather small (about 3 inches long). The
WoWee is bigger (about 14 inches long). Both are not easily
expandable. That is why we start from an open robotic
platform which includes only two tracks. It is a Rover 5 from
RobotBase (Fig. 2). The size is that of the WoWee Rovio.
When powered, it can move forward or backward and turn. It
is strong enough to carry a computer and some electronic
devices (up to two kilograms). The robot is controlled by the
computer it carries and the computer is connected to the
network to get Web-control. As the computer is a standard
PC, external devices can be easily connected to upgrade the
robot. The total cost (computer included) is comparable to
that of a WoWee Rovio. Our robot is designed to be
integrated in a low-cost ubiquitous system.

The computer we use is a PC which can be disk-less and
screen-less and must run on batteries. We made tests with a
Linutop computer [9] as well as with a standard mini laptop.
A USB key (3G key or WIFI Key) provides Internet access.
A Linux system (ISO file) is set on another USB Key and
the computer boots from it in such a way that the whole
system is running in Ram-Disk. The system is configured to
automatically load the network configuration (WIFI WEP
key, ...) from a text file on the USB key. This text file is not
included into the ISO system file. This file is loaded by the
Linux system at boot time (the system executes an "ifup"
Linux command to load the network configuration). Thus,
editing this file before starting the system is the only thing
required to ensure network connection.

A Phidget 1017 electronic board (Fig. 3) including an
USB port and 8 DPDT relays (Double-Pole Double-Throw)
is used as an interface between the computer and the robot
[10]. We use the Java language to control the relays.

The Phidget board just avoid soldering and micro-
controller programming. The computer controls the DPDT
relays through the USB port. Two relays (one per track) are
used to make the robot presented above move or turn. Two
more relays are required to reverse the current (one per track)
and make the robot move or turn, forward or backward.

 Figure 2: the basic Rover 5 robot

Figure 3: Phidget wiring.

III. WEB-CONTROL OF THE ROBOT

We want our system working even if Internet access is
restricted, i.e. if some ports are not available. For example,
the system must work if there is only one outgoing port 80
available. That means that the robot cannot wait neither for
HTTP requests nor any other request. The robot will only
send HTTP requests and wait for HTTP responses. Our robot
has the ability to do that because the system is connected to
the Internet and a Java program inside a Unix process can be
launched to send HTTP requests.

On the user side, it is the same thing. We want the
distant user send only HTTP requests and wait for HTTP
responses. The only thing required on the user side will be a
Web browser, for example running on a PC Phone.

A. The distant server

In that system, the distant user has no direct access to the
robot and we use an additional distant server. The distant
user sends a robot command to the distant Web server
through a Web interface. The distant server forwards the
command to the robot.

1) Encapsulating robot commands into HTTP requests
To send commands to the robot, the distant user uses a

Web interface which displays buttons and various fields. A
robot command is nothing but a Web form. For example, the
distant user clicks on the "MOVE FORWARD" button to
make the robot move forward. Parameters can be used, for
example how long the robot must keep moving. The Web
browser will automatically encapsulate the parameters of the
robot command (i.e the Web form) inside an HTTP request.
The distant server processes the request as soon as it is sent.

2) Processing HTTP requests by Servlets
To process HTTP requests on the distant server, we use

an Apache Web server [11]. Requests received are first
forwarded to a second Web server which is a Tomcat Web
server [12]. Servlets [13] running on the Tomcat server
process the requests and extract the parameters (Fig. 4). The
Apache server is only used to provide a standard access on
port 80.

3) Forwarding requests to the robot
 As we want the system working with very limited

Internet access, may be only outgoing port 80, it is not
possible to install any kind of server on the robot. To make
the system work, the robot first sends an HTTP request to the

distant server. The request is processed by a Servlet and let
pending. As soon as the distant user sends a robot command,
the HTTP request processing resumes and an HTTP response
is sent to the robot. The robot command is inserted in the
HTTP response as a serialized object. If the distant user does
not send a robot command within a few seconds, a timeout is
triggered on the robot system. The robot stops waiting for the
current HTTP response. A new HTTP request is sent to the
distant server to wait for a robot command.
The system is working in four steps as shown above (Fig. 4)
and below:

1. The robot sends an HTTP request to wait for one
command

2. The user sends an HTTP request which contains
the robot command

3. After having inserted the robot command in the
HTTP response, the distant server sends it to the
robot.

4. The HTTP response is sent to the user. This
response can carry various information about
command processing by the robot: in progress, not
taken into account, ...

4) Acknowledgment
An optional acknowledgment can be sent from the robot

to the distant server. As soon as the robot has received or
terminated a command, it can send an HTTP request to the
distant server.

This optional acknowledgment can also be sent from the
distant server to the distant user.

B. Synchronisation and Servlet programming

The distant server synchronizes asynchronous HTTP
requests from the distant user and the robot. There is no
synchronization across the Internet except for single HTTP
requests. Synchronization only appears in the Servlet.

It is implemented by using Java monitors ("wait' and
"notify"). When the robot sends an HTTP request, a "wait" is
executed in the Servlet. When the distant user sends an
HTTP request containing a robot command, a "notify" is
executed to let the HTTP response including the robot
command come back to the robot.

From the robot, a Java program only sends HTTP
requests and processes the responses.

 Figure 4: using Servlets for synchronization.

IV. FULL ROBOT SENDING IMAGES

The robot platform includes a PC computer and can be
easily extended. One or more Webcam can be connected to
the computer (Fig. 5). By using the same mechanism as that
shown above, the robot can send information about itself or
its environment to the distant server. In fact, as the distant
user sends requests to make the robot move, the distant user
send other requests to get information about the robot. In this
chapter we will focus on how the distant user can get images
taken by the robot.

A. The distant user asks for images

The distant user can click on a button in the user interface
to ask for images. The distant user can also let the browser
automatically ask for images. In this case, a thread in the
browser periodically asks for images. In both cases, as seen
in III-A, an HTTP request is sent to the robot to ask for an
image.

B. The robot processes the image request

On the robot there is a Unix process to wait for robots
commands (MOVE, TURN, ...). A second Unix process is
used to produce the images. We use a third Unix process to
wait for images requests and send the images. As the first
process, these processes are automatically launched when the
robot is powered.

The second Unix process is a local WEB server on the
computer of the robot. Its role is to get images from the
Webcam and make them available through a local Web
server. We use MJPG-streamer [14] (also called MJPEG-
streamer or M-JPEG-streamer) to do that . It is a light
solution to stream JPEG files over an IP-based network. It
can get images from a Webcam plugged on a USB port. We
use the following options:

• "- - resolution 320x240" to send images of that size
• "- - device /dev/video0 -y" so the streamer can only

use "yuv" mode to output the images (this is
because our PC is USB2.0)

• "- - port 8090" to ouput images on port 8090

 Figure 5: robot components including Webcam.

MJPG-streamer is able to send streams over the network
but we use it only to send snapshots. MJPG-streamer is not
CPU hungry. It consumes less than 10% CPU. Several
Webcams can be connected to the PCs and several MJPG-
streamer can be launched (/dev/video0 port 8090,
/dev/video1 port 8091, ...).

 The third Unix process is used to wait for image requests
from the distant user. It gets the images from the second
process (MJPG-streamer) and sends them to the distant
server which forwards them to the distant user. The process
waits for image requests as if it was waiting for other robot
commands. An HTTP request is sent from the distant user to
the distant server which ensures synchronization. We just use
a different Servlet to let this HTTP request pending until an
image request comes from the distant user.

When the third process receives the HTTP response from
the distant server, it sends a new HTTP request to the
MJPG-streamer server. The aim of this request is to get an
image. To get the image, we use an URL such as

http://localhost:8090/?action=snapshot

The HTTP response contains a JPEG image which is
extracted and sent to the distant server as an attached file in
an HTTP request. Standard Java classes "URL" and
"HttpURLConnection" are used to do that. On the distant
server, we use the Apache FileUpload package to extract the
attached file from the request and we write it to a file which
can be loaded and displayed by a Web Browser.

C. The distant server sends the image to the distant user

In fact, it is the distant user who asks for the image. To
send the HTTP request from the browser, we use the
Javascript language and the jQuery library [15]. As shown
below, we use Ajax capabilites of jQuery to perform an
asynchronous HTTP request.

$.ajax({
type: "get",
url: "../servletImage1",
async: false,
success: function (data) { ... }

});

The HTTP request is processed on the distant server and
we have seen that the robot finally sends an image to the
distant server. A file containing an image is created on the
distant server.

Synchronization is required inside the distant server. The
HTTP request from the distant user must be let pending until
a new image comes from the robot. At that time, a response
is sent to the distant user. On the user side, the Ajax call is a
success and a Javascript function is called. This function has
one parameter indicating whether an image is available or
not. If there are several distant user requests pending, only
one will get the ability to display the new image and the
other distant user requests will have no effect on the user
interface.

To display the image, we use jQuery to modifiy the
DOM (to modify the HTML elements). An "img" HTML tag
is present the distant user Web page. We use jQuery to
modify the "src" attribute and change the displayed image.

$("webcam0").attr("src",
"../servletImage2/?val="+Math.random());

We use a Servlet to ensure that one image cannot be sent
twice to the distant user. The Servlet always sends the last
image produced. It sends an HTTP response whose content
type is "image/jpeg" and content is a JPEG image. The
"Math.random" parameter shown above just avoids the
image staying in a cache. A network failure will not affect
the system. Only some images will be lost.

D. The user interface

The user interface is a Web page. A form (not shown
below) is used to identify the distant user and to ensure that
the robot is available. When identified, the distant user can
use buttons to make the robot move. Images are displayed as
they come from the robot.

Two parameters are available in the interface shown in
Fig. 6. The distant user can set the duration of a robot
command and the number of ms between two image
requests.

The distant user can also monitor the network state and
get information about the time required to get the last image.

E. Performances

Figure 7 shows the working robot powered with AA
batteries. By using a WIFI connection, the robot sends an
average of three images per second. By using a 3G
connection, it is almost one image per second.

Figure 6: the user interface.

Figure 7: the working robot.

CONCLUSION AND FUTURE TRENDS

The proposed system can work indoor or outdoor. It uses
free software (the Linux operating system) and thanks to
HTTP, can recover from temporary network failures. In the
future, it could be integrated in an ubiquitous environment
for remote monitoring. It is a cheap and modular platform.
The computer boots from a memory which is external. The
mechanical and electromechanical parts are separated from
the computer which is itself separated from the digital
storage medium that carries the operating system. In case of
failure of a component, the system can be repaired and
restarted in a short time. MTTR (mean time to repair) is
significantly reduced.

The hardware and the sofware of the proposed robot can
be easily upgraded. Local or remote image processing could
be performed. GPS or UWB (Ultra Wide Band) components
could be added for localization. If one component is added,
the operating system and the software can be upgraded plug
and play. There is only one USB key to replace.

When using the Linutop computer, autonomy is limited
to 10mn. When using a laptop, it goes up to 1 hour or more
but a laptop is not easy to carry. Using a small tablet PC will
be probably a better solution as soon as a whole Linux
system will be available for them.

In the future, a better network management could also be
implemented. For example, as soon as the WIFI signal
becomes weak, the system should be able to automatically
switch to 3G.

REFERENCES

[1] K. Goldberg and R. Siegwart, Beyond Webcams : an introduction to
online robots . The MIT Press, 2001.

[2] P. Le Parc, J. Vareille and L. Marcé, Web remote control of machine-
tools the whole world within less than one half-second . In ISR 2004 :
International Symposium on Robotics, Paris, France, March 2004.

[3] WoWee Rovio, a Wi-Fi enabled mobile webcam,
http://www.wowwee.com/en/products/tech/telepresence/rovio/rovio,
[Online; accessed June 29, 2011]

[4] Kim, J.H. and Kim, Y.D. and Lee, K.H., The third generation of
robotics: Ubiquitous robot, Proc of the 2nd Int Conf on Autonomous
Robots and Agents, December 13-15, 2004 Palmerston North, New
Zealand

[5] Ha, Y.G. and Sohn, J.C. and Cho, Y.J. and Yoon, H., Towards a
ubiquitous robotic companion: Design and implementation of
ubiquitous robotic service framework, ETRI journal, volume 27,
number 6, pp 666-676, Electronics and Telecommunications
Research Institute, 161 Gajeong-Dong, Yuseong-Gu, Daejeon, 305-
350, South Korea, 2005.

[6] Kim, J.H. and Lee, KH and Kim, YD, Ubiquitous robot: Recent
progress and development, SICE-ICASE, 2006. International Joint
Conference , pp.I-25-I-30, Oct. 2006

[7] HTTP tunnel, http://en.wikipedia.org/wiki/HTTP_tunnel, [Online;
accessed June 29, 2011]

[8] J. BAXTER, Introduction to the Miabots & Robot Soccer,
http://www.asap.cs.nott.ac.uk/~robots/talks/asap-talk-2.ps, [Online;
accessed June 29, 2011]

[9] Linutop, http://www.linutop.com, [Online; accessed June 29, 2011]

[10] Phidgets, http://www.phidgets.com, [Online; accessed June 29, 2011]

[11] The Apache HTTP Server project, http://httpd.apache.org, [Online;
accessed June 29, 2011]

[12] Apache Tomcat, http://tomcat.apache.org/, [Online; accessed June 29,
2011]

[13] Java Servlet Technology,
http://www.oracle.com/technetwork/java/javaee/servlet, [Online;
accessed June 29, 2011]

[14] Mjpg-streamer, http://sourceforge.net/projects/mjpg-streamer/,
[Online; accessed June 29, 2011]

[15] jQuery, http://jquery.com/, [Online; accessed June 29, 2011]

	I. Introduction
	II. The basic robotic platform
	III. Web-control of the robot
	A. The distant server
	1) Encapsulating robot commands into HTTP requests
	2) Processing HTTP requests by Servlets
	3) Forwarding requests to the robot
	4) Acknowledgment

	B. Synchronisation and Servlet programming

	IV. Full robot sending images
	A. The distant user asks for images
	B. The robot processes the image request
	C. The distant server sends the image to the distant user
	D. The user interface
	E. Performances

