Y. Arai, J. N. Pulvers, C. Haffner, B. Schilling, I. Nusslein et al., Neural stem and progenitor cells shorten S-phase on commitment to neuron production, Nature Communications, vol.9, issue.1, p.154, 2011.
DOI : 10.1038/ncomms1155

P. Arlotta, B. J. Molyneaux, J. Chen, J. Inoue, R. Kominami et al., Neuronal Subtype-Specific Genes that Control Corticospinal Motor Neuron Development In Vivo, Neuron, vol.45, issue.2, pp.207-221, 2005.
DOI : 10.1016/j.neuron.2004.12.036

P. Barone, A. Batardiere, K. Knoblauch, and H. Kennedy, Laminar distribution of neurons in extrastriate areas projecting to visual areas V1 and V4 correlates with the hierarchical rank and indicates the operation of a distance rule, The Journal of Neuroscience, vol.20, pp.3263-3281, 2000.

P. Barone, C. Dehay, M. Berland, J. Bullier, and H. Kennedy, Developmental Remodeling of Primate Visual Cortical Pathways, Cerebral Cortex, vol.5, issue.1, pp.22-38, 1995.
DOI : 10.1093/cercor/5.1.22

P. Barone, C. Dehay, M. Berland, and H. Kennedy, Role of directed growth and target selection in the formation of cortical pathways: Prenatal development of the projection of area V2 to area V4 in the monkey, The Journal of Comparative Neurology, vol.1, issue.1, pp.1-20, 1996.
DOI : 10.1002/(SICI)1096-9861(19961007)374:1<1::AID-CNE1>3.0.CO;2-7

L. Bedford, R. Walker, T. Kondo, I. Van-cruchten, E. R. King et al., Id4 is required for the correct timing of neural differentiation, Developmental Biology, vol.280, issue.2, pp.386-395, 2005.
DOI : 10.1016/j.ydbio.2005.02.001

P. Berkes, G. Orban, M. Lengyel, and J. Fiser, Spontaneous Cortical Activity Reveals Hallmarks of an Optimal Internal Model of the Environment, Science, vol.331, issue.6013, pp.83-87, 2011.
DOI : 10.1126/science.1195870

P. Brazhnik, A. De-la-fuente, and P. Mendes, Gene networks: how to put the function in genomics, Trends in Biotechnology, vol.20, issue.11, pp.467-472, 2002.
DOI : 10.1016/S0167-7799(02)02053-X

O. Britanova, S. Akopov, S. Lukyanov, P. Gruss, and V. Tarabykin, Novel transcription factor Satb2 interacts with matrix attachment region DNA elements in a tissue-specific manner and demonstrates cell-type-dependent expression in the developing mouse CNS, European Journal of Neuroscience, vol.419, issue.3, pp.658-668, 2005.
DOI : 10.1111/j.1460-9568.2005.03897.x

F. Calegari and W. B. Huttner, An inhibition of cyclin-dependent kinases that lengthens, but does not arrest, neuroepithelial cell cycle induces premature neurogenesis, Journal of Cell Science, vol.116, issue.24, pp.4947-4955, 2003.
DOI : 10.1242/jcs.00825

S. Cappello, A. Attardo, X. Wu, T. Iwasato, S. Itohara et al., The Rho-GTPase cdc42 regulates neural progenitor fate at the apical surface, Nature Neuroscience, vol.128, issue.9, pp.1099-1107, 2006.
DOI : 10.1242/dev.02330

L. Cauller, Layer I of primary sensory neocortex: where top-down converges upon bottom-up, Behavioural Brain Research, vol.71, issue.1-2, pp.163-170, 1995.
DOI : 10.1016/0166-4328(95)00032-1

H. H. Chang, M. Hemberg, M. Barahona, D. E. Ingber, and S. Huang, Transcriptome-wide noise controls lineage choice in mammalian progenitor cells, Nature, vol.8, issue.7194, pp.544-547, 2008.
DOI : 10.1038/nature06965

B. Chen, L. R. Schaevitz, and S. K. Mcconnell, Fezl regulates the differentiation and axon targeting of layer 5 subcortical projection neurons in cerebral cortex, Proceedings of the National Academy of Sciences of the United States of America, pp.17184-17189, 2005.
DOI : 10.1073/pnas.0508732102

J. G. Chen, M. R. Rasin, K. Y. Kwan, and N. Sestan, Zfp312 is required for subcortical axonal projections and dendritic morphology of deep-layer pyramidal neurons of the cerebral cortex, Proceedings of the National Academy of Sciences of the United States of America, pp.17792-17797, 2005.
DOI : 10.1073/pnas.0509032102

L. Chen, G. Liao, L. Yang, K. Campbell, M. Nakafuku et al., Cdc42 deficiency causes Sonic hedgehog-independent holoprosencephaly, Proceedings of the National Academy of Sciences of the United States of America, pp.16520-16525, 2006.
DOI : 10.1073/pnas.0603533103

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1637614

A. Chenn and C. A. Walsh, Regulation of Cerebral Cortical Size by Control of Cell Cycle Exit in Neural Precursors, Science, vol.297, issue.5580, pp.365-369, 2002.
DOI : 10.1126/science.1074192

A. F. Cheung, A. A. Pollen, A. Tavare, J. Deproto, and Z. Molnar, Comparative aspects of cortical neurogenesis in vertebrates, Journal of Anatomy, vol.28, issue.2, pp.164-176, 2007.
DOI : 10.1002/cne.20533

P. Csermely, Weak Links: Stabilizers of complex systems from protein to social networks, 2006.
DOI : 10.1007/978-3-540-31157-7

C. Dehay, P. Giroud, M. Berland, H. Killackey, and H. Kennedy, Contribution of thalamic input to the specification of cytoarchitectonic cortical fields in the primate: Effects of bilateral enucleation in the fetal monkey on the boundaries, dimensions, and gyrification of striate and extrastriate cortex, The Journal of Comparative Neurology, vol.207, issue.1, pp.70-89, 1996.
DOI : 10.1002/(SICI)1096-9861(19960325)367:1<70::AID-CNE6>3.0.CO;2-G

C. Dehay, P. Giroud, M. Berland, I. Smart, and H. Kennedy, Modulation of the cell cycle contributes to the parcellation of the primate visual cortex, Nature, vol.366, issue.6454, pp.464-466, 1993.
DOI : 10.1038/366464a0

C. Dehay, G. Horsburgh, M. Berland, H. Killackey, and H. Kennedy, Maturation and connectivity of the visual cortex in monkey is altered by prenatal removal of retinal input, Nature, vol.28, issue.6204, pp.265-267, 1989.
DOI : 10.1016/0006-8993(79)90728-5

C. Dehay, G. Horsburgh, M. Berland, H. Killackey, and H. Kennedy, The effects of bilateral enucleation in the primate fetus on the parcellation of visual cortex, Developmental Brain Research, vol.62, issue.1, pp.137-141, 1991.
DOI : 10.1016/0165-3806(91)90199-S

C. Dehay and H. Kennedy, Cell-cycle control and cortical development, Nature Reviews Neuroscience, vol.122, issue.6, pp.438-450, 2007.
DOI : 10.1038/nrn2097

C. Dehay, H. Kennedy, and J. Bullier, Callosal connectivity of areas V1 and V2 in the newborn monkey, The Journal of Comparative Neurology, vol.19, issue.1, pp.20-33, 1986.
DOI : 10.1002/cne.902540103

C. Dehay, P. Savatier, V. Cortay, and H. Kennedy, Cell-cycle kinetics of neocortical precursors are influenced by embryonic thalamic axons, The Journal of Neuroscience, vol.21, pp.201-214, 2001.
URL : https://hal.archives-ouvertes.fr/hal-00023834

R. J. Douglas, C. Koch, M. Mahowald, K. A. Martin, and H. H. Suarez, Recurrent excitation in neocortical circuits, Science, vol.269, issue.5226, pp.981-985, 1995.
DOI : 10.1126/science.7638624

M. Eiraku, N. Takata, H. Ishibashi, M. Kawada, E. Sakakura et al., Self-organizing optic-cup morphogenesis in three-dimensional culture, Nature, vol.80, issue.7341, pp.51-56, 2011.
DOI : 10.1038/nature09941

A. Falchier, S. Clavagnier, P. Barone, and H. Kennedy, Anatomical evidence of multimodal integration in primate striate cortex, The Journal of Neuroscience, vol.22, pp.5749-5759, 2002.

D. J. Felleman and D. C. Van-essen, Distributed Hierarchical Processing in the Primate Cerebral Cortex, Cerebral Cortex, vol.1, issue.1, pp.1-47, 1991.
DOI : 10.1093/cercor/1.1.1

S. A. Fietz, I. Kelava, J. Vogt, M. Wilsch-brauninger, D. Stenzel et al., OSVZ progenitors of human and ferret neocortex are epithelial-like and expand by integrin signaling, Nature Neuroscience, vol.25, issue.6, pp.690-699, 2010.
DOI : 10.1038/nn.2553

J. L. Fish, C. Dehay, H. Kennedy, and W. B. Huttner, Making bigger brains-the evolution of neural-progenitor-cell division, Journal of Cell Science, vol.121, issue.17, pp.2783-2793, 2008.
DOI : 10.1242/jcs.023465

G. D. Frantz, J. M. Weimann, M. E. Levin, and S. K. Mcconnell, Otx1 and Otx2 define layers and regions in developing cerebral cortex and cerebellum, The Journal of Neuroscience, vol.14, pp.5725-5740, 1994.

J. S. Gal, Y. M. Morozov, A. E. Ayoub, M. Chatterjee, P. Rakic et al., Molecular and Morphological Heterogeneity of Neural Precursors in the Mouse Neocortical Proliferative Zones, Journal of Neuroscience, vol.26, issue.3, pp.1045-1056, 2006.
DOI : 10.1523/JNEUROSCI.4499-05.2006

W. S. Geisler and R. L. Diehl, Bayesian natural selection and the evolution of perceptual systems, Philosophical Transactions of the Royal Society B: Biological Sciences, vol.357, issue.1420, pp.419-448, 2002.
DOI : 10.1098/rstb.2001.1055

M. Gotz and W. B. Huttner, The cell biology of neurogenesis, Nature Reviews Molecular Cell Biology, vol.16, issue.10, pp.777-788, 2005.
DOI : 10.1523/JNEUROSCI.0778-05.2005

M. Götz, A. Stoykova, and P. Gruss, Pax6 Controls Radial Glia Differentiation in the Cerebral Cortex, Neuron, vol.21, issue.5, pp.1031-1044, 1998.
DOI : 10.1016/S0896-6273(00)80621-2

J. D. Halley and D. A. Winkler, Consistent concepts of self-organization and self-assembly, Complexity, vol.6, issue.2, pp.10-17, 2008.
DOI : 10.1002/cplx.20235

J. D. Halley and D. A. Winkler, Critical-like self-organization and natural selection: Two facets of a single evolutionary process?, Biosystems, vol.92, issue.2, pp.148-158, 2008.
DOI : 10.1016/j.biosystems.2008.01.005

D. V. Hansen, J. H. Lui, P. R. Parker, A. R. Kriegstein, E. Hartfuss et al., Neurogenic radial glia in the outer subventricular zone of human neocortex, Nature, vol.133, issue.7288, pp.554-561, 2001.
DOI : 10.1038/nature08845

W. Haubensak, A. Attardo, W. Denk, and W. B. Huttner, From The Cover: Neurons arise in the basal neuroepithelium of the early mammalian telencephalon: A major site of neurogenesis, Proceedings of the National Academy of Sciences of the United States of America, pp.3196-3201, 2004.
DOI : 10.1073/pnas.0308600100

N. Heins, P. Malatesta, F. Cecconi, M. Nakafuku, K. L. Tucker et al., Glial cells generate neurons: the role of the transcription factor Pax6, Nature Neuroscience, vol.5, issue.4, pp.308-315, 2002.
DOI : 10.1038/nn828

R. F. Hevner, The cerebral cortex malformation in thanatophoric dysplasia: neuropathology and pathogenesis, Acta Neuropathologica, vol.131, issue.3, pp.208-221, 2005.
DOI : 10.1007/s00401-005-1059-8

R. S. Hill, C. A. Walsh, P. C. Holm, M. T. Mader, N. Haubst et al., Molecular insights into human brain evolution Loss-and gain-offunction analyses reveal targets of Pax6 in the developing mouse telencephalon, Nature Molecular and Cellular Neuroscience, vol.437, issue.34, pp.64-67, 2005.

C. J. Honey, R. Kotter, M. Breakspear, and O. Sporns, Network structure of cerebral cortex shapes functional connectivity on multiple time scales, Proceedings of the National Academy of Sciences of the United States of America, pp.10240-10245, 2007.
DOI : 10.1073/pnas.0701519104

S. Huang, Non-genetic heterogeneity of cells in development: more than just noise, Development, vol.136, issue.23, pp.3853-3862, 2009.
DOI : 10.1242/dev.035139

D. H. Hubel and T. N. Wiesel, Receptive fields and functional architecture of monkey striate cortex, The Journal of Physiology, vol.195, issue.1, pp.215-243, 1968.
DOI : 10.1113/jphysiol.1968.sp008455

S. L. Inglis-broadgate, R. E. Thomson, F. Pellicano, M. A. Tartaglia, C. C. Pontikis et al., FGFR3 regulates brain size by controlling progenitor cell proliferation and apoptosis during embryonic development, Developmental Biology, vol.279, issue.1, pp.73-85, 2005.
DOI : 10.1016/j.ydbio.2004.11.035

B. Jouve, P. Rosenstiehl, and M. Imbert, A mathematical approach to the connectivity between the cortical visual areas of the macaque monkey, Cerebral Cortex, vol.8, issue.1, pp.28-39, 1998.
DOI : 10.1093/cercor/8.1.28

S. A. Kauffman, The origins of order, 1993.

H. Kennedy and J. Bullier, A double-labeling investigation of the afferent connectivity to cortical areas V1 and V2 of the macaque monkey, The Journal of Neuroscience, vol.5, pp.2815-2830, 1985.

H. Kennedy, J. Bullier, and C. Dehay, Transient projection from the superior temporal sulcus to area 17 in the newborn macaque monkey., Proceedings of the National Academy of Sciences of the United States of America, pp.8093-8097, 1989.
DOI : 10.1073/pnas.86.20.8093

H. Kennedy and C. Dehay, Cortical Specification of Mice and Men, Cerebral Cortex, vol.3, issue.3, pp.27-35, 1993.
DOI : 10.1093/cercor/3.3.171

H. Kennedy and G. A. Orban, Response properties of visual cortical neurons in cats reared in stroboscopic illumination, Journal of Neurophysiology, vol.49, pp.686-704, 1983.

H. P. Killackey, Neocortical Expansion: An Attempt toward Relating Phylogeny and Ontogeny, Journal of Cognitive Neuroscience, vol.6, issue.1, pp.1-17, 1990.
DOI : 10.1002/cne.901660205

T. Kowalczyk, A. Pontious, C. Englund, R. A. Daza, F. Bedogni et al., Intermediate Neuronal Progenitors (Basal Progenitors) Produce Pyramidal-Projection Neurons for All Layers of Cerebral Cortex, Cerebral Cortex, vol.19, issue.10, pp.2439-2450, 2009.
DOI : 10.1093/cercor/bhn260

A. Kriegstein, S. Noctor, and V. Martinez-cerdeno, Patterns of neural stem and progenitor cell division may underlie evolutionary cortical expansion, Nature Reviews Neuroscience, vol.13, issue.11, pp.883-890, 2006.
DOI : 10.1038/340471a0

K. Kuida, T. F. Haydar, C. Y. Kuan, Y. Gu, C. Taya et al., Reduced Apoptosis and Cytochrome c???Mediated Caspase Activation in Mice Lacking Caspase 9, Cell, vol.94, issue.3, pp.325-337, 1998.
DOI : 10.1016/S0092-8674(00)81476-2

P. W. Land and A. P. Monaghan, Expression of the Transcription Factor, tailless, Is Required for Formation of Superficial Cortical Layers, Cerebral Cortex, vol.13, issue.9, pp.921-931, 2003.
DOI : 10.1093/cercor/13.9.921

C. Lange, W. B. Huttner, and F. Calegari, Cdk4/CyclinD1 Overexpression in Neural Stem Cells Shortens G1, Delays Neurogenesis, and Promotes the Generation and Expansion of Basal Progenitors, Cell Stem Cell, vol.5, issue.3, pp.320-331, 2009.
DOI : 10.1016/j.stem.2009.05.026

S. Levay, T. N. Wiesel, and D. H. Hubel, The development of ocular dominance columns in normal and visually deprived monkeys, The Journal of Comparative Neurology, vol.79, issue.1, pp.1-51, 1980.
DOI : 10.1002/cne.901910102

P. Levitt, M. L. Cooper, and P. Rakic, Coexistence of neuronal and glial precursor cells in the cerebral ventricular zone of the fetal monkey: an ultrastructural immunoperoxidase analysis, The Journal of Neuroscience, vol.1, pp.27-39, 1981.

W. H. Lien, O. Klezovitch, T. E. Fernandez, J. Delrow, and V. Vasioukhin, ??E-Catenin Controls Cerebral Cortical Size by Regulating the Hedgehog Signaling Pathway, Science, vol.311, issue.5767, pp.1609-1612, 2006.
DOI : 10.1126/science.1121449

G. Lopez-bendito and Z. Molnar, Thalamocortical development: how are we going to get there?, Nature Reviews Neuroscience, vol.4, issue.4, pp.276-289, 2003.
DOI : 10.1038/nrn1075

A. Lukaszewicz, V. Cortay, P. Giroud, M. Berland, I. Smart et al., The Concerted Modulation of Proliferation and Migration Contributes to the Specification of the Cytoarchitecture and Dimensions of Cortical Areas, Cerebral Cortex, vol.16, issue.Supplement 1, pp.26-34, 2006.
DOI : 10.1093/cercor/bhk011

URL : https://hal.archives-ouvertes.fr/hal-00077632

A. Lukaszewicz, P. Savatier, V. Cortay, P. Giroud, C. Huissoud et al., G1 Phase Regulation, Area-Specific Cell Cycle Control, and Cytoarchitectonics in the Primate Cortex, Neuron, vol.47, issue.3, pp.353-364, 2005.
DOI : 10.1016/j.neuron.2005.06.032

URL : https://hal.archives-ouvertes.fr/hal-00077619

A. Lukaszewicz, P. Savatier, V. Cortay, H. Kennedy, and C. Dehay, Contrasting effects of basic fibroblast growth factor and neurotrophin 3 on cell cycle kinetics of mouse cortical stem cells, The Journal of Neuroscience, vol.22, pp.6610-6622, 2002.
URL : https://hal.archives-ouvertes.fr/inserm-00132848

P. Malatesta, M. A. Hack, E. Hartfuss, H. Kettenmann, W. Klinkert et al., Neuronal or Glial Progeny, Neuron, vol.37, issue.5, pp.751-764, 2003.
DOI : 10.1016/S0896-6273(03)00116-8

P. Malatesta, E. Hartfuss, and M. Gotz, Isolation of radial glial cells by fluorescent-activated cell sorting reveals a neuronal lineage, Development, vol.127, pp.5253-5263, 2000.

N. T. Markov, M. M. Ercsey-ravasz, M. A. Gariel, C. Dehay, A. Knoblauch et al., The tribal networks of the cerebral cortex, Cerebral Plasticity, pp.275-290, 2011.

N. T. Markov, P. Misery, A. Falchier, C. Lamy, J. Vezoli et al., Weight Consistency Specifies Regularities of Macaque Cortical Networks, Cerebral Cortex, vol.21, issue.6, pp.1254-1272, 2011.
DOI : 10.1093/cercor/bhq201

URL : https://hal.archives-ouvertes.fr/hal-00596128

V. Martinez-cerdeno, S. C. Noctor, and A. R. Kriegstein, The Role of Intermediate Progenitor Cells in the Evolutionary Expansion of the Cerebral Cortex, Cerebral Cortex, vol.16, issue.Supplement 1, pp.152-161, 2006.
DOI : 10.1093/cercor/bhk017

S. K. Mcconnell, Fates of visual cortical neurons in the ferret after isochronic and heterochronic transplantation, The Journal of Neuroscience, vol.8, pp.945-974, 1988.

T. Miyata, A. Kawaguchi, K. Saito, M. Kawano, T. Muto et al., Asymmetric production of surface-dividing and non-surface-dividing cortical progenitor cells, Development, vol.131, issue.13, pp.3133-3145, 2004.
DOI : 10.1242/dev.01173

Z. Molnar, C. Metin, A. Stoykova, V. Tarabykin, D. J. Price et al., Comparative aspects of cerebral cortical development, European Journal of Neuroscience, vol.128, issue.Suppl., pp.921-934, 2006.
DOI : 10.1111/j.1460-9568.2006.04611.x

URL : https://hal.archives-ouvertes.fr/inserm-00132533

B. J. Molyneaux, P. Arlotta, T. Hirata, M. Hibi, and J. D. Macklis, Fezl Is Required for the Birth and Specification of Corticospinal Motor Neurons, Neuron, vol.47, issue.6, pp.817-831, 2005.
DOI : 10.1016/j.neuron.2005.08.030

M. Nieto, E. S. Monuki, H. Tang, J. Imitola, N. Haubst et al., Expression of Cux-1 and Cux-2 in the subventricular zone and upper layers II-IV of the cerebral cortex, The Journal of Comparative Neurology, vol.129, issue.2, pp.479-168, 2004.
DOI : 10.1002/cne.20322

S. C. Noctor, A. C. Flint, T. A. Weissman, R. S. Dammerman, and A. R. Kriegstein, Neurons derived from radial glial cells establish radial units in neocortex, Nature, vol.409, issue.6821, pp.714-720, 2001.
DOI : 10.1038/35055553

S. C. Noctor, A. C. Flint, T. A. Weissman, W. S. Wong, B. K. Clinton et al., Dividing precursor cells of the embryonic cortical ventricular zone have morphological and molecular characteristics of radial glia, The Journal of Neuroscience, vol.22, pp.3161-3173, 2002.

S. C. Noctor, V. Martinez-cerdeno, L. Ivic, and A. R. Kriegstein, Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases, Nature Neuroscience, vol.7, issue.2, pp.136-144, 2004.
DOI : 10.1038/nn1172

O. Leary and D. D. , Do cortical areas emerge from a protocortex?, Trends in Neurosciences, vol.12, issue.10, pp.400-406, 1989.
DOI : 10.1016/0166-2236(89)90080-5

L. J. Pilaz, D. Patti, G. Marcy, E. Ollier, S. Pfister et al., Forced G1-phase reduction alters mode of division, neuron number, and laminar phenotype in the cerebral cortex, Proceedings of the National Academy of Sciences of the United States of America, pp.21924-21929, 2009.
DOI : 10.1073/pnas.0909894106

L. Pinto, D. Drechsel, M. T. Schmid, J. Ninkovic, M. Irmler et al., AP2?? regulates basal progenitor fate in a region- and layer-specific manner in the developing cortex, Nature Neuroscience, vol.39, issue.10, pp.1229-1237, 2009.
DOI : 10.1038/nn.2399

F. Polleux, C. Dehay, A. Goffinet, and H. Kennedy, Pre- and Post-mitotic Events Contribute to the Progressive Acquisition of Area-specific Connectional Fate in the Neocortex, Cerebral Cortex, vol.11, issue.11, pp.1027-1039, 2001.
DOI : 10.1093/cercor/11.11.1027

F. Polleux, C. Dehay, and H. Kennedy, Neurogenesis and commitment of corticospinal neurons in reeler, The Journal of Neuroscience, vol.18, pp.9910-9923, 1998.

F. Polleux, C. Dehay, B. Moraillon, and H. Kennedy, Regulation of neuroblast cell-cycle kinetics plays a crucial role in the generation of unique features of neocortical areas, The Journal of Neuroscience, vol.17, pp.7763-7783, 1997.

A. Pontious, T. Kowalczyk, C. Englund, and R. F. Hevner, Role of Intermediate Progenitor Cells in Cerebral Cortex Development, Developmental Neuroscience, vol.30, issue.1-3, pp.24-32, 2008.
DOI : 10.1159/000109848

J. C. Quinn, M. Molinek, B. S. Martynoga, P. A. Zaki, A. Faedo et al., Pax6 controls cerebral cortical cell number by regulating exit from the cell cycle and specifies cortical cell identity by a cell autonomous mechanism, Developmental Biology, vol.302, issue.1, pp.50-65, 2007.
DOI : 10.1016/j.ydbio.2006.08.035

P. Rakic, Defects of neuronal migration and the pathogenesis of cortical malformations, Progress in Brain Research, vol.73, pp.15-37, 1988.
DOI : 10.1016/S0079-6123(08)60494-X

P. Rakic, Developmental and Evolutionary Adaptations of Cortical Radial Glia, Cerebral Cortex, vol.13, issue.6, pp.541-549, 2003.
DOI : 10.1093/cercor/13.6.541

K. Reznikov, S. E. Acklin, and D. Van-der-kooy, Clonal heterogeneity in the early embryonic rodent cortical germinal zone and the separation of subventricular from ventricular zone lineages, Developmental Dynamics, vol.14, issue.3, pp.328-343, 1997.
DOI : 10.1002/(SICI)1097-0177(199711)210:3<328::AID-AJA12>3.0.CO;2-6

K. Roy, K. Kuznicki, Q. Wu, Z. Sun, D. Bock et al., The Tlx Gene Regulates the Timing of Neurogenesis in the Cortex, Journal of Neuroscience, vol.24, issue.38, pp.8333-8345, 2004.
DOI : 10.1523/JNEUROSCI.1148-04.2004

J. W. Scannell, S. Grant, B. R. Payne, and R. Baddeley, On variability in the density of corticocortical and thalamocortical connections, Philosophical Transactions of the Royal Society B: Biological Sciences, vol.355, issue.1393, pp.21-35, 2000.
DOI : 10.1098/rstb.2000.0547

D. E. Schmechel and P. Rakic, Arrested proliferation of radial glial cells during midgestation in rhesus monkey, Nature, vol.183, issue.5694, pp.303-305, 1979.
DOI : 10.1002/cne.901760103

C. Schuurmans, O. Armant, M. Nieto, J. M. Stenman, O. Britz et al., Sequential phases of cortical specification involve Neurogenin-dependent and -independent pathways, The EMBO Journal, vol.128, issue.14, pp.2892-2902, 2004.
DOI : 10.1038/sj.emboj.7600278

Q. Shen, Y. Wang, J. T. Dimos, C. A. Fasano, T. N. Phoenix et al., The timing of cortical neurogenesis is encoded within lineages of individual progenitor cells, Nature Neuroscience, vol.295, issue.6, pp.743-751, 2006.
DOI : 10.1038/nn1694

R. N. Shepard, Perceptual-cognitive universals as reflections of the world, The Behavioral and Brain Sciences, vol.24, pp.581-601, 2001.

I. H. Smart, C. Dehay, P. Giroud, M. Berland, and H. Kennedy, Unique Morphological Features of the Proliferative Zones and Postmitotic Compartments of the Neural Epithelium Giving Rise to Striate and Extrastriate Cortex in the Monkey, Cerebral Cortex, vol.12, issue.1, pp.37-53, 2002.
DOI : 10.1093/cercor/12.1.37

URL : https://hal.archives-ouvertes.fr/inserm-00132484

I. H. Smart, Proliferative characteristics of the ependymal layer during the early development of the mouse neocortex: a pilot study based on recording the number, location and plane of cleavage of mitotic figures, Journal of Anatomy, vol.116, pp.67-91, 1973.

O. Sporns, Networks of the brain, 2011.

M. Sur and J. L. Rubenstein, Patterning and Plasticity of the Cerebral Cortex, Science, vol.310, issue.5749, pp.805-810, 2005.
DOI : 10.1126/science.1112070

V. Tarabykin, A. Stoykova, N. Usman, and P. Gruss, Cortical upper layer neurons derive from the subventricular zone as indicated by Svet1 gene expression, Development, vol.128, pp.1983-1993, 2001.

I. D. Thompson, M. Kossut, and C. Blakemore, Development of orientation columns in cat striate cortex revealed by 2-deoxyglucose autoradiography, Nature, vol.39, issue.5902, pp.712-715, 1983.
DOI : 10.1038/301712a0

H. Van-der-loos, Structural Changes in the Cerebral Cortex upon Modification of the Periphery: Barrels in Somatosensory Cortex, Philosophical Transactions of the Royal Society B: Biological Sciences, vol.278, issue.961, pp.373-376, 1977.
DOI : 10.1098/rstb.1977.0049

A. Van-ooyen, Using theoretical models to analyse neural development, Nature Reviews Neuroscience, vol.102, issue.6, pp.311-326, 2011.
DOI : 10.1038/nrn3031

J. Vezoli, A. Falchier, B. Jouve, K. Knoblauch, M. Young et al., Quantitative Analysis of Connectivity in the Visual Cortex: Extracting Function from Structure, The Neuroscientist, vol.26, issue.5, pp.476-482, 2004.
DOI : 10.1177/1073858404268478

J. Viti, A. Gulacsi, and L. Lillien, Wnt regulation of progenitor maturation in the cortex depends on Shh or fibroblast growth factor 2, The Journal of Neuroscience, vol.23, pp.5919-5927, 2003.

S. X. Wu, S. Goebbels, K. Nakamura, K. Nakamura, K. Kometani et al., Pyramidal neurons of upper cortical layers generated by NEX-positive progenitor cells in the subventricular zone, Proceedings of the National Academy of Sciences of the United States of America, pp.17172-17177, 2005.
DOI : 10.1073/pnas.0508560102

M. P. Young, Objective analysis of the topological organization of the primate cortical visual system, Nature, vol.358, issue.6382, pp.152-155, 1992.
DOI : 10.1038/358152a0

K. Yun, A. Mantani, S. Garel, J. Rubenstein, and M. A. Israel, Id4 regulates neural progenitor proliferation and differentiation in vivo, Development, vol.131, issue.21, pp.5441-5448, 2004.
DOI : 10.1242/dev.01430

N. Zecevic, Y. Chen, and R. Filipovic, Contributions of cortical subventricular zone to the development of the human cerebral cortex, The Journal of Comparative Neurology, vol.412, issue.2, pp.109-122, 2005.
DOI : 10.1002/cne.20714

C. J. Zhou, U. Borello, J. L. Rubenstein, and S. J. Pleasure, Neuronal production and precursor proliferation defects in the neocortex of mice with loss of function in the canonical Wnt signaling pathway, Neuroscience, vol.142, issue.4, pp.1119-1131, 2006.
DOI : 10.1016/j.neuroscience.2006.07.007

C. Zimmer, M. C. Tiveron, R. Bodmer, and H. Cremer, Dynamics of Cux2 Expression Suggests that an Early Pool of SVZ Precursors is Fated to Become Upper Cortical Layer Neurons, Cerebral Cortex, vol.14, issue.12, pp.1408-1420, 2004.
DOI : 10.1093/cercor/bhh102

URL : https://hal.archives-ouvertes.fr/hal-00310874

F. Zubler and R. Douglas, A framework for modeling the growth and development of neurons and networks, Frontiers in Computational Neuroscience, vol.3, p.25, 2009.
DOI : 10.3389/neuro.10.025.2009