Optimized analytic reconstruction for SPECT
Jean-Pol Guillement, Roman Novikov

To cite this version:

HAL Id: hal-00662909
https://hal.archives-ouvertes.fr/hal-00662909
Submitted on 25 Jan 2012

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Optimized analytic reconstruction for SPECT

J.-P. Guillement1, R.G. Novikov2

1 CNRS, Laboratoire de Mathématiques Jean Leray (UMR 6629), Université de Nantes, BP 92208, F-44322, Nantes cedex 03, France
E-mail: guillement@math.univ-nantes.fr

2 CNRS (UMR 7641), Centre de Mathématiques Appliquées, Ecole Polytechnique, 91128 Palaiseau, France
E-mail: novikov@cmap.polytechnique.fr

Abstract

We develop optimized analytic reconstruction for the single-photon emission computed tomography (SPECT). This reconstruction is based on: (1) Novikov’s exact and Chang’s approximate inversion formulas for the attenuated ray transform, (2) filtering techniques, and (3) Morozov type discrepancy principle. Our numerical examples include comparisons with the standard least square and expectation maximization iterative SPECT reconstructions.

1. Introduction

In the single-photon emission computed tomography (SPECT) one considers a body containing radioactive isotopes emitting photons. The emission data p in SPECT consist in the radiation measured outside the body by a family of detectors during some fixed time. The basic problem of SPECT consists in finding the distribution f of these isotopes in the body from the emission data p and some a priori information concerning the body. Usually this a priori information consists in the photon attenuation coefficient a in the points of body, where this coefficient is found in advance by the methods of the transmission computed tomography.

In addition, it is assumed that:

\begin{equation}
 f(x) \geq 0, \quad a(x) \geq 0, \quad x \in \mathbb{R}^d, \\
 \text{supp } a \subseteq D, \quad \text{supp } f \subseteq D,
\end{equation}

where f and a are the aforementioned density of radioactive isotopes and photon attenuation coefficient, D is some known compact domain containing the body; the aforementioned emission data p are defined on the detector set Γ, where Γ is identified with some discrete subset of the set T of all oriented straight lines in \mathbb{R}^d; $p(\gamma)$ is the number of photons coming from (the domain containing) the body along oriented straight line γ to the detector associated with γ, where $\gamma \in \Gamma \subseteq T$.

In some approximation

\begin{equation}
 p(\gamma) \text{ is a realization of a Poisson variate } p(\gamma) \\
 \text{with the mean } M p(\gamma) = g(\gamma) = CP_a f(\gamma) \text{ for any } \gamma \in \Gamma \\
 \text{and all } p(\gamma), \quad \gamma \in \Gamma, \text{ are independent},
\end{equation}
where
\[P_a f(\gamma) = \int_{\gamma} \exp [-D_a(x, \hat{\gamma})] f(x) dx, \quad (1.3) \]
where \(\hat{\gamma} \) is the direction of \(\gamma \), \(dx \) is standard Euclidean measure on \(\gamma \),
\[D_a(x, \theta) = \int_0^{+\infty} a(x + t\theta) dt, \quad x \in \mathbb{R}^d, \quad \theta \in S^{d-1}, \quad (1.4) \]
\(C = C_1 t \), where \(t \) is the detection time, \(C_1 \) is independent of \(t \).

The transform \(P_a f \) of (1.2), (1.3) is the attenuated ray transform of \(f \); the transform \(D_a \) of (1.3), (1.4) is the divergent beam transform of \(a \).

Although the SPECT problem \(p, a \rightarrow Cf \) arises for a body contained in \(\mathbb{R}^d, d = 3 \), this problem can be restricted to each fixed 2D plane \(\Xi \) intersecting the body and identified with \(\mathbb{R}^2 \).

We recall that \(T \approx \mathbb{R} \times S^1 \), where \(T \) is the set of all oriented straight lines in \(\mathbb{R}^2 \). If \(\gamma = (s, \theta) \in \mathbb{R} \times S^1 \), then \(\gamma = \{x \in \mathbb{R}^2 : x = t\theta + s\theta^\perp, \ t \in \mathbb{R}\} \) (modulo orientation) and \(\theta \) gives the orientation of \(\gamma \), where \(\theta^\perp = (-\theta_2, \theta_1) \) for \(\theta = (\theta_1, \theta_2) \in S^1 \).

After the restriction to 2D plane we assume that: (1.1) is fulfilled for \(D = B_R = \{x \in \mathbb{R}^2 : |x| \leq R\} \), where \(R \) is radius of image support; \(\Gamma \) is a uniform \(n \times n \) sampling of
\[T_R = \{\gamma \in T : \gamma \cap B_R \neq 0\} = \{(s, \theta) \in \mathbb{R} \times S^1 : |s| \leq R\}. \quad (1.5) \]
In addition, the standard value for \(n \) is 128.

In the present article we consider the following problem.

Problem 1. Find (as well as possible) \(Cf \) from \(p \) and \(a \), where \(Cf, a \) and \(p \) are the functions of (1.2) considered in the framework of the 2D restriction as described above.

More precisely, we continue studies on numerical realizations of explicit analytic reconstruction formulas for Problem 1. In particular, the main result of the present article consists in some optimized analytic reconstruction (for Problem 1) based on Novikov’s exact and Chang’s approximate formulas for finding \(f \) on \(\mathbb{R}^2 \) from \(P_a f \) on \(T \) and \(a \) on \(\mathbb{R}^2 \) and on Morozov type discrepancy principle, see Sections 2, 3, 4. Related numerical examples are given in Section 5 containing also comparative studies with some well-known iterative methods. One can see that our optimized analytic reconstruction is rather efficient as regards smallness of its reconstruction error in \(L^2 \) norm.

2. Novikov formula

We consider the following exact inversion formula
\[Cf = N_a g, \quad (2.1) \]
where \(g = CP_a f \) is defined as in (1.3) for \(d = 2 \) and \(\gamma = (s, \theta) \in \mathbb{R} \times S^1 \),
\[N_a q(x) = \frac{1}{4\pi} \int_{S^1} \theta^\perp \nabla_x K(x, \theta) d\theta, \quad (2.2a) \]
\[K(x, \theta) = \exp [-D_a(x, -\theta)] \tilde{q}_\theta(x \theta^\perp), \quad (2.2b) \]
Optimized analytic reconstruction for SPECT

\[\tilde{q}_\theta(s) = \exp(A_\theta(s)) \cos(B_\theta(s)) H(\exp(A_\theta) \cos(B_\theta) q_\theta)(s) + \exp(A_\theta(s)) \sin(B_\theta(s)) H(\exp(A_\theta) \sin(B_\theta) q_\theta)(s), \]

(2.2c)

\[A_\theta(s) = \frac{1}{2} P a(s, \theta), \quad B_\theta(s) = H A_\theta(s), \quad q_\theta(s) = q(s, \theta), \]

(2.2d)

where \(q \) is a test function, \(Da \) is defined by (1.4), \(P = P_0 \) is the classical two-dimensional ray transformation (i.e. \(P_0 \) is defined by (1.3) with \(a \equiv 0 \), \(H \) is the Hilbert transformation defined by the formula

\[H u(s) = \frac{1}{\pi} p.v. \int_{\mathbb{R}} \frac{u(t)}{s - t} dt, \]

(2.3)

where \(u \) is a test function, \(x = (x_1, x_2) \in \mathbb{R}^2 \), \(\theta = (\theta_1, \theta_2) \in \mathbb{S}^1 \), \(\theta^\perp = (-\theta_2, \theta_1) \), \(s \in \mathbb{R} \), \(d\theta \) is arc-length measure on the circle \(\mathbb{S}^1 \).

In a slightly different form (using complex notations) formula (2.1) was obtained in [Nov1]. Some new proofs of this formula were given in [Na] and [BS]. Formula (2.1) was successfully implemented numerically in [Ku2] and [Na] via a direct generalization of the (classical) filtered back-projection (FBP) algorithm. However, this generalized FBP algorithm turned out to be considerably less stable, in general, than its classical analogue. Some possibilities for improving the stability of SPECT imaging based on (2.1), (2.2) with respect to the Poisson noise in the emission data \(g \) were proposed, in particular, in [Ku2] (preprint version), [GJKNT], [GN1] and [GN2]. Some fast numerical implementation of formula (2.1) was proposed in [BM].

In the present article we suggest new stabilization of the generalized FBP algorithm implementing formula (2.1). This new stabilization involves Morozov’s discrepancy principle and Chang’s formula, see Sections 3 and 4.

3. Chang formula

We consider the following approximate inversion formula

\[Cf \simeq \mathcal{C} h_a g, \]

(3.1)

where \(g = C P_a f \) is defined as in (1.3) for \(d = 2 \) and \(\gamma = (s, \theta) \in \mathbb{R} \times \mathbb{S}^1 \),

\[\mathcal{C} h_a q(x) = \frac{1}{4\pi w_0(x)} \int_{\mathbb{S}^1} \theta^\perp \nabla_x H q_\theta(x \theta^\perp) d\theta, \]

(3.2a)

\[w_0(x) = \frac{1}{2\pi} \int_{\mathbb{S}^1} \exp[-D a(x, \theta)] d\theta, \]

(3.2b)

\[q_\theta(s) = q(s, \theta), \]

(3.2c)

where \(q \) is a test function, \(H \) is defined by (2.3), \(Da \) is defined by (1.4), \(x \in \mathbb{R}^2 \), \(\theta = (\theta_1, \theta_2) \in \mathbb{S}^1 \), \(\theta^\perp = (-\theta_2, \theta_1) \), \(s \in \mathbb{R} \), \(d\theta \) is arc-length measure on \(\mathbb{S}^1 \).

Formula (3.1) is known as Chang’s approximate inversion formula for the transformation \(P_a \), see [Ch], [Ku1], [Nov2]. This formula is approximate for the continuous case but...
its result is sufficiently stable for reconstruction from discrete and noisy data \(p \) of (1.2) on the basis of classical FBP algorithm. It is known that this formula is efficient as the first approximation in SPECT reconstructions, see [Ch], [Ku1], [Nov2].

4. Optimization

The exact formula (2.1) is sufficiently stable on sufficiently low frequency part of \(p \) and \(a \) but is rather unstable on other part of these data, see [Ku2], [GJKNT]. Therefore, some reasonable low frequency approximation to \(Cf \) can be found as

\[
Cf \approx Cf_\alpha = N_{\alpha}(Wp)_\alpha \text{ or } (4.1a)
\]

\[
Cf \approx Cf_\alpha = (N_{\alpha}(Wp)_\alpha)_\alpha, \quad (4.1b)
\]

where \(N_\alpha \) denotes the generalized FBP algorithm implementing (2.2), \(\alpha \) is optimization parameter, \(W \) is some moderate filter (for example, space-variant Wiener type filter of [GN2]), \(a_\alpha, (Wp)_\alpha, (N_{\alpha}(Wp)_\alpha)_\alpha \) denote the low-frequency parts of \(a, Wp, N_{\alpha}(Wp)_\alpha \), respectively, obtained via some standard 2D space-invariant low-frequency filtering dependent on \(\alpha \). In addition, according to the Morozov principle we choose \(\alpha \) as a parameter minimizing the discrepancy

\[
d_\alpha = \|P_aCf_\alpha - Wp\|_{L^2(\Gamma)}. \quad (4.2)
\]

Numerical examples illustrating the reconstruction (4.1) with \(\alpha \) found via the Morozov discrepancy principle are given in Section 5, see figure 3 and formula (5.6). As far as we know, these very natural numerical studies were not yet given in the literature.

In addition, the approximate formula (3.1) is sufficiently stable even on reasonably high frequency part of \(p \) and \(a \). Therefore, the optimized approximate reconstruction (4.1) can be considerably improved as

\[
Cf \approx Cf_\alpha = N_{\alpha}(Wp)_\alpha + Ch_a(Wp - (Wp)_\alpha) \text{ or } (4.3a)
\]

\[
Cf \approx Cf_\alpha = (N_{\alpha}(Wp)_\alpha)_\alpha + Ch_a(Wp - ((Wp)_\alpha)_\alpha), \quad (4.3b)
\]

where we use notations similar to notations of (2.1), (3.1), (4.1) and where we choose \(\alpha \) as a parameter minimizing the discrepancy (4.2) with \(Cf_\alpha \) of (4.3). Numerical examples illustrating the reconstruction (4.3) with \(\alpha \) found via the aforementioned Morozov-type discrepancy principle are given in Section 5, see figure 4 and formula (5.7).

Note also that some optimized analytic reconstruction based on (2.1), (3.1) can be constructed as

\[
Cf \approx Cf_\beta = (1 - \beta)Cf^1 + \beta Cf^2, \quad (4.4)
\]

where \(Cf^1 = Cf_\alpha \) is based on (4.1), \(Cf^2 = Ch_aWp \) and \(\beta \) is a parameter minimizing \(d_\beta \) of (4.2) with \(Cf_\beta \) of (4.4). This reconstruction \(Cf_\beta \) is numerically simpler than the aforementioned reconstruction \(Cf_\alpha \) of (4.3). However, the reconstruction result for \(Cf_\alpha \) of (4.3) is better than for \(Cf_\beta \) of (4.4), see formulas (5.7),(5.9).

5. Numerical examples

5.1. Preliminary remarks
Optimized analytic reconstruction for SPECT

All 2D images of this article are considered on \(n \times n \) grids, where \(n = 128 \).

We assume that \(X \) is uniform \(n \times n \) sampling of the domain
\[
D_R = \{ x = (x_1, x_2) \in \mathbb{R}^2 : \max(|x_1|, |x_2|) \leq R \}
\]
and \(\Gamma \) is uniform \(n \times n \) sampling of \(T_R \) defined by (1.5), where \(R \) is radius of image support.

We use also the following notations
\[
\zeta(q_2, q_1, \Gamma') = \frac{\|q_2 - q_1\|_{L^2(\Gamma')}}{\|q_1\|_{L^2(\Gamma')}}.
\]
(5.1)

where \(q_1, q_2 \) are test functions on \(\Gamma' \subseteq \Gamma \) and
\[
\eta(u_2, u_1, X') = \frac{\|u_2 - u_1\|_{L^2(X')}}{\|u_1\|_{L^2(X')}}.
\]
(5.2)

where \(u_1, u_2 \) are test functions on \(X' \subseteq X \).

Given \(f \) and \(a \) on \(X \), we assume that \(P_a f \) is defined on \(\Gamma \) and is numerical realization of (1.3) as in [Ku2]. Given \(a \) on \(X \) and \(q \) on \(\Gamma \), we assume that \(N_a q \) and \(\mathcal{C}h_a q \) are defined on \(X \) and denote the numerical realizations of (2.2) and (3.2) on the basis of generalized and classical FBP algorithms, respectively, see [Ku2].

We assume that \(\hat{q} = Fg \) denotes the discrete Fourier transform of \(q \).

All 2D images of the present article, except the spectrum of projections, are drawn using a linear greyscale, in such a way that the dark grey color represents zero (or negative values, if any) and white corresponds to the maximum value of the imaged function. For the spectrum of projections, a non-linear greyscale was used, because of too great values of the spectrum for small frequencies.

5.2. Elliptical chest phantom

We consider a version of the elliptical chest phantom (used for numerical simulations of cardiac SPECT imaging; see [HL], [Br], [GN1]). This version is, actually, the same that in [GN1], [GN2] and its description consists in the following:

(1) The major axis of the ellipse representing the body is 30 cm.
(2) The attenuation map is shown in figure 1(a); the attenuation coefficient \(a \) is 0.04 cm\(^{-1}\) in the lung regions (modeled as two interior ellipses), 0.15 cm\(^{-1}\) elsewhere within the body ellipse, and zero outside the body.
(3) The emitter activity \(f \) is shown in figure 1(b); \(f \) is in the ratio 8:0:1:0 in myocardium (represented as a ring), lungs, elsewhere within the body, and outside the body.
(4) The attenuated ray transform \(g = CP_a f \) and noisy emission data \(p \) of (1.2) are shown in figures 1(c), 2(a). In addition, the constant \(C \) was specified by the equation
\[
\frac{\|g\|_{L^1(\Gamma)}}{\|g\|_{L^2(\Gamma)}} = \frac{1}{(0.30)^2}
\]
(5.3)
in order to have that the noise level \(\zeta(p, g, \Gamma) \approx 0.30 \) (where \(\zeta \) is defined by (5.1)). Actually, we have that
\[
\zeta(p, g, \Gamma) = 0.298, \quad \sum_{\gamma \in \Gamma} p(\gamma) = 125450
\]
(5.4)
for p shown in figure 2(a), where ζ is defined by (5.1).

Figures 1(d) and 2(b) show the spectrums $|\hat{g}|$ and $|\hat{p}|$.

5.3. Reconstruction results

Figures 2(c), 2(d) show the filtering result Wp and its spectrum $|\hat{Wp}|$ (for p shown in figure 2 (a)) for $W = A^{sym}_{l_1,l_2}$, where $A^{sym}_{l_1,l_2}$ is the approximately optimal space-variant Wiener-type filter of Section 5.3 of [GN2]. In addition,

$$\zeta(Wp, g, \Gamma) = 0$$

which is about three times smaller than ζ of (5.4).

Figures 3, 4 show the reconstructions Cf_α of (4.1a), (4.3a) and their central horizontal profiles, where $W = A^{sym}_{8,8}$ and α is found, for each of these reconstructions, as a parameter minimizing d_α of (4.2). In addition,

$$\eta(Cf_\alpha, Cf, X) = 0.445 \text{ for } Cf_\alpha \text{ of (4.1a)},$$

$$\eta(Cf_\alpha, Cf, X) = 0.367 \text{ for } Cf_\alpha \text{ of (4.3a)},$$

where Cf is, actually, shown in figure 1(b), η is defined by (5.2).

We have also that:

$$\eta(Cf^2, Cf, X) = 0.393$$

for $Cf^2 = Ch_\alpha Wp$ of (4.4), where $W = A^{sym}_{8,8}$;

$$\eta(Cf_\beta, Cf, X) = 0.391$$

for Cf_β of (4.4), where $W = A^{sym}_{8,8}$ and β is found as a parameter minimizing d_β of (4.2).

An efficiency of (3.1), confirmed by (5.8), is explained in particular in [Nov2].

Figures 5(a)-(d) show standard steepest descent least square (SDLS) and expectation maximization (EM) reconstructions Cf_{rec} and their central horizontal profiles, obtained via 60 iterations of each of these methods from a and p shown in figures 1(a), 2(a). In addition,

$$\eta(Cf_{rec}, Cf, X) = 0.436 \text{ for the SDLS case},$$

$$\eta(Cf_{rec}, Cf, X) = 0.421 \text{ for the EM case},$$

where η, Cf, X are the same that in (5.6)-(5.9). For description of EM method in emission tomography, see [HL], [SV] and references therein.

One can see that in our numerical examples Cf_α of (4.3a) is the best as regards smallness of the reconstruction error in L^2 norm, whereas Cf_{rec} obtained via 60 EM iterations is the best as regards the resolution. Possible optimizations of EM and SDLS reconstructions with respect to the iteration number will be not discussed in the present article.
Figure 1. Attenuation map (a), emitter activity (b), noiseless emission data $g = CP_α f$ (c), spectrum $|\hat{g}|$ (d). (See Section 1 and Subsection 5.2.)

Figure 2. Noisy emission data (a), spectrum $|\hat{p}|$ (b), filtering result Wp (c), spectrum $|\hat{Wp}|$ (d), for $W = A_{8,8}^{sym}$. (See Sections 1, 4 and Subsections 5.2, 5.3.)

Figure 3. Reconstruction $Cf_α$ of (4.1a) (a) with its central horizontal profile (b). (See Section 4 and Subsection 5.3.)
6. Conclusions

In this work we developed optimized analytic reconstructions based on: (1) Chang’s approximate and Novikov’s exact inversion formulas for the attenuated ray transform, see formulas (2.1), (3.1); (2) filtering techniques including Wiener-type filters of [GN2]; (3) Morozov type discrepancy principle. The formulas of these optimized analytic reconstructions are given in Section 4 and related numerical examples are given in Section 5.

One can see that, for example, our optimized analytic reconstruction C_f_{α} of (4.3) is quite competitive with classical iterative (SDLS and EM) methods as regards the reconstruction error in L^2 norm, see formulas (5.7), (5.10), (5.11). However, the classical EM method works better as regards the resolution, see figures 4 and 5(c), 5(d).

Thus, improving resolution properties of analytic reconstructions in SPECT is an open direction for researches.

References

Optimized analytic reconstruction for SPECT

[Na] Natterer F 2001 Inversion of the attenuated Radon transform Inverse Problems 17 113-119

