On the Hausdorff dimension of Julia sets of some real polynomials

Abstract : We show that the supremum for $c$ real of the Hausdorff dimension of the Julia set of the polynomial $z\mapsto z^d+c$ ($d$ is an even natural number) is greater than $2d/(d+1)$.
Document type :
Preprints, Working Papers, ...
Complete list of metadatas

Cited literature [14 references]  Display  Hide  Download

https://hal.archives-ouvertes.fr/hal-00662708
Contributor : Michel Zinsmeister <>
Submitted on : Tuesday, January 24, 2012 - 6:26:32 PM
Last modification on : Wednesday, March 27, 2019 - 4:18:02 PM
Long-term archiving on: Wednesday, April 25, 2012 - 2:50:57 AM

Files

lezi2012.pdf
Files produced by the author(s)

Identifiers

  • HAL Id : hal-00662708, version 1
  • ARXIV : 1201.5186

Citation

Genadi Levin, Michel Zinsmeister. On the Hausdorff dimension of Julia sets of some real polynomials. 2012. ⟨hal-00662708⟩

Share

Metrics

Record views

305

Files downloads

315