# Spectral inverse problems for compact Hankel operators

Abstract : Given two arbitrary sequences $(\lambda_j)_{j\ge 1}$ and $(\mu_j)_{j\ge 1}$ of real numbers satisfying $|\lambda_1|>|\mu_1|>|\lambda_2|>|\mu_2|>\dots>\vert \lambda _j\vert >\vert \mu _j\vert \to 0\ ,$ we prove that there exists a unique sequence $c=(c_n)_{n\in\Z_+}$, real valued, such that the Hankel operators $\Gamma_c$ and $\Gamma_{\tilde c}$ of symbols $c=(c_{n})_{n\ge 0}$ and $\tilde c=(c_{n+1})_{n\ge 0}$ respectively, are selfadjoint compact operators on $\ell^2(\Z _+)$ and have the sequences $(\lambda_j)_{j\ge 1}$ and $(\mu_j)_{j\ge 1}$ respectively as non zero eigenvalues. Moreover, we give an explicit formula for $c$ and we describe the kernel of $\Gamma_c$ and of $\Gamma_{\tilde c}$ in terms of the sequences $(\lambda_j)_{j\ge 1}$ and $(\mu_j)_{j\ge 1}$. More generally, given two arbitrary sequences $(\rho _j)_{j\ge 1}$ and $(\sigma _j)_{j\ge 1}$ of positive numbers satisfying $\rho _1>\sigma _1>\rho _2>\sigma _2>\dots> \rho _j> \sigma _j \to 0\ ,$ we describe the set of sequences $c=(c_n)_{n\in\Z_+}$ of complex numbers such that the Hankel operators $\Gamma_c$ and $\Gamma_{\tilde c}$ are compact on $\ell ^2(\Z _+)$ and have sequences $(\rho _j)_{j\ge 1}$ and $(\sigma _j)_{j\ge 1}$ respectively as non zero singular values.
Keywords :
Domain :

https://hal.archives-ouvertes.fr/hal-00662534
Contributor : Patrick Gerard <>
Submitted on : Tuesday, January 24, 2012 - 1:56:52 PM
Last modification on : Monday, December 23, 2019 - 3:50:10 PM
Document(s) archivé(s) le : Wednesday, April 25, 2012 - 2:41:08 AM

### Files

spectral_submitted_2.pdf
Files produced by the author(s)

### Identifiers

• HAL Id : hal-00662534, version 1
• ARXIV : 1201.4971

### Citation

Patrick Gerard, Sandrine Grellier. Spectral inverse problems for compact Hankel operators. Journal of the Institute of Mathematics of Jussieu,, 2014, 13, pp.273-301. ⟨hal-00662534⟩

Record views