Spectral inverse problems for compact Hankel operators

Abstract : Given two arbitrary sequences $(\lambda_j)_{j\ge 1}$ and $(\mu_j)_{j\ge 1}$ of real numbers satisfying $$|\lambda_1|>|\mu_1|>|\lambda_2|>|\mu_2|>\dots>\vert \lambda _j\vert >\vert \mu _j\vert \to 0\ ,$$ we prove that there exists a unique sequence $c=(c_n)_{n\in\Z_+}$, real valued, such that the Hankel operators $\Gamma_c$ and $\Gamma_{\tilde c}$ of symbols $c=(c_{n})_{n\ge 0}$ and $\tilde c=(c_{n+1})_{n\ge 0}$ respectively, are selfadjoint compact operators on $\ell^2(\Z _+)$ and have the sequences $(\lambda_j)_{j\ge 1}$ and $(\mu_j)_{j\ge 1}$ respectively as non zero eigenvalues. Moreover, we give an explicit formula for $c$ and we describe the kernel of $\Gamma_c$ and of $\Gamma_{\tilde c}$ in terms of the sequences $(\lambda_j)_{j\ge 1}$ and $(\mu_j)_{j\ge 1}$. More generally, given two arbitrary sequences $(\rho _j)_{j\ge 1}$ and $(\sigma _j)_{j\ge 1}$ of positive numbers satisfying $$\rho _1>\sigma _1>\rho _2>\sigma _2>\dots> \rho _j> \sigma _j \to 0\ ,$$ we describe the set of sequences $c=(c_n)_{n\in\Z_+}$ of complex numbers such that the Hankel operators $\Gamma_c$ and $\Gamma_{\tilde c}$ are compact on $\ell ^2(\Z _+)$ and have sequences $(\rho _j)_{j\ge 1}$ and $(\sigma _j)_{j\ge 1}$ respectively as non zero singular values.
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00662534
Contributeur : Patrick Gerard <>
Soumis le : mardi 24 janvier 2012 - 13:56:52
Dernière modification le : jeudi 3 mai 2018 - 15:32:06
Document(s) archivé(s) le : mercredi 25 avril 2012 - 02:41:08

Fichiers

spectral_submitted_2.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00662534, version 1
  • ARXIV : 1201.4971

Collections

Citation

Patrick Gerard, Sandrine Grellier. Spectral inverse problems for compact Hankel operators. Journal of the Institute of Mathematics of Jussieu,, 2014, 13, pp.273-301. 〈hal-00662534〉

Partager

Métriques

Consultations de la notice

289

Téléchargements de fichiers

83