How contact interactions may depend on the shape of Cauchy cuts in N-th gradient continua: approach "à la D'Alembert"

Abstract : Navier-Cauchy format for Continuum Mechanics is based on the concept of contact interaction between subbodies of a given continuous body. In this paper it is shown how -by means of the Principle of Virtual Powers- it is possible to generalize Cauchy representation formulas for contact interactions to the case of N-th gradient continua, i.e. continua in which the deformation energy depends on the deformation Green-Saint-Venant tensor and all its N-1 order gradients. In particular, in this paper the explicit representation formulas to be used in N-th gradient continua to determine contact interactions as functions of the shape of Cauchy Cuts are derived. It is therefore shown that i) these interactions must include edge (i.e. concentrated on curves) and wedge (i.e. concentrated on points) interactions, and ii) these interactions cannot reduce simply to forces: indeed the concept of K-forces (generalizing similar concepts introduced by Rivlin, Mindlin, Green and Germain) is fundamental and unavoidable in the theory of N-th gradient continua.
Type de document :
Article dans une revue
Zeitschrift für Angewandte Mathematik und Physik, Springer Verlag, 2012, 63 (6), pp.1119-1141
Liste complète des métadonnées

Littérature citée [121 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00662376
Contributeur : Francesco Dell'Isola <>
Soumis le : lundi 23 janvier 2012 - 22:58:30
Dernière modification le : mardi 19 juin 2018 - 16:02:01
Document(s) archivé(s) le : mardi 24 avril 2012 - 02:30:28

Fichier

dellisola_seppecher_madeo.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00662376, version 1

Collections

Citation

Francesco Dell'Isola, Pierre Seppecher, Angela Madeo. How contact interactions may depend on the shape of Cauchy cuts in N-th gradient continua: approach "à la D'Alembert". Zeitschrift für Angewandte Mathematik und Physik, Springer Verlag, 2012, 63 (6), pp.1119-1141. 〈hal-00662376〉

Partager

Métriques

Consultations de la notice

395

Téléchargements de fichiers

477